MEGA=65

USER'S GUIDE

] [1]] | I | |
u EE EEB L L1} |] n
MUSEUM OF ELECTRONIC GAMES & ART

MEGA65 TEAM

Dr. Paul Gardner-Stephen

(highlander)

Founder

Software and virtual hardware architect
Spokesman and lead scientist

Martin Streit

(seriously)

Video and photo production

Tax and organization
Social media

Dan Sanderson
(dddaaannn)

Media and documentation

MEGA65.ROM

Dr. Edilbert Kirk
(Bit Shifter)
MEGA65.ROM
Manual and tools

Gabor Lénart
(LGB)

Emulator

Farai Aschwanden
(Tayger)

Filehost and tools
Financial advisory

Falk Rehwagen
(bluewaysw)
GEOS

Robert Steffens
(kibo)

Network technology
Core bug hunting

Detlef Hastik
(deft)

Co-founder
General manager
Marketing and sales

Oliver Graf

(lydon)

Release management

VHDL and platform enhancements

Antti Lukats
(antti-brain)
Host hardware design and production

Dieter Penner
(doubleflash)
Host hardware support

Mirko H.
(sy2002)
Additional platforms and consulting

Giirce Isikyildiz
(gurce)

Tools and enhancements
Daniel England

(Mew Pokémon)
Additional code and tools

Hernan Di Pietro
(indiocolifa)

Additional emulation and tools
Roman Standzikowski
(FeralChild)

Open ROMs

Anton Schneider-Michallek
(adtbm)

Presentation and support

Reporting Errors and
Omissions

This book is being continuously refined and improved upon by the MEGAS5 com-
munity. The version of this edition is:

commit df09ad15167925ccib2ecadcdlTbalcdddedtldd
date: Fri Feb 16 17:39:39 2024 -0800

We want this book to be the best that it possibly can. So if you see any errors, find
anything that is missing, or would like more information, please report them using
the MEGAG5 User's Guide issue tracker:

https://github.com/mega65/mega65-user-guide/issues

You can also check there to see if anyone else has reported a similar problem,
while you wait for this book to be updated.

Finally, you can always download the latest versions of our suite of books from
these locations:

* https://megab5.org/megabs-book

* https://mega6b.org/user-guide

* https://megab5.org/developer-guide
* https://mega6b.org/basic65-ref

* https://mega65.org/chipset-ref

* https://mega65.org/docs

https://github.com/mega65/mega65-user-guide/issues
https://mega65.org/mega65-book
https://mega65.org/user-guide
https://mega65.org/developer-guide
https://mega65.org/basic65-ref
https://mega65.org/chipset-ref
https://mega65.org/docs

MEGA65 USER’S GUIDE

Published by
the MEGA Museum of Electronic Games & Art e.V., Germany.

2nd Edition

Copyright ©2019 - 2024 by Paul Gardner-Stephen, the MEGA Museum of Elec-
tronic Games & Art e.V., and contributors.

This user guide is made available under the GNU Free Documentation License v1.3,
or later, if desired. This means that you are free to modify, reproduce and redis-
tribute this user guide, subject to certain conditions. The full text of the GNU Free
Documentation License v1.3 can be found at https://www.gnu.org/licenses/
fdl-1.3.en.html.

Implicit in this copyright license, is the permission to duplicate and/or redistribute
this document in whole or in part for use in education environments. We want to
support the education of future generations, so if you have any worries or concerns,
please contact us.

February 17,2024

https://www.gnu.org/licenses/fdl-1.3.en.html
https://www.gnu.org/licenses/fdl-1.3.en.html

Contents

Introduction

Setup
Unpacking and Connecting the MEGAS5
RearConnections L
SideConnections L L
MEGAGS Screen and Peripherals L L oL
Optional Connections L
Installing the Real-Time Clock Battery
Switching the MEGAS5 on for the First Time
ThelntroDisk o e
The Cursor. o o o e

Getting Started

Keyboard
SpecialKeys

The ScreenEditor L L

Editor Functionality
CreatingaWindow L L o
Additional ASCll characters L.
Uppercase and lowercase L.

The FreezerMenu

Running Commodore 64 Software L L.
GOb84Mode
The “C64 for MEGAS5"FPGACore oo oo .

4 Configuring Your MEGA65 29

Configuring Your MEGASS5 Lo 31
The Configuration Utility o o 31
Input . . . L e 32
Chipset 32
Video 34
Audio . . . L e 34
Network o o 35
Done. 36
IntroducingSD Cards 37
PreparingaNew SD Card L o 37
Insertingthe SDCard o 38

The SDCard Utility o o 38
Obtaining the Bundled Software 41

5 Upgrading the MEGA6S5 43
How a MEGASS5 CanBe Upgraded 47
WhatisaCore? 47
Determining the Versionsof Things 48
Obtaining the Latest Files 49
The Core SelectionMenu L 51
Upgrading the MEGA65 Core, ROM, and System Files 52
Installing Alternate Coresand ROMs 55
SettingCoreFlags 56
ErasingaCoreSlot L L oo 57
Upgrading the Factory CoreinSlot O 57
Understanding The Core Booting Process 59

vi

6 Using Disks and Disk Images 61

DiskDrives oo e 63
Unit Numbers and Drive Numbers 63
Using Virtual Disk Images 64
Where to Get Disk Image Files 64
Mounting Disk Images with the Freezer 64
Mounting Disk Images fromBASIC 66
CreatingaNew DiskImage 66
Managing SD Card Files in Sub-directories 66
Using the Internal 3.5" Floppy Disk Drive 67
Mounting the 3.5" Drive with the Freezer 67
Mounting the 3.5" Drive fromBASIC 67
DDandHDdisks 48
Formattinga Disk L 69
Using External IEC Disk Drives 49
Bootable Disks 70
Auto-Booting Disks 70
Accessing the SD Card fromBASIC, 71
Common Disk Operations 71
DIR .« e 72
DLOAD and RUN 72
DSAVE 72
BACKUP o 73
COPY . e 73
RENAME o o 73
DELETE e 73
Shortcut Disk Commands L Lo L 73

vii

7 Transferring Files 75

Getting Files to the MEGAS5 77
Understanding Networkingo L Lo Lo 77
Obtaining M65Connect L 78
Mé5Connect forWindows 78
Mé5Connect formacOS 78
Mé65Connect forLinux 79
Enabling Network Listening oL o Lo 79
Transferring Files L 81
Transferring Files with M65Connect 81
The megaé5_ftp Command-LineTool 83
APPENDICES 85
A BASIC 65 Command Reference 85
Commands, Functions, and Operators 87
BASIC Command Reference 97
B PETSCII Codes 257
PETSCIl Codes and CHRS 259
C Screen Editor Keys 263
ScreenEditorKeys L L 265
Controlcodes 265
Shiftedcodes 268
Escape Sequences 268
D Screen Codes 273
ScreenCodes e 275
E System Palette 277
SystemPalette 279

viii

F Supporters & Donors 281

Organisations L 283

Contributors L 284

Supporters . .. 285
INDEX 291

CHAPTER

Introduction
® Welcome to the MEGA65!
® Other Books in this series

® Come Join Us!

Congratulations on your purchase of one of the most long-awaited computers in
the history of computing! The MEGA&5 is community designed, and based on
the never-released Commodore® 65' computer; a computer designed in 1989
and intended for public release in 1990. Decades have passed, and we have
endeavoured to invoke memories of an earlier time when computers were simple
and friendly. They were not only simple to operate and understand, but friendly
and approachable for new users.

These 1980s computers inspired many of their owners to pursue the exciting and
rewarding technology careers they have today. Just imagine the exhilaration these
early computing pioneers experienced, as they learned they could use their new
computer to solve problems, write a letter, prepare taxes, invent new things, dis-
cover how the universe works, and perhaps even play an exciting game or two! We
want to re-awaken that same level of excitement (which alas, is no longer found
in modern computing), so we have created the MEGA6S.

The MEGAGS5 team believes that owning a computer is like owning a home. You
don't just use a home; you change things, big and small, to make it your own
custom living space. After a while, when you settle in, you may decide to renovate
or expand your home to make it more comfortable, or provide more utility. Think
of the MEGAS5 as your very own “computing home”.

This guide will teach you how to do more than just hang pictures on a wall; it will
show you how to build your dream home. While you read this user’s guide, you will
learn how to operate the MEGASS5, write programs, add additional software, and
extend hardware capabilities. What won't be immediately obvious is that along
the journey, you will also learn about the history of computing as you explore the
many facets of BASIC version 65 and operating system commands.

Computer graphics and music make computing more fun, and we designed the
MEGAG5 to be fun! In this user’s guide, you will learn how to write programs using
the MEGA&S5's built-in graphies and sound capabilities. But you don't need to
be a programmer to have fun with the MEGAS5. Because the MEGAGSS includes a
complete Commodore® 64™?2, it can also run thousands of existing games, utili-
ties, and business software packages, as well as new programs being written today
by Commodore computer enthusiasts. Excitement for the MEGASS5 will grow as
we all witness the programming marvels our MEGA65 community create, as they
(and you!) discover and master the powerful capabilities of this modern Com-
modore computer recreation. Together, we can build a new “homebrew” commu-
nity, teeming with software and projects that push the MEGAS5’s capabilities far
beyond what anyone thought would be possible.

We welcome you on this journey! Thank you for becoming a part of the MEGAS5
community of users, programmers, and enthusiasts!

'Commodore is a trademark of C= Holdings
2Commodore 64 is a trademark of C= Holdings

xiii

OTHER BOOKS IN THIS SERIES

This book is one of several within the MEGA&5 documentation suite. The series
includes:

* The MEGA65 User’s Guide
Provides an introduction to the MEGA65, and a condensed BASIC 65 com-
mand reference

+ The MEGA65 BASIC 65 Reference
Comprehensive documentation of all BASIC 65 commands, functions and
operators

* The MEGAG65 Chipset Reference
Detailed documentation about the MEGAS5 and Cé5's custom chips

* The MEGA6S5 Developer’s Guide
Information for developers who wish to write programs for the MEGA65

* The MEGA65 Complete Compendium
(Also known as The MEGA6 S Book)
All volumes in a single huge PDF for easy searching. 1200 pages and grow-
ing!

COME JOIN US!

Get involved, learn more about your MEGAG5, and join us online at:
* https://mega6b.org/chat
* https://megab5.org/forum

xiv

https://mega65.org/chat
https://mega65.org/forum

CHAPTER

Setup
Unpacking and Connecting the MEGA65
Rear Connections
Side Connections
MEGA6S5 Screen and Peripherals

Optional Connections

Switching the MEGA65 on for the

First Time
The Intro Disk

The Cursor

UNPACKING AND CONNECTING THE
MEGA6S5

It is time to set up your MEGAS5 home computer! The box contains the following:
* MEGA65 computer
+ Power supply (black box with socket for mains supply)
* This book, the MEGA&5 User's Guide

* Your personal registration code, on a piece of paper (possibly tucked into
the User's Guide)

In addition, to be able to use your MEGAS5 computer you will need:

+ A television or computer monitor with a VGA or digital video input, capable
of displaying an image at 480p (720x480) at 60Hz or 576p (720x576) at
50Hz

+ An appropriate video cable for your display, either VGA or digital video
You may also like to use the following to get the most out of your MEGA&5:

+ A digital video display with built-in audio, or powered speakers and an ap-
propriate audio cable with 3.5mm audio jack connector

* A microSD card, type SDHC, between 4GB and 32GB in size
* An RJ45 Ethernet cable and a network router or switch

+ Ajoystick or gamepad compatible with Commodore computers, with a nine-
pin (DE-9) connector

+ A Commodore 1351 mouse, an Amiga mouse, or a modern replacement
such as a mouSTer USB mouse adapter

https://retrohax.net/shop/amiga/mouster/

REAR CONNECTIONS

3.5mm Audio Jack

External microSD Card Slot

Network LAN Port

Digital Video Connector (including sound)
VGA Video Connector

IEC Serial Bus Connector for Disk Drives and Printers

Cartridge Expansion Port
Power Supply Socket

SIDE CONNECTIONS

Power Switch
Controller Port 2

Controller Port 1
Reset Button

A NN —

Various peripherals can be connected to Controller Ports 1 and 2 such as joysticks,
paddles or mouse devices.

SERIAL DEVICES

POWER DIGITAL VIDEO
SUPPLY

NETWORK AUDIO OUT

\r IIIIIIIIIIIIIIIIIIIIIIIIIIIII

. 1 1 | L _
L PN

To connect your MEGAG5 to a display:
1. Connect the power supply to the power supply socket of the MEGAGS.

2. If you have a VGA monitor and a VGA cable, connect one end to the VGA
port of the MEGASS5 and the other end into your VGA monitor.

3. If you have a TV or monitor with a compatible Digital Video connector,!
connect one end of your cable to the Digital Video port of the MEGA65, and
the other into the Digital Video port of your monitor. If you own a monitor
with a DVI socket, you can use a Digital Video to DVI adapter.

The Digital Video connector type has a recognizable four-letter commercial name, but the
MEGAGS5 project has not paid the licensing fees to refer to it by this name. This User’s Guide refers to
this as the “Digital Video” connector.

OPTIONAL CONNECTIONS

1. The MEGAGS5 includes an internal 3.5" floppy disk drive. You can also con-
nect older Commodore® IEC serial floppy drives to the MEGAS5, such as the
Commodore 1541, 1571 or 1581. To use these drives, connect one end of
an [EC cable to the Commodore floppy disk drive and the other end to the
Disk Drive socket of the MEGAGS5. You can also connect an SD2IEC device or
a Pi1541 device. With most devices, you can daisy-chain additional floppy
disk drives or Commodore compatible printers.

2. You can connect your MEGAGS5 to an Ethernet network using a standard
Ethernet cable.

3. For enjoying audio from your MEGAG5, you can connect a 3.5mm audio
jack cable to an audio amplifier or speaker system. If your system has RCA
connectors you will need a 3.5mm audio jack to twin RCA adapter cable.
The MEGAG5 also has a built-in amplifier to allow the use of headphones.

4. A microSD card, type SDHC between 4GB and 32GB, can be inserted into
the external microSD card slot at the rear of the MEGA65. For more infor-
mation on using the microSD card slot, see “Introducing SD Cards” on page
37.

5. Underneath the MEGAG5, a small door provides access to the internal SD
card and two connectors for future hardware expansion.

INSTALLING THE REAL-TIME CLOCK BATTERY

The MEGAGS includes a Real-Time Clock, which is used to display the time and
date on the startup screen, to add timestamps to files that the MEGAS5 writes to
your SD cards, and to provide the DT$ and TI$ BASIC variables for use in programs.
This clock uses a CR2032 coin-cell battery to keep the time when the MEGA&SS is
disconnected from power for long periods of time. The MEGAS5 does not include
a battery in order to avoid issues related to shipping batteries internationally.?

The RTC battery is optional. The MEGA&S5 can keep the RTC running without a
battery, even when the computer is disconnected from power, for multiple days at
a time. Installing a battery allows the computer to remember the time for much
longer periods. (You can always set the clock again later.)

To install the battery, use a Phillips-head screwdriver to open the case, exposing
the motherboard. The case is held together with three screws, all of which are
along the bottom of the front side of the case. Once the screws have been re-
moved, carefully lift the top half of the case. Note the orientation of the keyboard
connector, then disconnect it.

2Early models of MEGAS5 with the “R3A” board revision (made in the year 2022) use a battery of
type CR1220 for the Real-Time Clock, and the battery is required for the RTC to function. Revision
“R4" (made in 2024) uses a battery of type CR2032, and the battery is optional for regular use.

The battery is located between the controller ports and the keyboard connector.

EXPANSION PORT

CONT PORT B

KEYBOARD

RTC BATTERY

CONT PORT A

If you are removing an existing battery, push the battery release lever on the bot-
tom (flat-sided) side of the battery socket away from the battery to remove it.
Insert the new battery with the side labelled + facing up, and press it into place.

Once you have re-assembled your MEGASS5, you can set the time in the Configu-
ration Utility. For more information on how to set the Real-Time Clock, refer to the
Configuration Utility section on page 31.

SWITCHING THE MEGA65 ON FOR
THE FIRST TIME

Switch the MEGA&5 on using the power switch on the left-hand side of the com-
puter.

When you switch your MEGAG5 on for the first time, it displays the initial config-
uration (“on-boarding”) screen. You can use this screen to set the time and date
on the Real-Time Clock, change the video display mode, and test the audio. All of
these settings can be changed later.

Welcome to the MEGRAES!

Before you 9o further, there are couple
of things you need to do

Press F3X — F13 to set _the time and date
Ishift toggles directionl.

Time ! 1B8-5Sep—20823 18:A6:42
F9 F11i F13 F3 F5 F7T

UE TN UI (no Sound) HTSC G68H=Z
TABE = Cucle through modes
SPACE = apply and test mode.

Test ﬂuﬂlD [{set UlﬂED mode firstd:
= play a tun

CRT Emulation: Enahled
[= toggle

Press [ISIIET to save and exit.

For video display modes, you can select between PAL or NTSC emulation, and you
can select whether your Digital Video display supports sound. If you are using the
VGA video output, the Digital Video sound mode has no effect.

NOTE: A DVIdisplay that does not support sound will not work with the “enhanced”
sound mode. With such a display, you must select a video mode with “no sound,”
and connect a speaker to the 3.5 mm audio jack.

PAL and NTSC are analog video signal formats that affect the resolution and ver-
tical sync speed of the video output, even when using a modern digital display.
Your display may support either mode, or it may only support one or the other. You
can use this screen to test the modes with your display.

Select and test your video configuration. For example, press to switch to
the PAL SO0HZ mode.

Welcome to the MEGAGS!

Before you go further, there are couple
of things you need to do.

Press F3 — F13 to set _the time and date
{shift toggles direction).

18— SEI—ZBZB 13 d7:23
F9 F11

CRT Emulation: Enableu
= toggle

Press [ISIILET] to save and exit.

Welcome to the MEGRAES!

BEefore you go further, there are couple
of Tthings you need to do.

Press F3 — F13 to set the time and date
[shilf

Time: deo mode:
Pure DVI

revert on fail after

i¥les or [(Hlo?

et wvideo mode Firstld:

CRT Emulation: Enahled
= toggle

Press [TSIET] to sawve and exit.

Press n to keep the new video mode.

10

Welcome to the MEGAGS!

Before uyou go further, there are couple
of things you need to do.

Press F3 — F13 to set the time and date
[shif

Time: |Press K to keep video mode.

Timeout in 11 sec.

Test Audio (set wvideo mode Firstl:
A = play a tune

CRT Emulation: [ETETNED]
C = toggle

Press [CTEIIETI to save and exit.

Take this opportunity to test your sound set-up. Press n to play a sound.

The “CRT emulation” option is a fun choice when using a modern flat panel display.
It adds vertical gaps between pixels to simulate the CRT raster line. Try it to see if

you like it: press the key to toggle it on and off.

Finally, press to complete the configuration.

For more information about configuring your MEGAG5, see chapter 4 on page 3 1.

THE INTRO DISK

After completing the on-boarding configuration, your MEGA5 starts the Intro Disk
menu. The Intro Disk is a collection of software made by the MEGAS5 community
that demonstrates some of the capabilities of the computer. Take some time to
browse the menus and try some of the demos. After each demo, press the reset
button on the left-hand side of the computer to return to the Intro Disk menu.

MEGA=65

QUICKLY EXPLORE SOFTWARE CREATED BY THE MEGAGS COMMUNITY!

MAKE YOUR SELECTION:
1) DISK BoL
2) DISK #82
3) DISK #83

By default, the Intro Disk menu opens each time you switch on the computer. Once

you are more familiar with the MEGA&S5, you may wish to disable this. Press B
at the Intro Disk menu to disable its auto-boot feature.

Press (forward slash) to exit the Intro Disk menu and access BASIC 65. With
the Intro Disk auto-boot feature disabled, the MEGAS5 goes directly to BASIC 45

when you switch it on.

THE MEGABS PERSONAL COMPUTER SYSTEM

' (C) 2021 MEGA, 1991 COMMODORE, 1977 MICROSOFT

BASIC 65 V920385 16-SEP-2023 86:20:52
READY.
1

12

THE CURSOR

The flashing square underneath the REAlY prompt is called the cursor. The cursor
indicates that the computer is ready to accept input. Pressing keys on the keyboard
will print their respective characters onto the screen. The characters will be printed
at the current cursor position, and the cursor will advance to the next position after
every key press.

Here you can type commands that can do things such as loading a program. You
can also start entering program code!

13

14

CHAPTER

Getting Started

Keyboard

The Screen Editor
Editor Functionality
The Freezer Menu

Running Commodore 64 Software

16

Now that everything is connected, it's time to get familiar with the MEGAS5 key-
board.

You may notice that the keyboard is a little different to the keyboards used on
computers today. While most keys will be in familiar positions, there are some
specialised keys, and some with special graphic symbols marked on the front.

The graphic symbols are typable in some display modes, similar to letters, num-
bers, and punctuation. The complete set of characters is known as the PETSCI!
character set.

SPECIAL KEYS
RETURN

RETURN

Pressing - enters the information you have typed into the MEGA&5's memory.
The computer will either act on a command, store some information, or display an
error message if you made a mistake.

SHIFT

The two keys are located on the left and the right. They work very much like

the Shift key on a regular keyboard. They also perform some special functions as
well.

In upper case mode, holding down [l and pressing any key with two graphic

symbols on the front produces the right-hand symbol on that key. For example,

and prints the 4 character.

In lower case mode, pressing and a letter key prints the upper case letter
on that key.

Finally, holding down and pressing a Function key accesses the function
shown on the front of that key. For example: and m activates m
SHIFT LOCK

In addition to is . Press this key to lock down the Shift function. Now
any key you press while is illuminated prints the character to the screen as

if you were holding down . This includes special graphic characters.

17

CTRL

is the Control key. Holding down and pressing another key allows you
to perform Control functions. For example, holding down and one of the

number keys (from n to n) allows you to change text colours. The colour that
is printed at the top row on the front of the number key will be used. Holding down

CTRL . .
. and pressing n or n switches reverse-text mode on and off.

There are some examples of this on page 21, and all of the Control functions are
listed on page 265.
CTl

If a program is being LISTed to the screen, holding down slows down the
display of each line. You can read more about the LIST command on page 177.

Holding and pressing enters the Matrix Mode Debugger (refer to the
MEGA65 Book for more details).

RUN STOP

SHIFT

Normally, pressing (53 stops the execution of a program. Holding while

pressing RUNs the first program from disk.

Some programs override the key and cannot be stopped in this way.
You can boot your MEGAS5 into the Machine Code Monitor by holding down

524l and pressing reset on the left-hand side of the computer.

RESTORE

The computer screen can be restored to a clean state without clearing the memory

by holding down and pressing . This combination also resets oper-
ating system vectors and re-initialises the screen editor, which makes it a handy
combination if the computer has become a little confused.

. RUN RESTORE . .
Some programs override the + - key combination and cannot be reset
in this way.

You can also enter the Freezer by pressing and holding for one second,
then releasing the key. You can read more about the Freezer on page 26.

THE CURSOR KEYS

At the bottom right-hand side of the keyboard are the cursor keys. These four
directional keys allow you move the cursor to any position for on-screen editing.

18

The cursor moves in the direction indicated on the keys: .

You don't have to keep pressing a cursor key over and over. If you need to move
the cursor a long way, you can keep the key pressed down. When you are finished,
simply release the key.

ARROW KEYS

These keys are different to the cursor keys! They are (next to n), and

(next to) Both arrow keys are used in various BASIC functions and escape
sequences.

For example, can be used as a shortcut for SAVE, and is used to raise a
number to a power (which is the same as multiplying a number by itself a specified
number of times).

You can read more about the available escape sequences on page 268.

These two PETSCII specific keys will always be shown in MEGAGS literature with a
white background.

It is also possible to move the cursor up by using and , and left by using

and . This owes to the MEGA65’s Commodore 64 heritage, which only
had two cursor keys.

INSerT/DELete

The key, the rightmost key of the top row, is the INSERT / DELETE key. When

you press , the character to the left is deleted, and all characters to the right
are shifted one position to the left.

SHIFT INST

To insert a character, hold and press . All the characters to the right

of the cursor are shifted to the right. This allows you to type a letter, number or
any other character at the newly inserted space.

CLeaR/HOME

The is the CLEAR / HOME key. Pressing places the cursor at the top
left-most position of the screen.

Holding down and pressing clears the entire screen and places the
cursor at the top left-most position of the screen.

If you press accidentally, you can return the cursor to its prior position by

. ESC CLR
pressing -’rhen .

19

MEGA KEY

n or the MEGA key provides a number of different functions and can be used
to launch special utilities.

Holding and pressing u switches between lower and uppercase char-

acter modes.

Holding u and pressing any key with two graphic symbols on the front prints

the left-most graphic symbol to the screen. For example, u and B prints the
[d symbol.

Holding u and pressing any key that shows a single graphic symbol on the front
prints that graphic symbol to the screen.

Holding n and pressing a number key switches to a secondary colour, i.e., the
colour that is printed at the bottom row on the front of the number key.

Holding u and pressing enters the Matrix Mode Debugger (refer to the
MEGA65 Book for more details).

Switching on the MEGASS5 or pressing the reset button on the left-hand side while
holding down u switches the MEGAG5 into GO64 mode.

NO SCROLL

If a program is being LISTed to the screen, pressing pauses the screen
output. Press any key to un-pause.

This feature is not available in GO64 mode.

FUNCTION KEYS

There are seven Function keys available for use by software applications. m

m m m m and m can be used to perform special func-

tions.

Hold to access m through to m as shown on the front of each

Function key. Only Function keys m to m are available in GO64 mode.

HELP

ﬂ can be used by software and also acts as m / m

20

ALT

Holding down while pressing other keys can be used by software to perform
specific functions. This feature is not available in GO64 mode.

Holding down while switching the MEGAGS5 on activates the Utility Menu.

You can format an SD card, or enter the MEGA&S5 Configuration Utility to select
the default video mode and change other settings, or test your keyboard.

CAPS LOCK

works similarly to in C65 and MEGAS5-modes, but only modifies the
letter keys.

When the MEGAGS is set to run at a reduced processor speed, such as in GO64

mode, you can hold down to run the processor at full speed temporarily.
This is useful in GO64 mode for things such as speeding up loading from the in-
ternal disk drive or SD card, or to greatly speed up the de-packing process after
a program is run. MEGAS5 mode runs at maximum speed by default.

When you switch on your MEGAG5 or reset it, the following screen will appear:!

THE MEGABS PERSONAL COMPUTER SYSTEM

' (C) 2021 MEGA, 1991 COMMODORE, 1977 MICROSOFT

BASIC 63 V926383 10-SEP-2023 08:28:52

READY.
]
‘m ROM version Date and time

The colour bars in the top left-hand side of the screen can be used as a guide to
help calibrate the colours of your display. The screen also displays the name of
the system, the copyright notice, and the ROM version. The displayed date and
time are taken from the internal RTC (Real-Time Clock) at the time the computer
was powered on. You can set the date and time in the Configuration Utility.

Finally, you will see the REAY prompt and the flashing cursor.

"This assumes you have disabled the Intro Disk menu. If the Intro Disk menu is running, press “/"
(forward slash) to exit to this screen.

21

You can begin typing keys on the keyboard and the characters will be printed at
the cursor position. The cursor itself will advance after each key press.

You can also produce reverse text or colour bars by holding down and press-
ing n, or B This enters reverse text mode. When this is enabled, you can press
and hold the bar. While doing so, a white bar will be drawn across the
screen. You can change the current colour by holding down and pressing
a number key (from n to n) For example, if you press and hold il down
and press n, the colour will change to black. Now, when you hold down the

SlZ\S 3 bar, a black bar will be drawn. If you continue to change the colour
and press the SIS bar, you will get an effect similar to the following image:

CTRL +3

You can disable reverse text mode by holding and pressing n

A turther eight colours can be selected by holding down u and pressing a key

from n to n

The colour that is printed at the bottom row on the front of the number key will be
used. For example, if you held u down while pressing n, dark grey will be

used. For access to an additional 16 colours of the alternate/rainbow palette,

refer to the + u shortcut described on page 265.
NOTE:

* Quote Mode: If you were to press to open a string, and then try to

CLR
change colours, reverse text, move the cursor keys, or use the key,

instead of these actions instantly occurring, funny PETSCII symbols will ap-
pear instead. This is due to a BASIC facility called quote mode, which allows
you to encode such actions into a string so that they can be executed at a
later time (for example, via a PRINT statement within your programs). To end

quote mode, simply type another n to mark the end of your string.

22

* Insert Mode: A similar facility is called insert mode, where for the number

of times you press + to insert a few spaces, the same number
of keypresses that follow it will abide by the same principles of quote mode.

* You can forcefully exit either of these modes by pressing a, n

You can create fun pictures just by using these colours and letters. Here's an ex-
ample of what a 4th year student drew:

CALEB PICTURES COPYRIGHT2028

ARARAARRARAARAAARARAARAARARRAARRARAARARA
fl Afh - ARAAA AAA A
ﬂﬂﬁﬁgg ARAARARR A AAAR gﬁﬁﬂﬁﬁﬁﬂ ggﬂﬂﬁﬁﬁ

HARAA ARRARARA AAARA AAARARAR ARARAA
ARAARARRARARRRAARARAARAARARRARRRARAARARA

What will you draw?

Functions

Functions using are called Control Codes. Functions using n are called

Mega Codes. There are also functions that are called by using , which are
called Shifted Codes.

Lastly, enables the use of Escape Sequences.

You can read about all of these functions in detail on page 265.

23

ESC Sequences

Escape sequences are performed a little differently than a Control function or a
Shift function. Instead of holding the modifier key down, an Escape sequence is

performed by pressing and releasing it, followed by pressing the desired
key.

For example: to switch between 80 column mode and 40 column mode, press

and release , then press .

There are more text modes available. You can create flashing text by holding
down and pressing n Any characters you type in will flash. Turn flash

mode off by pressing , then n

The MEGAG5 screen editor supports several ways to quickly move the cursor
around the screen to help you to be more productive.

For example, press to go to the home position on the screen. Hold
down and press m several times. This is the Word Advance function, which

jumps your cursor to the next word, or printable character.

You can set custom tab positions on the screen for your convenience. Press
and then to move the cursor to the fourth column. Hold down and
press n to set a tab. Move another 16 positions to the right, and press
and n again to set a second tab.

Press to go back to the home position. Hold down and press n

This is the Forward Tab function. Your cursor will tab to the fourth position. Press

and n again. Your cursor will move to position 8. By default, every 8th
position is already set as a tabbed position. So the 4th and 20th positions have

been added to the existing tab positions. You can continue to press and
n to advance to the 16th and 20th positions.

CREATING A WINDOW

You can set a window on the MEGA&5 working screen. Move your cursor to the

beginning of the "BASIC 65" text. Press , then press . Move the cursor
10 lines down and 15 to the right.

24

Press , then B Anything you type will be contained within this window.

For example, if you were to type LIST o list out a program, the listing will be confined
to the window region you have specified:

ESC, T
Set top-left

178 DATA "U2HA","IB","A","V
OR U2IB","D3C"
10188 DATA "0i020 U204, HA","
Uio3oc", "UiE"

20009 DATA "™

D ESC,B
Set bottom-right

To escape from the window back to the full screen, press [l twice.

ADDITIONAL ASCIlI CHARACTERS

You may have noticed a few ASCIl characters on the MEGAS 5 keyboard that aren't

traditionally a part of the PETSCII character set. In order to make use of these from
within BASIC:

* Type either FINT A or FONT B.
* Press u + (il 1o switch to lowercase.

You will now be able to type those additional ASCII characters via the keyboard.
To revert back to the original PETSCII character set, type FINT L.

UPPERCASE AND LOWERCASE

il s\vitches between uppercase and lowercase text for the entire dis-

play. This works even during program execution, so you can adjust it if a program
is in the wrong mode.

25

THE FREEZER MENU

The MEGAG5 spends most of its time behaving as a Commodore 65 computer
would, either running a program or awaiting instructions in the BASIC environ-
ment. Your MEGAG5 has additional features that were not part of the original
Cé5 design. You can access many of these features from the Freezer menu.

To open the Freezer menu, hold the key for one second, then release it.

The MEGAGS5 will pause whatever it is doing, flicker the border colour, then open
the Freezer menu. Whatever program was running remains in memory and can be

resumed by pressing the key. You can also abandon the running program

and reset the MEGAS5 by pressing a

ED
HE
ID
5E
HT
8
(]
T
9>

One feature to remember when playing games is the “(J)JOY SWAP.” This causes the
two joystick ports to trade numbers. If you have a joystick in port 2 and you start a
game that expects a joystick in port 1, instead of disconnecting and reconnecting

the joystick, open the Freezer menu, press to swap the port numbers, then
resume your game.

This is called the “Freezer” menu because the state of the MEGAS5 remains frozen
while using it. The Freezer menu can store multiple freeze states, and you can
switch between them. To save the current state, navigate to an unused freeze slot

using the cursor-right key, then press . When the border stops blinking, the

state is saved. To restore a state, navigate to the freeze slot, then press m to
resume operation.

26

The Freezer menu has several built-in options and features. For more information
about the MEGAS5 Information Utility (*“MEGAINFO”), see “Determining the Ver-
sions of Things” on page 48. For more information about mounting disks and disk
images, see chapter 6 on page 63.

RUNNING COMMODORE 64
SOFTWARE

The MEGAGS5 is capable of running Commodore 64 software. There are two ways
to do this: the built-in GO64 mode, and the C64 for MEGAS5 FPGA core.

GOé64 MODE

The original Commodore 65 was designed to be capable of running some Com-
modore 64 software. The MEGAS5 supports this feature, known as “GO64 mode.”

NOTE: Due to how Commodore designed this feature, not all C64 software is
compatible with this mode. Unlike the similar feature of the Commodore 128, the
Commodore 65 uses a different CPU, and minor differences are known to cause
compatibility issues with some software fitles.

There are three ways to switch the MEGAS5 into GO64 mode:

* Switch off the computer, hold the u and switch it back on.

+ From the MEGAG&S REAY prompt, enter this command: G084 Enter YE§ when
prompted.

+ Switch off the computer, connect a Commodore 64 cartridge to the expan-
sion port, then switch the computer on.

27

*x23% MEGAGD GOB4 BASIC U2 s
64K RAM SYSTEM 38911 BASIC BYTES FREE
READY .

G064 mode is actually just a temporary re-configuration of the MEGA&S5. All of
the MEGAG5's features are still present, including the Freezer menu for mounting
D81 disk images.

Much Commodore 64 software can be found on the Internet in the form of D64
disk images. The MEGAG5 only supports D81 disk images via the SD card and
Freezer menu. You can use a peripheral such as the SD2IEC with the MEGA&5's
IEC port to use D64 disk images. Be sure to obtain an SD2IEC with an independent
power supply, and not one that depends on a Commodore 64 tape connector.?

THE “C64 FOR MEGA65" FPGA CORE

The C64 for MEGASS5 FPGA core by MJoergen and sy2002 re-creates the original
Commodore 64 computer on MEGAS5 hardware with a high degree of accuracy.
It does so by completely replacing the MEGAS5 core with one that implements the
Commodore 64 chipset, including its CPU. MEGAG5 features such as the Freezer
menu are not available when running the C64 core. Instead, the core provides its

own menu for mounting D64 disk images and other features. Press the ﬂ key
with the core running to access this menu.

For information about installing FPGA cores, see chapter 5 on page 47. To down-
load the C64 for MEGASS5 core and read important installation instructions, see:
https://github.com/MJoergen/C64MEGA65

2For more information on SD2IEC devices, see: https://www.c64-wiki.com/wiki/SD2IEC

28

https://github.com/MJoergen/C64MEGA65
https://www.c64-wiki.com/wiki/SD2IEC

CHAPTER

Configuring Your MEGA65

Configuring Your MEGA65
The Configuration Utility
Introducing SD Cards

Preparing a New SD Card

30

This chapter describes how to configure your MEGAG 5.

Configuration data is stored on the SD card, so this chapter also describes how
to prepare a new SD card. Your MEGAS5 comes with an SD card pre-installed.
If you configure your MEGAG5 using the pre-installed SD card then later install a
new SD or microSD card, you will need to set your configuration settings again.

This chapter also introduces the MEGAGSS5 Filehost website, which you can use to
download games, apps, tools, and system updates for your computer.

You can configure your MEGAS5 using the Configuration Utility. This includes the
settings shown when you switched on the machine for the first time, and many
others.

To access the Configuration Utility, switch off the MEGASS5, hold the key

and switch it back on. The Utility menu appears with several options. Press n
to start the Configuration Utility.

VMIEGA=65

MEGAG5 MEGADOS HYPERVISOR Ve8.17
DEVELOPMENT, 28238986 .12,99F3D

H AT
HO SCROLL=FLASH, ALT=UTILS, CTRL=HOLD
: DEVELOPMENT, 281230986 .12,99F3D4A+
SELECT UTILITY TO LAUHCH
1. CONFIGURE MEGHGES
2. SODCARD FDISK+FORMAT UTILITY
3. KEYBOARD TEST

The Configuration Utility includes several pages of settings, which you can navi-
gate using the keyboard or a mouse connected to port 1. Use and to
navigate between pages, and and to select items on the page. Press

or B to toggle a setting or change a value.

31

INPUT

The Input page configures the mouse settings for the two peripheral ports.

CHIPSETI

+
% HORBRMAL
AMIGA TO 1351 EHRAELED
J0Y 1 1351 DE-JITTER:
& OH
OFF
MOUSE HMODE:
HORMAL
AMIGA TO 1351 EHAEBLED
J0%Y 3 1351 DE-JITTER:
& OH

OFF

J0% 2
]

PRESS HELP FOR A HELP PAGE | PAGE 171

The MEGASS supports the Commodore 1351 mouse, the Commodore Amiga
mouse, or modern equivalents such as a USB mouse connected with a mouSTer
adapter. The port must be set to the correct mouse type, where normal refers to
the 1351 mouse. If an Amiga mouse is connected while the port is in the normal
mode, it may interfere with the behavior of the keyboard.

The 1351 De-jitter setting adjusts the sensitivity in Commodore 1351 mouse
mode to avoid jitter in the mouse pointer. It is recommended to leave this set
to on when using a 1351 mouse in normal mode.

CHIPSET

The Chipset page configures several features, including the Real-Time Clock.

32

https://retrohax.net/shop/amiga/mouster/

Ag:37:12
¥ DATE (DD-MMHM-YYY¥Y1: 18—-SEP-2x82x3

¥ DMAGIC REVISIOHN:
FB18& (ROM <« 9185231}
4 FB18B

FBl1l DISK COHNTROLLER
@ SDCARD DISK IMA
3.5" FLOPPY DRI

GE
VE
DEFAULT DISK IMAGE:
LOHG FH SUPPORT:

DISAEBLE
8 ENARBLE

PRESS HELP FOR A HELP PAGE | PAGE 171

To set the Real-Time Clock, select the time or date field, type the complete value,
then press . The clock setting takes effect as soon as you press , and

does not take effect unless you press |ill. Note that all other settings are not

saved until the end. Only the RTC is updated immediately.

The DMAGIC revision field controls the behavior of the DMA controller. In most
cases, you want the newer FO 18B setting. The FO 18 setting is for backwards com-
patibility when running the C65 versions of the ROM, and is not always required.

The FO11 disk controller field determines whether the MEGAG5 looks for a boot
disk on the SD card or in the physical 3.5" floppy drive when the computer is
switched on. When set to SDCARD disk image, the MEGAS5 uses the D81 virtual
disk image named in the default disk image field as the boot disk. When you
first get your MEGAG5, this is set to the Intro Disk, named MEGA65.D81. You can
change this to a different disk. To disable auto-mounting, change the disk name
to a filename that does not exist, or rename the MEGA65.D81 file on the SD card.
(Leaving the setting empty will default to MEGA65.D81.)

If FO11 disk controller is set to 3.5" floppy drive, the boot process will pause
just before the REAY. prompt to check if a boot disk is inserted in the drive. If you
do not use a physical boot disk, you may wish to leave this set to SDCARD disk
image for a faster boot process.

Long FN support refers to long filename support in the MEGAS5 SD card file
browser features. Leave this enabled unless there is an issue with reading files
with filenames longer than 11 characters.

33

VIDEO

The Video page configures video settings. These are the same settings from the
on-boarding configuration, including the PAL or NTSC video mode, Digital Video
sound, and CRT emulation.

— MEGAGS COHFI
IHPUT |[CHIPSET IRNIDEXNLIAU

+
PAL
® HTSC 68H

¥ DIGITHL VIDED:
EHHARHCED
% DUI OHLY

® CRT EMULATIOHN:
& OFF

— F7 FOR SAVE/EHIT OPTIODHS

Video mode selects between the PAL compatibility mode and the NTSC compat-
ibility mode. You can also change this while running programs using the Freezer
menu.

The Digital Video setting enables or disables the combined video and audio signal
over the Digital Video port. If your Digital Video display has built-in speakers, en-
able this setting (Enhanced (with audio)) to use them. Some DVI displays without
built-in speakers require that this is disabled.

CRT emulation is an optional setting that makes the picture look more like that of
a vintage Cathode Ray Tube display when using a modern flat-panel display.

AUDIO

The Audio page configures the MEGASS5 sound system. In most cases, you can
leave these at their default settings.

34

— MEGAES COHFIGURATIOHN —
IHNFUT[CHIFSET|VIDEO | AUDIDIHETWORK DOHE

+ AUDIO _OUTPUT:
® STEREOD
MONO
SID_GENERATION:
W 6551
8588

SWAP STERED CHAMNHELS::
& HOD
YES

AUDIO0 AMPLIFIER:
OFF
& OH

VERSIOH G81.88 | PAGE 172

Audio output can be configured to use full stereo, or to send a monoaural signal
to both speakers. When in stereo mode, various audio devices in the MEGAS5
can be panned to the left or right using the audio mixer in the Freezer menu. The
default settings pan the four SID chips slightly to the left and right.

SID generation selects between the audio emulation of the two models of SID
sound chips: the original 6581 used in some Commodore é4s, and the newer
8580 used in later Commodore 64s and 128s. Some Commodore 64 games
took advantage of flaws in the 6581 that were fixed in the 8580, and so sound
better with the older generation.

Swap stereo channels switches the stereo mix to use the opposite speakers.

Audio amplifier controls the built-in amplifier on the 3.5mm audio jack. Set this
to on when using headphones or another device that expects an amplified signal.
Set this to off for a line-level signal.

NETWORK

The Network page gives you the opportunity to adjust the MAC address of the
Ethernet port. The MEGAGS does not have a hardware-assigned MAC address.
Instead, it uses the value entered here.

If the MAC address is set to all zeros, press the n key to generate a random
address. Networking features will not function with a MAC address set to all zeros.

35

— MEGRG TIOH
IHPUTICHIPSETIV DONE

+ MAC ADDRESS: 8BB:F4:12:EA:61:CF

— PRES= HELPF FOR A HELP FPAGE | PAGE 171

DONE

The Done page lets you exit the Configuration Utility. If you have made changes
that you want to keep, select Save as defaults and exit. You can also aban-
don changes, restore the factory default settings, or completely restart to the on-
boarding screen.

— HMEGAEG
INPUTICHIPSETIV

RESTORE FACTORY DEFRAULTS
EXHIT AHD REBDOOT TO OHBOARDIHG
SAVE AS DEFAULTS AHND EXIT

F? FOR SAVE/EHIT OPTIOHS

When you exit the Configuration Utility, you will be prompted to “power-cycle” the
computer. Switch the computer off, then switch it on again.

36

INTRODUCING SD CARDS

Your MEGAGS is equipped with two SD card slots: a full-size SD card slot inside
the case accessible from the bottom of the computer, and a microSD card slot
accessible from the rear of the computer. The MEGAGS5 uses the SD card for stor-
ing configuration settings, loading the operating system, updating the firmware,
and storing your software and data as virtual disk images.

The MEGAG5 includes a full-size SD card installed in the internal SD card slot,
pre-populated with the operating system files and bundled software.! You can
connect your MEGAS5 and start using it immediately without setting up a new SD
card. You can leave this SD card in place and pretend that it isn't there, as if your
MEGAGS5 is a computer from the 1990s, with a hidden ability to store non-volatile
data.

The MEGAG5 only uses one of the two SD card slots at one time. If there is a
microSD card in the rear slot, the internal SD card is ignored. Which slot you use
depends on how you expect to use the computer. As you get more familiar with
your MEGAG5, you may want to move the SD card between the MEGAS5 and
your PC to copy files and perform system updates. This is more convenient with
the external microSD card slot.

Alternatively, you can connect your MEGAS5 to your PC or local network with an
Ethernet cable, and use a tool to transfer files between the two computers. The
file transfer feature accesses files on the SD card, and uses whichever card slot is
active. For more on transferring files, see chapter 7 on page 77.

PREPARING A NEW SD CARD

You can use the microSD memory card slot on the rear of the MEGAS 5 as persistent
storage for the computer’s configuration and system files. Having a prepared card
in this slot overrides the SD card installed inside the computer. Having a microSD
card installed is convenient if you wish to move it between your MEGAS5 and your
PC.

The following instructions apply to memory cards in either the external microSD
card slot or the internal full-size SD card slot.

The MEGAS5 supports SD cards of type SDHC, with sizes between 4 gigabytes
and 32 gigabytes. Older cards smaller than 4GB and newer SDXC cards larger
than 32GB are not expected to work.

An SD card must be prepared by the MEGA&S before use, using the SD Card
Utility. The utility creates two partitions: a hidden partition for configuration and

You can recreate the original SD card’s contents using files that you can download from the Inter-
net. Nevertheless, you may wish to make a backup of the SD card contents onto your PC.

37

freeze state data, and a FAT32-compatible partition for disk images and system
files. You can access the FAT32 partition by connecting the SD card to your PC.2

An SD card formatted by another computer will not work with the MEGAG5, even
if it only erases the FAT32 partition. You must use the MEGAS5 SD Card Utility to
format the card.

INSERTING THE SD CARD

Formatting an SD card erases its contents, and this operation cannot be undone.
We recommend that you do not erase the internal SD card that came with the
computer.

The SD Card Utility will prompt you to select which of the cards currently inserted
in the computer to format. As a precaution, you may wish to remove the internal
SD card before opening the SD Card Utility. You can reinstall it later, or leave it
out of the machine until you need it. This is also a good opportunity to copy the
bundled software files (with filenames that end in .D81) off of the internal SD card
to your PC, so they can be copied back to the new SD card later.

The utility menu is accessible even if no valid SD card is present. You can bootstrap
a new system using just a compatible SD card and the SD Card Utility.

Insert the SD card that you wish to prepare before proceeding.

THE SD CARD UTILITY

You access the SD Card Utility from the Utility menu. Switch off the MEGAG5, hold

the key and switch it on again. From the menu, select option n to start
the SD Card Utility (SDCARD FDISK+FORMAT UTILITY).

2If you wish to make a backup of the complete SD card including the hidden partition, you must use
a disk utility that copies entire partitions, not just the files on the FAT32 partition.

38

VMIEGA=65

MEGAGS MEGARAOS HYPERVISOR V88 .17

! DEVELOPHMENT,8X30986.12,99F3D4AT
HO SCROLL=FLASH, ALT=UTILS, ETRL=H2h2

GIT: DEVELOPHMEHNT, 28230986 .12,99F3D
SELECT UTILITY TO LAUHCH

1. CONFIGURE MEGHGES

2. SODCARD FDISK+FORMAT UTILITY

3. KEYBOARD TEST

The SD Card Utility opens and looks for SD cards installed in the slots. If you haven't

inserted the SD card that you want to prepare yet, do so now, then press n to
re-scan.

ard (Internal 50 slot
axinun readable sector is !
15193 MiB SD CARD FOUND.
SD Card read speed = 1222 KB/sec

or B18DTTFE

B8 i Start=8 /0 /B or BAAAARAA

b Card xternal nicrosD slot
Maxinun readable sector is %8
3723 MiB 5D CARD FOUHD,

5D Card read speed = 1649 KB/sec

Current partition table
i jtart=
! Start=0 /0 /8
i Start=8 /0 /8@
! Start=0 /0 /8

Select the card that you want to prepare: n for the internal SD card, n for
the external microSD card. If you have two cards installed, be careful to choose
the correct card slot.

The SD Card Utility prompts for confirmation to erase the SD card. As one last
precaution, you must type the phrase DELETE EVERYTHING in all capital letters,

then press |l to proceed. (If you wish to abort this process, it is safe to switch

off the MEGA45 at this time.)

39

Please select SD card to nudifg or r‘ to rescan (8/1/r):
Maxinun readable sector is $88745

3723 MiB 5D CARD FOUND.

SD Card read speed = 1649 KB/sec

Current partition table:

BC ¢ Start=d /8 /B or B0BAAEE /8 /8 or BB3AZFFE
41 i Start=A /8 /8 /8 /8

B8 ! Start=Q /8 /B [TELEL] /8 /8

B8 i Start=A /8 /8 /8 /8 or BABABAAA

500302808 Sectors available for MEGABY Systen partition.
1839 Freeze and 05 Service slots,
$BBJA2FFE Sectors available for UFATI2 partition,

Format external Card with new partitinn table and FAT32 file system?
n [§6698868:
ctnrs/FﬁT; 5??[Reserved Sectors,

The utility erases the SD card and sets up the partitions. When it is finished,
prompts to install the system files. The system files (with filenames ending in .M65
and .ROM) are embedded in the core, and are copied to the FAT32 partition for use.
If you have installed an updated MEGAGS core in slot 1, select it, otherwise select
the factory-installed MEGAS5 core in slot 0. (If you just received your MEGAS5,
slot 0 is the only option.)

Current partition table
B¢ ! Start= /@ /8

! Start=0 /8 /@

i Start=8 /8 /B [ITITTT]
B8 ! Start=@ /0 /B or ABBBAEEB / End-0
Hriting MEGABS Systen ition header sectol
1859 Freeze and 0§ Ser slots
Freeze dir € SBO3A3FFE
Service dir [5RB374BFE
Erasing configuration area
Erasing frozen progran and system service directories
Writing FAT Boot Sector. .,
Hriting FAT Information Block Cand backup copy)...
Nriting FATs at 588847888 and $A8217A00 ...
Hriting Root Directory.

Clearing file system data structures...

Scanmne core for enbedded files...
(8) MEG

UNSHFE#JB 683 ca caeSbBb
Populate 5D card with ewbedded files from slot # or 5 to skip (H#/s5)?

When prompted, reboot the machine.®

51f you select a core that does not have MEGA65.ROM as one of the embedded files, the utility will
prompt you to move the SD card to your PC to copy this file onto it. This only happens when using a
MEGAG5 core from somewhere other than an official MEGAS5 release package. For more information
about cores and obtaining MEGA65 . ROM, see chapter 5 on page 47.

40

OBTAINING THE BUNDLED SOFTWARE

The system files copied to the freshly formatted SD card do not include the bundled
software that was included with the original SD card in the internal card slot. You
can use your PC to copy these files off of the original SD card, then copy them
back onto the new SD card.

The MEGAG5 Filehost website hosts all manner of files you can download for your
MEGAGS5. This includes the latest versions of the platform components, alternate
cores, and hundreds of games, demos, and applications produced by the MEGA4 5
community. This also includes the bundled software from the original SD card
included with the computer.

If you no longer have the bundled software files, you can obtain them from the
MEGAGS5 Filehost website. Visit the following URL, then search for “MEGAS5 Re-
lease SD Card - Intro Disk Extras.”

https://files.mega65.org

41

https://files.mega65.org

42

CHAPTER

Upgrading the MEGA65
How a MEGA65 Can Be Upgraded
Determining the Versions of Things
Obtaining the Latest Files
The Core Selection Menu

Upgrading the MEGA65 Core, ROM,

and System Files
Installing Alternate Cores and ROMs
Setting Core Flags

Erasing a Core Slot

® Upgrading the Factory Core in Slot 0

® Understanding The Core Booting Process

45

46

HOW A MEGA65 CAN BE UPGRADED

The MEGAG5 platform consists of three major components:
1. The MEGAGS core, a description of the chipset to run on the FPGA

2. The ROM, code that defines the Commodore-style operating system (KER-
NAL) and BASIC

3. System software for features such as the Freezer menu

You can upgrade these components as new releases are published. You can also
replace one or more of these components individually. In the case of the core
and ROM, you can even have multiple versions installed simultaneously and switch
between them. For example, instead of the latest MEGA45 ROM, you can switch
to the original Commodore 65 prototype ROM. Or, you could switch to another
core that causes your MEGAS5 hardware to behave like a different computer
entirely, such as a Commodore 64 or a ZX Spectrum.

The ROM and system software are files that reside on the SD card, and upgrading
them is as simple as replacing the files. To upgrade the core, you use a process
to install a core file into the MEGA&5's core flash memory. This chapter describes
this process.

WHAT IS A CORE?

The MEGASS hardware architecture is based on a versatile chip called a “Field
Programmable Gate Array,” or FPGA. This is a special kind of computer chip that
can be programmed to impersonate other chips. It does this by configuring a
giant array of logic gates to reproduce circuits. FPGAs are not an emulation, but
an electronic re-creation of other chips. FPGA code is sometimes referred to as
firmware, a term you may recognize from modern computers and other devices.

Your MEGAG5 was programmed at the factory to re-create a chipset based on the
original Commodore 65, designed by the MEGAS5 team. You can re-program the
MEGAG5 FPGA to upgrade to new versions of the MEGAS5 chipset, or to replace
the chipset with that of an entirely different computer!

Each possible chipset is known as a core. The MEGAS5 can store up to eight
cores, and you can switch between these cores by accessing a menu when you
switch on the computer. You can also use this menu to load a new core from a file
on the SD card, a process known as flashing.

Members of the MEGA65 community have made several useful and fun alternate
cores for the FPGA hardware. C64 for MEGAS5 by MJoergen and sy2002 re-
creates the original Commodore 64 computer with a high degree of accuracy,
perfect for running Commodore 64 games, demos, and applications. Other cores
re-create the ZX Spectrum, the Game Boy, and even the original Galaga arcade
machine hardware. The MEGAS5’s FPGA is powerful enough to re-create nearly

47

https://github.com/MJoergen/C64MEGA65

all 8-bit home computers, and likely some 16-bit computers and consoles such
as the Commodore Amiga. The MEGA65 hardware design, board layout, FPGA
core, and other information are all available for free under various open-source
licenses, so anyone is free to create other cores for the MEGA65 hardware.

DETERMINING THE VERSIONS OF
THINGS

All components of the MEGAG5 platform have a version identifier. The MEGAS5
can display the version identifiers for all of its components using the MEGAS5
Information utility.

To open the MEGASS5 Information utility:
1. Switch on the MEGA&5, and allow it to boot to BASIC.

RESTORE

2. Open the Freezer: press and hold for one second then release it.

3. Press . The MEGAG5 Information utility will open.

HEGABS INFORMATION

MEGABS MODEL: MEGABS RS SCREEN MODE: NTSC

: BADBBDDT RTC STATUS:
o FEFFEFFF
. FFFFFFFF

P

==t
=1

HYPPO STATUS:

=
cara
o
o

F

i,

2
2
2
2
¥

= ——
1

Zomo o=

[T

F3-EXIT F3-RESTART

Take note of these version identifiers:

48

Label and Example Description

MEGAS5 Model The revision of the hardware. You need to know

MEGA65 R6 this when downloading new core files.

Artix Version The currently running MEGAG5 core. This is a

8ADOODD7 2024-01-22 string of eight letters and numbers, and also a
build date.

ROM Version The currently running ROM. For MEGAS5 ROMs,

M65 V920393 this is a sequential number, with larger numbers
representing newer releases.

System files ((M45) Each of the system software files has its own

240122.21-R0.3.0-8B6C767 |version identifier. Typically, you do not need
to know these: you will upgrade these along
with each core. The identifier is similar to the
core version, but does not always match the
currently running core.

Press n to exit to the Freezer, then ' again to exit to BASIC.

Each core has a separate version for each hardware revision. As of the year 2024,
the production models of the MEGASS have used two different main board revi-
sions, known as “R3" (more specifically “R3A") and “R6.""

The MEGAGS core is available for all hardware revisions. If you are installing an
alternate core and it is not available for your hardware revision, contact the author
of the core.

OBTAINING THE LATEST FILES

You can download the latest MEGASS5 core, ROM, and system software from the
MEGAG65 Filehost website. Due to distribution restrictions for the Commodore 65
ROM code, some files require a Filehost account registered to a MEGAS5 owner
to oc02ess. All owners of the MEGA65 have a license to all versions of this ROM
code.

Visit the following URL in your web browser:

https://files.mega65.org

'The MEGAS5 “DevKit” model sold in the year 2020 is revision “R3.” It is also possible to run the
MEGAG5 core on certain FPGA development boards, with a separate version of the core file for each.

2There is a procedure for non-owners to get the latest MEGA65 ROM, such as to use with the
Xemu MEGAS5 emulator. This involves downloading C64 Forever Free Express Edition from Cloanto,
extracting the original Commodore 65 prototype ROM file, then using a tool to apply a patch that you
can download from Filehost. The full process is described in the following article: https://mega65.
org/rom-faq

49

https://files.mega65.org
https://github.lgb.hu/xemu/
https://www.c64forever.com/
https://mega65.org/rom-faq
https://mega65.org/rom-faq

m&@

News Files Projects Articles Filehost search..

New files

Battle Sparrow
By gurce

Action Adventure

Ak hkhkk @1
[+ Ik}

Download Details

To register a Filehost account with your owner code:

1. Visit the Filehost website. Click “Sign Up.” Follow the prompts to create an
account.

2. Locate your owner code. This is a code printed on a piece of paper that
was included with your MEGAG5 (possibly inserted into this manual). It looks
something like this: 123-ABC-456

3. Click the user icon in the upper-right corner of the Filehost screen. In the
pop-up menu, select “Redeem Code.” Enter your owner code as prompted.

L VIEGA=65 JO

Fileho My File Uploads

My Projects
My Articles

Send Message

Redeem Code
uest 2
10lsen71 User Settings
Logout
venture

To download the latest release package:
1. Click the “Files” tab of the Filehost website.

2. In the search box on the left-hand side, type: “release” The list will update
to show only files with that word in the title.

50

https://files.mega65.org

3. Locate the entry named, “MEGAS5 Core Release Package (megaé5ré) incl.
ROM,” where “megaé5ré” matches your hardware revision. (To confirm your

hardware revision, open the Freezer menu, then press ﬂ)

4. Click the entry. Confirm that this release package is for your hardware revi-
sion, then click “Download” to download the file.

NOTE: There is an entry for the Release Package that does not include the ROM
that is visible to everyone. To ensure you are using a compatible set of files, get
the package that says “incl. ROM.” If you don’t see an entry that says “incl. ROM,”
check that you are signed in and that you have redeemed a valid owner code.

—FErteEhost
News Projects Articles
«

Title Download Rating Category Y Type
MEGA65 Core Release Package
) 9 L 143 - @ Firmware Release Package
(nexys4ddr-widget)
MEGA65 Core Release Package
< & 77 = @ Firmware Release Package
(mega65r2)
MEGA65 Core Release Package
< & 487 - @ Firmware Release Package
mega65r3) incl. ROM
MEGA65 Core Development Build
= & 1123 = @ Firmware Release Package

(mega65r3)

Extract the downloaded .7z archive. You should see a file whose name ends in
.cor, and a folder of sdcard-files that includes one named MEGA65 . ROM.

THE CORE SELECTION MENU

The MEGAGS decides which core to load into the FPGA when it starts up. You can
interrupt this process to select which core to load.?

To open the core selection menu, switch off the computer, then hold the

key and switch on the computer. The core selection menu appears, with the eight
core slots humbered 0 through 7.

5Technically, the MEGAG5 starts the core in slot 0 to power the core selection menu. After you have
made a selection or it chooses a default, it loads the selected core into the FPGA and continues the
boot process.

S1

(el MEGAGS FACTORY CORE

*1< EMPTY SLOT

(2] EMPTY SLOT

(3] EMPTY SLOT

(a) EMPTY SLOT

(5] EMPTY SLOT

(6] EMPTY SLOT

(7] EMPTY SLOT
£B@3—£73> Launch LCTRL>+<1>— 7> Edit

You can select a core to boot using the cursor keys and , or you can simply
press the number key that corresponds to the slot. The boot process continues
with the new core. The MEGA&S5 will keep running the new core until you switch it
off. (Pressing the reset button will not reset which core is being run.)

When you switch on the computer without opening the core selection menu, the
MEGAGS5 looks for a default core. It first checks to see if any core is flagged as
the default core (a setting you can change). If none are flagged, then it checks
to see if there is a core in slot 1.4 If the slot is empty, it uses slot 0.

Your computer comes with the MEGAG5 core in slot 0 installed at the factory. It is
recommended that you do not upgrade the factory-installed core unless advised
to do so by the MEGAG5 team. Instead, install new versions of the MEGAS5 core
inslot 1.

You can upgrade a core, or install a new core, from the core selection menu. This
process reads the . cor file from the SD card.

To upgrade the MEGAG5 core, ROM, and system files:

1. Remove the SD card (or microSD card) from the MEGA&5, and connect it to
your PC using an SD card reader.”

41 DIP switch #4 is in the “on” position, the MEGAS5 checks slot 2 instead of slot 1. DIP switches
are located inside the case, on the main board.

5As an dlternative to moving the SD card to your PC, you can transfer files using an Ethernet con-
nection. See chapter 7 on page 77.

52

2. Copy the .cor file that you extracted from the .7z archive to the SD card.

3. On your PC, open the sdcard-files folder from the .7z archive, then copy
those files to the SD card, replacing the existing files. Put them in the root
of the SD card’s file system, not a sub-folder.

4. Eject the SD card from your PC's operating system, then move it back to the
MEGAG5.

5. Open the core selection menu: switch off the MEGASS5, then hold
while switching it back on.

4. Hold then press the number of the slot you want to upgrade. The slot
editor opens.

7. Press ' to load a core file. The file selector opens. Use the cursor keys
to select the . cor file, then press _

8. Press u to flash the core slot. Allow the flashing process to complete.
This takes several minutes.

9. When the flashing process is complete, press any key to return to the core
selection menu.

The slot editor looks like this:

Edit Slot Hi1

Current
Hame: EMPTY SLOT
Ver.:

Slot Contents
M

<F3> Load Core <F4r: Erase 51lotC
£5TOP: Abort

When you load a core file, it prompts you to select the . cor file on a screen that
looks similar to this:

53

Select core file for slot 1
Fr5E896122.CcOY

Corefile
8.96 RCHESA Sadobdd

(F?} Directory: ROOT
<5TOP> AbOort

Once you have selected the core, the slot editor shows the change it intends
to make to the slot. After you start the flashing process, the display shows the

progress.

NOTE: Do not switch off your computer or disconnect power until after this step is
complete.

Edit Slot Hi
Current
Hame: EMPTY SLOT
ver.:
Replace
¥Y5S896122.CcOX
Hame: MEGHGS
Yer.: Rel 8.9 RCH64 Sadaedd

When the message "Core was successfully flashed” is displayed, the process is
complete.

54

Edit =l1ot Hi
Current

Hame: EMPTY SLOT

Ver.:
Replace

¥Y5S896122.COF

Hame: MEGRAGS

Yer.: Rel 8.96 RCHESA Sadeodd

Finished Flashing
I:ore was successfulluy flashed |

Flash Core to Slot
M TITETITITITETIT pereererererers
-t -5 DO e e oS-I B3]

Don't 1nterrupt power sSuU
the device while F

It is now safe to switch off your computer. Press any key to return to the core
selection menu, or switch the computer off then on again to start the default core.

INSTALLING ALTERNATE CORES AND
ROMS

Installing an alternate core, such as the C64 core, uses the same steps for flashing
the core to a slot.

It is recommended to use slots 2 through 7 for alternate cores, and reserve slot
1 for the latest MEGASS5 core. Of course, there is nothing stopping you from
installing an alternate core in slot 1, so that the MEGAS5 behaves as a different
type of computer when you switch it on. You can always choose the MEGAS5 core
from the core selection menu.

You can keep more than one version of the MEGAS5 ROM on the SD card. When
booting the MEGAG5 core, you can select one of these ROMs by holding down a
number key during boot.

To install alternate ROMs, copy them to the root of the SD card with a filename
such as MEGA65x . ROM, where x is a number between 0 and 7. To boot the alternate
ROM, hold the corresponding number key down while the MEGAS5 core starts. If
you do not hold down a number, it boots to MEGA65.ROM by default.

There are several reasons you might want to keep alternate ROMs on your SD card:

* You are helping to test a new beta release of the ROM, and do not wish to
make the beta version your default ROM.

* You want to try the original Commodore 65 prototype ROM. The MEGA&5
core maintains backwards compatibility with the C65 ROM that was in

55

progress by Commodore before they cancelled the project. It is buggy and
incomplete, but is still an interesting historical artifact.

* You want to try an alternate ROM developed by the MEGAS5 community.
One such ROM is the MEGA65 OpenROM, a project to create an all-new
ROM released under an Open Source license without any original Com-
modore material.

Several alternate ROMs came with your MEGAS5 SD card, installed at the fac-
tory. Try rebooting your computer while holding down a number key to see what
happens!

There are several options ("flags”) that you can select for a core in the core editor.

To change flags for a core, edit the core slot. Press the number key that corre-
sponds to the flag to toggle its value. Save the flags to the slot by flashing the
result: press . You can either set flags before flashing new core data, or you
can flash just the new flag settings without replacing the core data.

To set a core to be the default core used when the MEGAGS5 is switched on without
WO held down, set the "Default core” flag. If no core is set as the default core,
then slot 1 is used as the default (or slot 2 if DIP switch #4 is set to on).

The "cartridge” flags determine which core is selected when a cartridge is present
in the expansion slot. This allows you to choose a different default core based on
the type of the cartridge. For example, you can set the MEGAS5 core to handle
MEGAGS5 cartridges, and a different core to handle C64 cartridges. By default,
the MEGAG5 core will handle Cé4 cartridges using "GO64” mode. You may prefer
to change this to use the Cé4 core that you install separately.

Edit Slot Hi

Current
Hame: MEGRES
Yer.: Rel 8.96 RCH64 Sadaedd

«F3>» Load Core Exrase S51ot
<5TOF> AbOort

56

ERASING A CORE SLOT

The flashing process replaces whatever is in a core slot with the new core. If a
core is already installed in the slot, flashing overwrites the existing core.

If you wish to delete a core and leave the slot empty, edit the slot, press n to

set the replacement to "Erase slot,” then press n to flash the slot with empty
data.

UPGRADING THE FACTORY CORE IN
SLOTO

It is possible to upgrade the factory-installed MEGAGSS5 core in slot 0. You only
need to do this in rare cases, such as if a newer version of the MEGA65 core
includes changes or bug fixes for the start-up process. It is recommended that
you do not upgrade slot 0 unless the announcement for the release suggests that
you do so. Most MEGAS5 core upgrades are fully functional in slot 1, without
needing to upgrade slot 0.

It is important that at least one core slot contains a functioning MEGAS5 core.
If something goes wrong during the flashing process, this may result in a non-
functioning core in that slot. To help prevent accidents, the procedure for flashing
slot O is slightly different from that of the other slots, and only an official MEGAS5
core can be flashed to slot 0.

Please read these instructions carefully before starting the procedure. To upgrade
the core in slot 0:

1. Install the latest MEGA&S core in slot 1, using the procedure described ear-
lier. The core must be in the default non-zero slot to recover from any prob-
lems when updating slot 0.

2. Launch core slot 1 to confirm that it works.

3. Return to the core selection menu: switch off the MEGAG5, then hold [S%H
while switching it back on.

4. Hold the u and press the comma key to open the editor for slot 0.
5. Read the information screen, then type the word CONFIRM using uppercase

RETURN
letters and press .

4. Repeat the remainder of the flashing procedure to select the core file and
flash the slot.

57

NOTE: If you have a revision RBA MEGAS5 and have not previously upgraded slot

0, the n and the comma key will not start the procedure: you have an older slot
0 core that does not have this feature. You can work around this by restarting the
core selection menu with slot 1. From the core selection menu, prepare to hold
down , press the n key to boot into the core then immediately press and

hold . The core selection menu re-opens using slot 1. Press u and the
comma key to complete the slot 0 upgrade.

If something goes wrong during the slot O flashing process, your MEGA65 may not
start correctly. Before doing anything else, switch on your MEGA65, and wait a
minute or so. After a while, it should notice that there is no valid core in slot 0,

then proceed to start the core in slot 1. You can hold during this to open
slot 1's core selection menu and restart the flashing process.

If the MEGAS5 cannot boot any core after several minutes, it may be stuck. You
may be able to recover using a device known as a “JTAG interface” that connects
your PC to the MEGAS5 main board. This allows you to inject a bitstream di-
rectly into the FPGA. The part is inexpensive but not always available. Contact
the MEGAG5 team on the Discord (https://mega65.org/chat) for assistance.

Core slot 0 cannot be assigned flags, such as to be the default core or to be
associated with cartridge types. Slot 0 will be used for these purposes if no other
core is installed. It is recommended that you keep the latest MEGA&S core in slot
1, in addition to flashing slot 0.

58

https://mega65.org/chat

UNDERSTANDING THE CORE

BOOTING PROCESS

This section summarises how the MEGA&5 selects which core to start with
when

it is switched on.

MEGAG5 Off
l Power on

FPGA Loads Bitstream
from Slot 0

Bitstream from
Slot 0 starts

The process is shown in the following figure:

|

HYPPO:
Is this first boot since power-on?
l.e., running on Slot 0?)

Yes
(Hypervisor starts
Flash Menu program)

MEGAFLASH:

[S—

Is NO SCROLL key held down?

lNo

Does Slot 1
contain a valid core?

No Does the bitstream
(UseSlot0) l Yes in Slot 1 work?
(Use Slot 1)
FPGA loads bitstream lNo

Show 'ambulance lights'
until powered off

The booting process is governed by two facilities:

I Prompt user to
i select core
l Core selected
- fYes
FPGA tries to boot i (Bitstream is valid)
from specified slot)

Does the specified
bitstream slot work?

No

Keyboard showing (Bitstream is not valid)

‘ambulance lights',
increment slot number

+ The Hypervisor (also known as HYPPO), which operates at a level above the
KERNAL. One of its responsibilities is fo manage aspects of the boot pro-
cess. For more details on the Hypervisor, refer to the MEGA&S Book. In
the diagram, activities performed by the Hypervisor have been highlighted

in green.

59

The Core Selection Menu program (also known as “MegaFlash”), which pro-
vides a list of available core slots to choose from. In the diagram, activities
performed by MegaFlash have been highlighted in blue.

When the MEGAGS is switched on, it does the following:

Loads the bitstream stored in slot O of flash memory. If that is the MEGA65
Factory Core, the MEGAS5 HYPPO Hypervisor starts.

If it is the first boot since power-on (which implies that you are running from
slot 0), HYPPO starts the Flash Menu program (aka MegaFlash) - but note
that the Flash Menu in this mode may not show anything on the screen to
indicate that it is running!

The Flash Menu then checks if [is being held down.

If it is, the Flash Menu program shows its display, allowing you to select or
re-flash a core.

If is not being held down, the Flash Menu program checks if Flash Slot
1 contains a valid core.

If it does, then the Flash Menu program attempts to load that core.

If it succeeds, then the system reconfigures itself for that core, after which
the behaviour of the system is according to that core.

If it fails, the keyboard will go into “ambulance mode”, showing flashing blue
lights to indicate that some first-aid is required. Note that in ambulance
mode the reset button has no effect: You must switch the MEGA&S5 off and
on again.

If you have selected a different core in the Core Selection Menu, the process is
similar, except that the ambulance lights will appear for only a limited time, as the
FPGA will automatically search through the flash memory until it finds a valid core.
If it gets to the end of the flash memory, it will start the MEGA&S5 Factory Core
from slot 0 again.

60

CHAPTER

Using Disks and Disk Images

® Disk Drives

Using Virtual Disk Images

Using the Internal 3.5” Floppy Disk Drive

Using External IEC Disk Drives

Bootable Disks

Accessing the SD Card from BASIC

Common Disk Operations

62

The MEGAG5 has a built-in 3.5” floppy disk drive, and supports Commodore-style
external disk drives via the IEC serial port on the back of the computer. The IEC
port also supports other external IEC storage devices, such as the SD2IEC. Some
IEC storage devices can be connected in a chain and used at the same time.

The MEGAGS also includes a “virtual” disk drive that can mount D81 disk image
files stored on the SD card. Most MEGA&S software that you download from the
Internet is in the form of a D81 disk image. You can create a new D81 disk image
directly from the MEGAS5, and start saving your BASIC programs to the SD card
without any additional hardware. You can also copy files between physical floppy
disks and D81 disk images.

The Intro Disk Menu that you saw when you first switched on the computer is a
program on a D81 disk image, a file named MEGA65.D81 on the SD card. The
MEGAG5 is initially configured to boot this disk image automatically. You can
change this in the Configuration Utility. (Refer back to chapter 4 on page 31.)

You can manage disk drives and virtual disk images from the Freezer menu. Some
of these operations can be performed with BASIC commands such as MOUNT.

UNIT NUMBERS AND DRIVE NUMBERS

Each disk drive (physical or virtual) is accessed via a unit number. With vintage
Commodore computers, the unit number refers to an IEC device connected to the
computer. Commodore reserved unit numbers in the range 0 - 31 for devices
of various purposes, with 8 - 11 reserved for disk drives. If you've ever used a
Commodore 64 and typed LIt "¥",8,1, the “8" refers to the disk drive connected as
unit 8. BASIC 65 disk commands use unit 8 by default, and accept a U parameter
to change it, such as: DLOAD "HYPROGRAH", U3

With the MEGAS5, you can assign a unit number to the virtual disk drive with a
D81 disk image mounted, or to the internal 3.5” floppy drive. You must mount a
disk image or the internal 3.5" floppy drive to a unit number before it can be used.
Any message sent to a unit number assigned to a virtual disk or the internal floppy
drive is handled by the MEGAS5. All other messages are sent to the IEC serial
port.

Disk commands also accept an optional parameter to specify a drive number. This
is only needed when connecting a vintage dual floppy drive via the IEC port, such
as the Commodore 4040, 8050, or 8250. Every disk drive assigns drive number 0
to the first drive. Dual-drive units assign a drive number of 1 to the second drive.
Dual disk drives are usually equipped with an IEEE-488 interface, and need an
IEEE-488 to IEC converter to be used on the MEGAS5. BASIC 65 disk commands
use drive 0 by default, and accept a D parameter to change it.

63

USING VIRTUAL DISK IMAGES

The MEGAG&S provides two “managed drives” that supplement drives connected
to the IEC port. The first managed drive can be assigned either a D81 disk image
file on the SD card, or it can be assigned to the built-in 3.5" floppy drive. The
second managed drive can also be assigned a D81 disk image file, for up to two
virtual disks mounted at the same time.'

The first managed drive can be set to unit 8 or 10, and the second managed drive
can be set to unit 9 or 11.

WHERE TO GET DISK IMAGE FILES

The MEGAGS Filehost website hosts a library of MEGASS5 software produced by
the community. You can browse or search for software, download a title, then
copy the D81 disk image to the SD card using either your PC or the Ethernet file
transfer tool.

https://files.mega65.org/

MOUNTING DISK IMAGES WITH THE FREEZER

Open the Freezer menu: hold sl for one second, then release it. Notice the

current drive mounting settings in the lower-right of the screen.

! Commodore originally intended to release a new external 3.5" floppy drive called the “1565" to go
with the Commodore 65, connecting to a dedicated non-IEC port. The MEGAS5 project has ambitions
to someday produce such a drive, and if it does, this would be assigned to the second managed drive.

64

https://files.mega65.org/

s
-

=

m-
cnoCX
F =k

D
5]
D
E
TE
b
)
T
2

0OF PRESS RUN-STOF' TO

65

To mount a disk image on unit 8 or 10, select the first managed drive by pressing
n. To mount a disk image on unit 9 or 11, select the second managed drive by
pressing n This opens the SD card file browser.

LEAUE UMCHANGED

Use the cursor keys to select a D81 disk image, then press
screen shows the selected disk image is now associated with the managed drive.

RETURN
. The Freezer

From the main Freezer screen, press n or n to toggle the unit number as-
signed to the first or second managed drive, respectively.

MOUNTING DISK IMAGES FROM BASIC

The BASIC MOUNT command can mount a D81 disk image from the SD card
without having to open the Freezer. This command can be entered at the READY
prompt, or be used as part of a program.

To mount a disk image on unit 8, enter MOUNT with the full filename in double-
quotes, including the .D81 suffix:

HOUNT "MEGAGS.DBL"

To mount a disk image to unit 9, provide the U argument:

HOUNT "MEGABS.D8L", U9

CREATING A NEW DISK IMAGE

You can create a new empty disk image from within the MEGASS5 Freezer.

1. Open the Freezer.

Press n to select the first managed drive.
At the top of the file list, select: - NEH D81 DD IHAGE -

Eal A

When prompted, enter a name for the disk. (Omit the .D81 suffix; this will
be added automatically.)

The new disk image is created on the SD card and mounted to the first managed
drive. It is formatted and ready to use.

MANAGING SD CARD FILES IN SUB-DIRECTORIES

Once you have spent some time on Filehost downloading games and applications,
you will eventually have a large collection of D81 disk images on your SD card.
You may wish to organize these files into sub-directories (folders). You can create
these folders with the SD card connected to your PC, or with the Ethernet file
transfer tool.

The Freezer supports sub-directories in its file browser. Each sub-directory name
begins with a slash (/7). Select a folder to list its files. To return to the previous
folder, select: /..

You can also create new disk images in sub-directories by navigating to the sub-
directory before selecting - NEW D81 DD IHAGE -.

The MEGAS5 maintains a “current working directory” that is used as the base di-
rectory for BASIC commands such as MOUNT. To change the current working di-
rectory from BASIC, use the CHDIR command with the U12 argument:

66

CHDIR "DEMOS", 012

HOUNT "XANADU.DBL"

NOTE: Support for sub-directories on the SD card is a work in progress. If a disk
image in a sub-directory is mounted, it will become un-mounted by any action
that changes the current working directory. Some features that use files may not
support files in sub-directories. We hope to improve this in a future update.

The MEGAGS5 has a built-in 3.5" floppy disk drive, similar to what was intended for
the Commodore 65. You can use physical floppy disks to store your programs and
data. Some MEGASS5 software can be purchased on floppy disk.

The internal 3.5" drive must be mounted before it can be used. It can be mounted
to unit 8 or unit 10, in the first managed drive.

MOUNTING THE 3.5"” DRIVE WITH THE FREEZER

Open the Freezer menu: hold [l for one second, then release it. Notice the

current drive mounting settings in the lower-right of the screen.

Press n, then use the cursor down key to: - INTERMAL 3.3" - Press to select

it. The Freezer menu screen shows that the internal drive is mounted to the first
managed disk device.

The INIT # for the first device can be either 8 or 10. Press n to toggle between
these options. BASIC disk commands default to unit 8, so it is typical to use unit 8
unless you are working with multiple disks at the same time.

The internal 3.5” drive can only be mounted in the first managed drive with unit

numbers 8 or 10. It cannot be mounted in the second managed drive (unit numbers
Qorll).

MOUNTING THE 3.5"” DRIVE FROM BASIC

You can mount the internal 3.5" disk drive to unit 8 using the BASIC MOUNT com-
mand. This command works from either the REAlY prompt or from a program. To
mount the internal drive to unit 8, enter the command without arguments:

67

HOUNT

The MOUNT command can only mount the internal drive to unit 8. You can only
mount it to unit 10 from the Freezer menu.

DD AND HD DISKS

The MEGAGS5 disk controller expects a Double Density (DD) floppy disk in the in-
ternal 3.5" floppy disk drive.? Floppy disks are no longer manufactured, and the
DD variety can be difficult to find.

You can use a High Density (HD) floppy disk with the drive, with one important
modification: you must cover both sides of the hole in the upper-left corner (as
seen from the front) of the disk with a small piece of tape. This convinces the drive
that the disk is DD, and switches it to a mode compatible with the MEGAS5 disk
controller. A double-density disk does not have a hole in this location.

HD HOLE

NOTE: Make sure that the tape covers both sides of the hole.

2It may be possible to support full-capacity HD disks in a future firmware update. The drive hardware
is capable of reading HD disks.

68

FORMATTING A DISK

A floppy disk must be formatted before it can be used. The MEGA45's internal 3.5"
floppy drive emulates a Commodore 1581 drive, and can use disks formatted in
such a drive. You can also format a disk with the MEGAG5.

NOTE: Formatting a disk erases its contents. Be careful to only do this when you
do not need the data on the disk!

To format a physical 3.5” floppy disk using the internal drive:

1. Open the Freezer.

2. Mount the internal 3.5" floppy drive to the first managed drive, unit 8.
Double-check that unit 8 says: - INTERHAL 3.5" -

Resume the computer: press m
Insert the floppy disk you wish to format into the internal floppy drive.

Enter the BASIC FORMAT command, giving it a name ("MYDISK") and a two-
character ID (XX).

FORMAT "MYDISK™, XX

7. When prompted, enter YES and press ,

o

o o0 &

Formatting the disk takes a minute or so. The drive will make buzzing and clicking
noises during the process. Do not switch off the computer or eject the disk until
formatting is complete.

You can confirm that the formatting was successful by issuing the DIR command.
You should see an empty directory listing with the name and ID you specified. Your
disk is now ready to use.

The MEGAGS5 works with external disk drives connected to the IEC serial port.

External drives do not need to be mounted. If a unit number is not assigned to the
internal 3.5” disk drive or to a disk image, disk operations intended for that unit
number will be transmitted to the IEC serial port. It is up to the device connected
to the port to recognize its unit number. Some |EC devices have switches that let
you set the unit number. Others will only work with a specific number.

If you have an external drive that expects a specific unit number, you will need
to make sure the MEGAG5 isn't assigning that number to a disk image or the in-

69

ternal drive. Open the Freezer, then press n or n to toggle the unit number
assignments so that they no longer use the needed unit number.

The drive and unit assignments are temporary, and will be reset to their defaults
when the MEGAG5 is switched off. You will need to re-configure the drive assign-
ments the next time you switch on the computer.

With older Commodore computers, it was common for software makers to organize
the file directory on a floppy disk such that the first file in the list is the main pro-
gram. The user could then enter the command LIt "#",8,1 to load the main program,
and RN to run it. The asterisk is a wildcard that matches any file, so it matches the
first file on the disk, without the user having to type the name of the program.

This method is still common, and the MEGAS5 has a quick way to boot such disks:

hold (sl and press [5Z3. This executes the RN "' command, which is similar to
the familiar command sequence that loads and runs the first program on the disk.

With the C65, Commodore introduced a new way to boot disks. Instead of relying
on file order, a disk can have a file named AUTOBOOT . C65. If this file exists and is
a program, the BASIC BOOT command will load and run this file.

BOOT

AUTO-BOOTING DISKS

As discussed in chapter 4 on page 31, you can use the Configuration Utility to
set the MEGAG5 to mount either a virtual disk image or the internal 3.5" disk drive
automatically during boot.

If the mounted disk is bootable — that is, it contains a program file named
AUTOBOOT. C65 — the MEGAS5 will load and run the boot program automatically.

This is how the Intro Disk works. The Intro Disk menu is a program named
AUTOBOOT. C65 on the virtual disk image MEGA65.D81, which is pre-configured to
be the mounted disk on system start-up. When you disable the Intro Disk from its
menu, it renames AUTOBOOT . C65 to MENU, such that the disk is no longer considered
bootable.

Setting up a boot disk for yourself can be a handy way to configure your computer.
You can write a short BASIC program that changes the system font, adjusts the
background colour, and sets KEY macros to your taste, then save the program as
AUTOBOOT.C65 on a disk that you have configured to mount on system start-up.
This program will run every time you switch on your MEGAS5.

70

Several BASIC 65 commands can operate directly on the MEGAS5 SD card as if
it were a disk drive. In these cases, the SD card is known as unit 12.

NOTE: Unit 12 can only be accessed directly for a few specific operations. It
cannot treat the entire SD card as if it were a CBDOS disk.

To list all of the files on the SD card, use the DIR command with the 12 argument:

DIR Ui2

To load or save a PRG file directly from the SD card (that isntin a D8 1 disk image),
use the U2 argument with the DLOAD and DSAVE commands. You must include the
.PRG filename suffix in this case, which is different to using PRG files on disks or
disk images.

DLOAD "MYPROGRAM.PRG",U12

As shown earlier, the MEGAG&5 supports sub-directories (sub-folders) on the SD
card, and maintains a current working directory for disk operations. To change the
current working directory to a subdirectory:

CHDIR "SUBDIR™,Ui2

To change the current working directory to the parent of the current directory:

CHDIR "..", 012

The MOUNT command can mount a D81 disk image to a unit number. Even though
this command refers to a file on the SD card, it does not use the U2 argument.
Instead, it uses the U argument to set the unit number for the disk being mounted.
The MOUNT command uses the current working directory set by CHDIR to locate
the file.

The following are some examples of common disk operations you can perform at
the READY prompt. See the BASIC command reference in appendix A on page 87
for more information.

Most commands that accept filenames also accept a U argument that says which
unit has the file. The default unit is 8.°

DIR

To display the directory (list of files) for a disk, use the DIR command.

DIR

DIR U3

Unlike the Commodore 64 method of loading the disk directory into BASIC memory,
the DIR command does not modify BASIC memory. It is safe to use DIR with a
program in memory.

To make larger directories easier to view, DIRW (for “wide”) displays the directory
in columns, pausing for each page.

DLOAD AND RUN

The DLOAD command loads a program from disk into memory. The RUN command
runs the program currently in memory.

DLOAD "COOLGAME"
RUN

You can combine these into one command by providing the filename directly to
the RUN command.

RUN "COOLGAME"

DSAVE

The DSAVE command saves the BASIC program currently in memory to disk.

DSAVE "MYGAME"

By default, this will not overwrite an existing file with the same name. To request
that the existing file be overwritten, insert an @ (at) symbol before the filename,
inside the double-quotes.

5The default disk unit for BASIC commands is 8 when the computer first starts. You can change it
with the SET DEF command.

DSAVE "EHYGAME"

Note that save-with-replace is only recommended when using disk images and the
3.5" floppy drive. Older Commodore drives have bugs in this feature that could
result in data loss.

BACKUP

The BACKUP command copies an entire disk from one unit to another. All existing
data on the destination disk is erased as part of this process.

BACKUP U8 TO U3

You can use BACKUP to make disk images from floppy disks, or write disk images
to floppy disks, or copy everything from one disk drive to another.

COPY

The COPY command makes a copy of a file. If the source and the destination are
different filenames on the same unit, this duplicates the file on the disk.

COPY "MYGAME",U8 TO "MYGAME", U3

COPY "MYGAME" TO "MYGAME-U1"

RENAME

The RENAME command changes the name of an existing file.

RENAME “MYGAME-U29" TO "MYGAME -FINAL"

DELETE
The DELETE command deletes a file.

DELETE "JUNKFILE"

SHORTCUT DISK COMMANDS

BASIC 65 provides several shortcuts for common disk commands for use from the
READY prompt.

73

Shortcut[Equivalent Command
/ LOAD

T RUN

— SAVE

[DISK

5 DIR

These are intended to be used with a directory listing to launch programs without
having to type filenames. For example:

1. Display the disk’s directory listing: type $, press .

2. Use the cursor keys to move the cursor to the line with the program you want
to run.

3. Type T, press .

The selected program loads and runs. Notice that you do not have to clear extra
characters from the line. The shortcut knows to ignore everything but the filename
in double-quotes, as printed by the directory listing.

74

CHAPTER

Transferring Files
Getting Files to the MEGA65
Understanding Networking
Obtaining M65Connect
Enabling Network Listening

Transferring Files

76

GETTING FILES TO THE MEGA65

While there is plenty of fun to be had writing your own programs for the MEGAG5,
eventually you will want to run programs written by others. You may also want to
back up your MEGA&5 programs to your PC for safe keeping.

The fastest and most reliable way to transfer files between your PC and your
MEGAGS is with an Ethernet cable. You connect one end of the cable to the
RJ45 jack on the rear of the MEGAS5. You can connect the other end to your
local area network (LAN) router or switch, or connect it directly to your PC. You use
software on your PC to initiate file transfers, in either direction: from the PC to the
MEGAG5, or from the MEGA&5 to the PC.

Alternatively, you can copy D81 virtual disk images to your MEGAS5-formatted
SD card using any PC with an SD card reader, without any other special tools
or software. Your PC will recognize the data region of the SD card as a FAT32
partition. If you use this method, be aware that some PC operating systems may
have unwanted side effects, such as fragmentation of SD card files, or extraneous
files created by macOS Finder. These effects are harmless to the data, but may
require maintenance to keep the card useful in the MEGAS5. If the MEGAS5
reports a fragmented file, you can use a PC disk defragmentation tool on the
data partition. Alternatively, you can copy all files off of the SD card to the PC,
re-format the SD card in the MEGAGSS5, then copy the files back from the PC.

It is also possible to transfer files using a JTAG or UART Serial interface connected
to the main board. This is an advanced technique and is not described in this User's
Guide. JTAG or UART Serial hardware provides access to a debugging interface
that may be useful to some programmers. JTAG is also useful for developing FPGA
cores. For more information, see the MEGAS5 Developer’s Guide.

Most people will prefer the Ethernet method. This chapter describes how to do
this.

UNDERSTANDING NETWORKING

The MEGAG5 can use Ethernet to connect to or accept connections from other
computers on a network. With appropriate software, it can connect to other com-
puters over the Internet.

The MEGAG5 Ethernet hardware presents a Media Access Control (MAC) address
to the local network. Unlike other Ethernet hardware, the MEGA65’s MAC address
is not assigned at the factory: it is set in the Configuration Utility. (See chapter 4
on page 31.)

To transfer files, you instruct the MEGA&S5 to make itself available for incoming
connections, then use the Mé5Connect app (or another tool, such as mega65_ftp)
on your PC to initiate a connection. Your PC's operating system may prompt for

77

permission to grant the tool access to the network when you run it for the first time.
The tool uses UDP port 4510 to establish the initial connection with the MEGAS5,
and uses a self-assigned IPvé address created from the MEGAS5’s MAC address
for the file transfer session. This requires that [Pvé be enabled on the PC’s network
interface, which is the default in most cases.

As an alternative to connecting the MEGAS5 to your local network, if your PC
has an Ethernet jack, you can connect your MEGAGS directly to your PC with an
Ethernet cable. This forms a small local network with no access to the Internet.
The procedure for transferring files is the same with a direct connection as with a
local network connection.

OBTAINING M65CONNECT

Mé5Connect is an application for Windows, Mac, or Linux that facilitates file
transfers and other useful features for MEGAS5 users. The application has a win-
dowed interface, and also includes command-line tools useful for programming.

To obtain M65Connect:

1. Visit the MEGAG5 Filehost website in a browser: https://files.mega65.
org

2. In the search box in the top right corner, type: “M65Connect”

3. Select the version of Mé5Connect for your PC operating system.
4. Click the “Download” button.
5

. Use your PC to unpack the downloaded archive file.

M6S5CONNECT FOR WINDOWS

The Windows version of M&5Connect is in the “M&5Connect” folder:
Mé5Connect.exe. As with most open source software, Microsoft Defender
may refuse to run the software, displaying a dialog window. If this happens, click
“More info,” then click the “Run anyway” button that appears.

The command-line tools are in a sub-folder named “Mé5Connect Resources,” such
as: M65Connect Resources\mega65_ftp.exe

M6SCONNECT FOR MACOS

The macOS version of M65Connect is a Mac application bundle:
Mé5Connect.app. As with most open source software, macOS does not
recognize it as “signed” by the developer, and macOS will refuse to run it. You
will need to remove the “quarantine” attribute to run the application.

78

https://files.mega65.org
https://files.mega65.org

In most versions of macOS, the best way to remove the quarantine attribute is with
a Terminal command:

1. Move the M65Connect app to your Applications folder.

2. Open the Terminal app, included with macOS. This can be found in the Ap-
plications folder, in a sub-folder named Utilities.

3. Enter this command: xattr -cr /Applications/M65Connect.app
You can now double-click the M65Connect app to run it.

The command-line tools are inside the application bundle directory, such as:
/Applications/M65Connect.app/Contents/mega65_ftp.osx

M6SCONNECT FOR LINUX

The Linux version of M65Connect is in the “Mé5Connect” folder: M65Connect.
Double-click it to run.

The command-line tools are in a sub-folder named “Mé5Connect Resources,” such
as: M65Connect Resources/mega65_ftp

ENABLING NETWORK LISTENING

By default, the MEGA&S ignores all attempts by other computers to connect to it
over the network. Software running on the MEGA&5 can listen for network con-
nections, but the MEGA65 does not do this on its own.

To transter files with M6 5Connect, you must set the MEGAG5 to listen for incoming
connection attempts from M65Connect. This requires two steps:

1. Set the DIP switch #2 on the main board to the “on” position.
2. Enable a network listening session by pressing this key combination:

@0

To set the DIP switch, open the case, as described in 2 on page 3. Locate the DIP
switches on the main board, then set DIP switch #2 to the “on” position. Look for
markings on the switches to identify switch #2 and the “on” direction.

79

oo
oo
oo
o0
oo
0 0

JTAG

dAIdd AddO14
LLLLL bbbttt iittititill

It is safe to leave DIP #2 in this position for regular operation. It is set to off at the
factory to avoid accidental activation.

To enable a network listening session, press + . The power light blinks
between yellow and green when network listening is active.

80

NETWORK LISTENING
ENABLED

BLINK
YELLOW-TO-GREEN

—= T

NOTE: Resetting the computer disables network listening. Press + to
start a new session.

To transfer files, you will start a file transfer session using the Mé5Connect appli-
cation or the mega65_ftp command-line tool. This connects to the MEGA45 and
uploads a file transfer client for use during the session. When you end the session,
the MEGAGS resets.

Starting a file transfer session resets the MEGAS5. Be sure to save any programs
or data before proceeding.

NOTE: If you clear memory by resetting the computer, remember to re-enable

network listening: press + , and ensure the power light is blinking.

TRANSFERRING FILES WITH M65CONNECT

Mé5Connect detects automatically whether the MEGAGS5 is listening for con-
nections. Open M65Connect, then enable the network listening session on the
MEGAG5. Mé&5Connect reports a status of “Connected to MEGASS5 via LAN,”
and several buttons including the PRG and SD Card buttons are enabled in the
Mé&5Connect window.

81

eoce M65Connect
PRG SID BIT HIC ROM BAS SD Card Reset GoB4a Go65 NTSC PAL Screenshot

=
Console iy

Status: Connected to MEGABS5 via LAN

If M65Connect reports a status of "Not connected to MEGAS5,” check the follow-
ing:

* The MEGA&5 and the PC are connected to the same network, or directly to
each other via a network cable.

+ The MEGAGS is in network listening mode, with a blinking power light.

* In M65Connect, open the Settings menu, and select Connections. The "LAN
Port” field should contain an IPvé address. If it doesn't, wait a few seconds,
or click the "Autodetect LAN Port” button.

To start a file transfer session, click the SD Card button. The SD Card Manager
window opens.

NOTE: Starting a file transfer session resets the MEGA&S to load the file transfer
utility. Be sure to save any data on the MEGASS5 before starting the session.

82

® SD Card Manager

Local Downloads (2] + D81 sD Card MEGABS internal i /7
Filename ~ Bt Size Modified Command Filename Ex -~ Size Mount Info
. DIR 2024/01/1115:40:08 arcade DIR
C64 for MEGA65 Version 5 DIR 2023/06/23 10:16:54 BIN DIR
CE4MEGAG5-V5 zip 1876102 2023/12/27 22:17:12 64 DIR
Linux_M65Connect zip 22259... 2024/01/03 16:20:20 demas DIR
M65Connectapp DIR 2024/01/03 16:08:07 games DIR
Mac_M65Connect zip 13902... 2024/01/03 1 5 E% DIR
moscription da1 819200 2024/01/10 O Open TMP DIR
Win_M65Connect zip 152367... 2024/01/03 16:20: tools DIR
xemu-binaries-win64 zip 1877914 2023/12/18 14:28:26 work DIR
ZZAP! 64 Issue #17 pdf 46244... 202311201 11:10:12 x DIR
mega66r3-20231214 21-dev. 8388608 Info
GalagaMega65_0 5 3885204 Info
XeviousMega65_0 5 3813898 Info
» CBAMEGAE5-V5-R3 cor 4409890 Info
r3-97 cor 8388608 Info
R3R0O95 cor 8388608 Info
= ZXUNOT0 cor 4295462 Info
M optootses dg1 819200 Mount Info
TEST D81 819200 Mount Info
TRYME D81 819200 Mount Info
AUDIOMIX MB5 26461 Info
BANNER M65 21248 Info
CEATHUMB M65 7104 Info
€E5THUMB M65 10240 Info
ETHLOAD MB5 474 Info
FREEZER M65 34381 Info
GUSTHUMB M65 12800 Info
M65THUMB M65 6464 Info
MAKEDISK M65 25582 Info
MEGAINFO MB5 32688 Info
aA| wmonToR M65 18678 Info
—* | ONBOARD M65 27373 Info
ROMLOAD M65 25600 Info
JUsers/dan/Downloads
Status: Done Close

Use the pane on the left to navigate files on your PC. Use the pane on the right to
navigate files on the MEGAS5 SD card. To transfer a file, select the file, then click
the arrow button. The button indicates the direction the file will transfer.

You can also use M65Connect to create D81 disk images, and copy files to and
from D81 disk images. Locate a D81 disk image on your PC or click the + D81
button to create one, then click the "Open” command in the file browser to open
the disk image in the left pane. Transfer files to and from the image with the arrow
button. Click the X button in the upper right to return to the file browser.

Click the Close button to end the file transfer session and close the SD Card
Manager window. This resets the MEGA&S.

THE MEGA6S5_FTP COMMAND-LINE TOOL

The mega65_ftp command-line tool initiates a file transfer session with the
MEGAGS. It can run interactively in the terminal and accept multiple file trans-
fer commands, or it can run non-interactively with those commands provided as
arguments.

To start an interactive file transfer session, run the mega65_ftp command, provid-
ing the —e argument to say you want to use an Ethernet connection.

NOTE: Starting a file transfer session resets the MEGA&S to load the file transfer
utility. Be sure to save any data on the MEGAGS5 before starting the session.

% mega65_ftp -e

83

The tool will upload the file transfer client, and you will see it the client running on
the MEGAGS5. If nothing happens, press Ctrl-C (on the PC) to abort, then double-
check that the MEGAGS5 is connected and that network listening is enabled.

Once connected, the file transfer command prompt looks similar to this:
MEGA65 SD-Card:/>

To end the session, use the exit command. The tool will exit and return to the shell
prompt, and the MEGAS5 will reset.

MEGA65 SD-Card:/> exit
%

The following are several useful commands you can use during the file transfer
session. Use the help command to see a complete list of available commands.

Command Description

put filename [Send a file from the PC to the MEGAG5.

get filename |Retrieve a file from the MEGAG5 to the PC.

dir Display a directory listing of the MEGA&5 SD card.

ldir Display a directory listing of the local current working directory.
mkdir dirname|Create a sub-directory on the MEGAS5 SD card.

cd dirname |Change the current working directory on the MEGA&5 SD card.
lcd dirname [Change the local current working directory.

help Display a list of available commands.

exit End the file transfer session.

To invoke mega65_ftp commands without starting an interactive prompt, use the
-c argument once for each command:

% mega65_ftp -e -c 'put mydisk.d81' -c 'exit'

The tool will start a session, execute the commands, then terminate. Be sure to
issue the exit command as the final command to reset the MEGASS5, or reset the
MEGAG65 manually after the file transfer has completed.

84

APPENDIX

BASIC 65 Command
Reference

® Commands, Functions, and Operators

® BASIC Command Reference

86

This appendix describes each of the commands, functions, and other callable el-
ements of BASIC 65, which is an enhanced version of BASIC 10. Some of these
can take one or more arguments, which are pieces of input that you provide as
part of the command or function call, to help describe what you want to achieve.
Some also require that you use special words.

Below is an example of how commands, functions, and operators (all of which are
also known as keywords) will be described in this appendix.

KEY number, string

Here, KEY is a keyword. Keywords are special words that BASIC understands. In
this manual, keywords are always written in BOLD CAPITALS, so that you can easily
recognise them.

The “number” and “string” (in non-bold text) are examples of arguments. You re-
place these with values or algebraic phrases (expressions) that represent the data
that controls the command’s behavior.

Punctuation and other letters in bold text represent other characters that are typed
as they appear. In this example, a comma must appear between the number
argument and the string argument.

Here is an example of using the KEY command based on this pattern:

KEY §,"LIST"+CHRS (13)

When you see square brackets around arguments, this indicates that the argu-
ments are optional. You are not meant to type the square brackets. Consider this
description of the CIRCLE command, which accepts optional arguments:

CIRCLE xc, yc, radius [, flags, start, stop]

The following examples of the CIRCLE command are both valid. They have differ-
ent behavior based on their different arguments.

CIRCLE 160,130,30

CIRCLE 166,156,30,0,45,135

This arrangement of keywords, symbols, and arguments is called syntax. If you
leave something out, or put the wrong thing in the wrong place, the computer will
fail o understand the command and report a syntax error.

87

There is nothing to worry about if you get an error from the MEGAG5. It is just the
MEGAG5's way of telling you that something isn't quite right, so that you can more
easily find and fix the problem. For example, if you omit the comma in the KEY
command, or replace it with a period, the MEGAS5 will respond with a 5iiTA% ERROR:

READY .
KEY §"FISH"

T5YNTAY ERROR
READY .
KEY 8."FISH"

P5YNTAE ERROR
READY.

Expressions can be a number value such as 2.7, a string value such as "HLL0", or
a more complex calculation that combines values, functions, and operators to
describe a number or string value: "LIST"+CHR§(13)

It is important to use the correct type of expression when writing your programs.
If you accidentally use the wrong type, the MEGAS5 will display o TYPE HISHATCH ERROR,
to say that the type of expression you gave doesn't match what it expected. For
example, the following command results in a TYPE HISHATCH ERROR, because "PITATI" is a
string expression, and a numeric expression is expected:

KEY "“POTATO","SOUP"

Commands are statements that you can use directly from the REAN, prompt, or from
within a program, for example:

READY .
PRINT "HELLD"
HELLD

READY.

16 PRINT "HELLO"
RUN

HELLD

You can place a sequence of statements within a single line by separating them
with colons, for example:

PRINT "HELLO™ : PRINT "HOW ARE YOU?" : PRINT "HOW IS THE WEATHER?"
HELLD

HOW ARE YOU?
HOW IS THE WEATHER?

88

DIRECT MODE COMMANDS

Some commands only work in direct mode (sometimes called “immediate mode”).
This means that the command can’t be part of a BASIC program, but can be en-
tered directly to the screen. For example, the RENUMBER command only works in
direct mode, because its function is to renumber the lines of a BASIC program.

In the two PRINT examples above, the first was entered in direct mode, whereas
the second one was part of a program. The PRINT command works in both imme-
diate mode and in a program.

COMMAND SYNTAX DESCRIPTIONS

The following table describes the other symbols found in command syntax descrip-
tions.

Symbol | Meaning

[] Optional
The bracketed syntax can be repeated zero or more
times
<|> Include one of the choices
[1] Optionally include one of the choices

One or more of the arguments is required. The

() commas to the left of the last argument included are
' required. Trailing commas must be omitted. See

CURSOR for an example.

[{,}] | Similarto{,} but all arguments can be omitted

FONTS

Examples of text that appears on the screen, either typed by you or printed by the
MEGAGS5, appear in the screen font: "LIST"+HR$(13)

BASIC 65 CONSTANTS

Values that are typed directly into an expression or program are called constants.
The values are “constant” because they do not change based on other aspects of
the program state.

The following are types of constants that can appear in a BASIC 65 expression.

89

Type Example | Example
Decimal Integer 32000 -55
Decimal Fixed Point | 3.14 -7634.321
Decimal Floating Point | 1.5£83 T.7E-02
Hex 50020 SFF

String "y "TEXT"

BASIC 65 VARIABLES

A program manipulates data by storing values in the computer’'s memory, refer-
ring to stored values, and updating them based on logic. In BASIC, elements of
memory that store values are called variables. Each variable has a name, there
are separate sets of variable names for each type of value.

For example, the variable ff can store a number value. The variable #§ can store
a string value. Commodore BASIC considers these to be separate variables, even
though the names both begin with .

One way to store a value in a variable is with the assignment = operator. For
example:

it = 1.95

Ahs = “HELLO, "

Variable names must start with a letter, and contain only letters and numbers. They
can be of any length, but Commodore BASIC only recognizes the first two letters
of the name. SPEED and $F would be considered the same variable.

Variable names cannot contain any of the BASIC keywords. This makes using long
names difficult: it is easy to use a keyword accidentally. For example, ENFIRIEHENT is
not a valid variable name, because FOR is a keyword. It is common to use short
variable names to avoid these hazards.

A variable can be used within an expression with other constants, variables, func-
tions, and operators. It is substituted with the value that it contains at that point
in the program'’s execution.

16 INPUT "HWHAT IS YOUR NAME";NA$
20 W§65 = "HELLO, "+Np&+"!"

20 PRINT MS6$

Unlike some programming languages, BASIC variables do not need to be declared
before use. A variable has a default value of zero for number type variables, or
the empty string (") for string type variables.

A variable that stores a single value is also known as a scalar variable. The scalar
variable types and their value ranges are as follows.

90

Type |Name Symbol|Range Example
Byte |& 0. 255 W8
Integer | # -32768 .. 32767 |Ii =13
Real none -1E37 .. 1E37 &Y =12
String |4 length=0.. 255 |#B% = "TEAT"

A variable whose name is a single letter followed by the type symbol (or no symbol
for real number variables) is a fast variable. BASIC 65 stores the variable in a
way that makes it faster to access or update the value than variables with longer

names. It otherwise behaves like any other variable. This is also true for functions
defined by DEF FN.

BASIC 65 ARRAYS

In addition to scalar variables, Commodore BASIC also supports a type of variable
that can store multiple values, called an array.

The following example stores three string values in an array, then uses a FOR loop
to PRINT a message for each element:

DIN NA%(3)

NAs(8) = "DEFT"

NA§ (1) = "GARDNERS"
NA§(2) = "LYDON"

FOR I=0 T0 3
PRINT "HELLO, ";NASCI);"!"
NEXT 1

Each value in an array is referenced by the name of the array variable and an
integer index. For example, fi(7) refers to the element of the array named #() with
index 7. Indexes are “zero-based:” the first element in the array has an index of 0.
The index can be a numeric expression, which can be a powerful way to operate
on multiple elements of data.

All values in an array must be of the same type. The type is indicated in the name
of the variable, similar to scalar variables. #() is an array of real numbers, () is
an array of strings.

Array variable names are considered separate from scalar variable names. The
scalar variable #t has no relationship to the array variable ().

BASIC needs to know the maximum size of the array before its first use, so that it
can allocate the memory for the complete array. A program can declare an array’s
size using the DIM keyword, with the “dimensions” of the array. If an array variable
is used without an explicit declaration, BASIC allocates a one-dimensional array
of 10 elements, and the array cannot be re-dimensioned later (unless you CLR alll
variables).

921

An array can have multiple dimensions, each with its own index separated by a
comma. The array must be declared with the maximum value for each dimension.
Keep in mind that BASIC 65 allocates memory for the entire array, so large arrays
may be constrained by available memory.

DIN BOS(3
BO§(1,1)
BOs(8,0)

BOS(0,2)
BOS(1,8)

SCREEN TEXT AND COLOUR ARRAYS

A BASIC 65 program can place text on the screen in several ways. The PRINT
command displays a string at the current cursor location, which is especially use-
ful for terminal-like output. The CURSOR command moves the cursor to a given
position. A program can use these commands together to draw pictures or user
interfaces.

A program can access individual characters on the screen using the special built-
in arrays Te&() and Ce&(). These arrays are two-dimensional with indexes corre-
sponding to the column and row of each character on the screen, starting from
(0,0) at the top left corner.

Te&(column, row) is the screen code of the character. Screen codes are not the
same as PETSCII codes. See appendix D on page 275 for a list of screen codes.

Ce&(column, row) is the colour code of the character. This is an entry number
of the system palette. See appendix E on page 279 for the list of colours in the
default system palette. Upper bits also set text attributes, such as blinking.

Like regular arrays, the screen and colour array entries can be assigned new values,
or used in expressions to refer to their current values.

16 FOR %=18 TO 38
20 Te&(X,2)=1
30 CORCX,2)=TINTCRND (1)*18)

46 NEXT X
36 PRINT "COLOUR AT POSITION i5: ";Ce&(13,2)

The dimensions of these arrays depend on the current text screen mode. In 80 x
25 text mode, the column is in the range 0 - 79, and the row is in the range O -
24. The MEGAS5 also supports 80 x 50 and 40 x 25 text modes.

92

BASIC 65 OPERATORS

An operator is a symbol or keyword that performs a function in an expression. It
operates on one or two sub-expressions, called operands. The operator and its
operands evaluate to the result of the operation.

For example, the * (asterisk) operator performs a multiplication of two number
operands. The operator and its operands evaluate to the result of the multiplica-
tion.

fi=6
PRINT Ax?

The + (plus) operator has a different meaning depending on the type of the
operands. If both operands are numbers, then the operator performs an addi-
tion of the numbers. If both operands are strings, then the operator evaluates to
a new string that is the concatenation of the operands.

fi=64
PRINT A+l

fé$="HEGA"
PRINT A%+"63"

The - (minus) operator accepts either one operand or two operands. Given one
number operand on the right-hand side, it evaluates to the negation of that num-
ber. Given two number operands, one on either side, it evaluates to the subtraction
of the second operand from the first operand.

fi=64
PRINT -A

PRINT A-16

The =symbol is used both as an assignment statement and as a relational operator.
As an assignment, the = symbol is a statement that updates the value of a variable.
The left-hand side must be a variable or array element reference, and its type must
match the type of the expression on the right-hand side. The assignment is not an
operator: it is not part of an expression.

=7
NA§="DEFT"

As a relational operator, the = symbol behaves as an expression. It evaluates the
expressions on both sides of the operator, then tests whether the values are equal.
If they are equal, the equality operator evaluates to —1, BASIC's representation of
“true.” If they are not equal, the operator evaluates to 0, or “false.” The equality

93

expression can be used with an IF statement to control program flow, or it can be
used as part of a numeric expression. Both expressions must be of the same type.

100 IF %=39 THEN 130
110 X=k+1

120 60TO 1g@
130 PRINT "DONE."

BASIC 65 knows the difference between assignment and equality based on con-
text. Consider this line of code:

BASIC 65 expects a statement, and notices a variable name followed by the = sym-
bol. It concludes that this is a statement assigning a value to the number variable
f. It then expects a number expression on the right-hand side of the assignment,
and notices the = symbol is an operator in that expression. It concludes that the
operation is an equality test, and proceeds to evaluate the expression and assign
the result.

The operators NOT, AND, OR and XOR can be used either as logical operators
or as boolean operators. A logical operator joins two conditional expressions as
operands and evaluates to the logical comparison of their truth values.

IF ¥=39 OR Y{5 THEN 130

IF Y210 AND Y(20 THEN 130

A boolean operator accepts two number operands and performs a calculation on
the bits of the binary values.

=17
PRINT A AND 20

Unlike other cases where operators have different behaviors based on how they
are used, BASIC 65 does not need to determine whether these operators are be-
having as logical operators or boolean operators. Because “true” and “false” are
represented by carefully chosen numbers, the logical operators have the same
behavior whether their operands are conditional expressions or numbers. A “true”
conditional expression is the number —1, which internally is a binary number with all
bits set. The logical expression “true and false” is equivalent to the binary boolean
expression %....0000 & %....1111. In this case, the AND operator evaluates to
0, which is “false.”

Conditional expressions evaluating to numbers can be used in some clever pro-
gramming tricks. Consider this example:

94

f=h-(B23TD

This statement will increment the value in the # by 1 if the value in B is greater than
7. Otherwise it leaves it unchanged. If the sub-expression B 2 T is true, then it
evaluates to -1. # - (-1} is equivalent to A + 1. If the sub-expression is false, then it
evaluates to 0, and # - 8 is equivalent to f.

When multiple operators are used in a single expression, the order in which they
are evaluated is specified by precedence. For example, in the statement fi # # - B #
B, both multiplications will be performed first, then the subtraction. As in algebra,
you can use parentheses to change the order of execution. In the expression A # (A
- B) # B, the subtraction is performed first.

The complete set of operators and their order of precedence are summarised in
the sections that follow.

Assignment Statement

Symbol | Description [Examples
= Assignment |# = 42, #5 = "HELLO", 4 = B { 42

Unary Mathematical Operators

Name | Symbol | Description |Example
Plus [t Positive sign | # = +§
Minus |- Negative sign |B = -4

Binary Mathematical Operators

Name Symbol [Description [Example
Plus t Addition h=Bt+&
Minus - Subtraction B=h-4
Asterisk | # Multiplication |[L =88
Slash / Division D=8/13
Up Arrow |7 Exponentiation [E=2 1 18
Left Shift | Left Shift f=B8¢2
Right Shift|» Right Shift EPY

NOTE: The 1 character used for exponentiation is entered with , which is next

RESTORE
o

95

Relational Operators

Symbol | Description Example
? Greater Than Ay &
)= Greater Than or Equal To | B 3= 42
{ Less Than {4
(= Less Than or Equal To B (=4
= Equal f=4
0 Not Equal BO &
Logical Operators
Keyword | Description | Example
AND And A} 42 AND A € 84
R Or hY4R0MRA=10
X0R Exclusive Or [A} 42 ¥R B } 42
NOT Negation C=NTAYB
Boolean Operators
Keyword [Description [Example
AND And fi =B AND $FF
R Or fi =B OR 580
H0R Exclusive Or | =B ¥R 1
NOT Negation fi = NOT 22
String Operator
Name [Symbol [Description Operand type [Example
Plus |t Concatenates Strings | String f$ = B§ + ".PRE"
OPERATOR PRECEDENCE
Precedence [Operators
High T

%/

{9 (Arithm
({=32»x:=0
NOT
AND

Low OR X0R

t - (Unary Mathematical)

t - (Binary Mathematical)

etic Shifts)

96

ABS

Format:

Returns:

Remarks:

Example:

AND

Format:

Usage:

Remarks:

Examples:

ABS(x)

The absolute value of the numeric argument x.
x numeric argument (integer or real expression)
The result is of type real.

Using ABS

PRINT ABS(-123)
123
PRINT AB§(4.3)

4.9
PRINT ABS(-4.3)
4.3

operand AND operand
Performs a bit-wise logical AND operation on two 16-bit values.

Integer operands are used as they are. Real operands are converted
to a signed 16-bit integer (losing precision). Logical operands are
converted to 16-bit integer using $FFFF (decimal -1) for TRUE, and
$0000 (decimal 0) for FALSE.

Expression | Result
0 AND 0 B
b AND 1 B
1 fND 0 B
1 AND 1 i

The result is of type integer. If the result is used in a logical context,
the value of 0 is regarded as FALSE, and all other non-zero values
are regarded as TRUE.

Using AND

97

PRINT 1 AND 3
i

PRINT 128 AND 64
]

AND can be used in IF statements to require multiple conditions.

IF (€)= 0 AND C < 256) THEN PRINT "BYTE VALUE"
APPEND

Format: APPEND# channel, filename [,D drive] [,U unit]

Usage: Opens an existing sequential file of type SEQ or USR for writing, and
positions the write pointer at the end of the file.

channel number, where:
* 1 <= channel <= 127 line terminator is CR.
* 128 <= channel <= 255 line terminator is CR LF.

filename the name of a file. Either a quoted string such as "MTA", or
a string expression in brackets such as (F13).

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units
such as the 1541, 1571, 0r 1581.

unit device number on the IEC bus. Typically in the range from 8 to
11 for disk units. If a variable is used, it must be placed in brackets.
The unit # defaults to 8.

Remarks: APPEND# works similarly to DOPEN#... W, except that the file must
already exist. The content of the file is retained, and all printed text is
appended to the end. Trying to APPEND to a non-existing file reports
a DOS error.

Examples: Open existing file in append mode:

APPENDHS, "DATA", U9
APPENDH130, (DD$), UCUNZ)

APPENDH3, "USER FILE,U"
APPENDH#2, "DATA BASE"

98

ASC

Format:

Returns:

Remarks:

Examples:

ATN

Format:

Returns:

Remarks:

Examples:

AUTO

Format:

Usage:

ASC(string)

The PETSCII code of the first character of the string argument, as a
number.

ASC returns zero for an empty string. This is different to BASIC 2,
which raised an error for fSt{").

The inverse function to ASC is CHRS. Refer to the CHRS function on
page 114 for more information.

The name was apparently chosen to be a mnemonic to “ASCII,” but
the returned value is a PETSCII code.

Using ASC

PRINT ASC("MEGA")
m

PRINT ASC(™")
o

ATN(numeric expression)
The arc tangent of the argument.
The result is in the range (—7/2 to 7/2)

A multiplication of the result with 180/7 converts the value to the unit
"degrees”. ATN is the inverse function to TAN.

Using ATN

PRINT ATN(B.3)
463647603

PRINT ATNCD.5) * 180 / «
265650512

AUTO [step]

Enables or disables automatic line numbering during BASIC program
entry. After submitting a new program line to the BASIC editor with

99

RETURN

-, the AUTO function generates a new BASIC line number for the

entry of the next line. The new number is computed by adding step
to the current line number.

step line number increment
Typing AUTO with no argument disables it.
Examples: Using AUTO

AUTO 18 - USE AUTO WITH INCREMENT 18

AUTO - SWITCH AUTO OFF

BACKGROUND
Format: BACKGROUND colour

Usage: Sets the background colour of the screen.
colour the palette entry number, in the range 0 - 255

All colours within this range are customisable via the PALETTE com-
mand. On startup, the MEGAS5 only has the first 32 colours con-
figured. See appendix E on page 279 for the list of colours in the
default system palette.

Example: Using BACKGROUND

BACKEROUND 3 : REM SELECT BACKGROUND COLOUR CYAN
BACKUP

Format: BACKUP U source TO U target
BACKUP D source TO D target [,U unit]

Usage: Copies one disk to another.

The first form of BACKUP, specifying units for source and target, can
only be used for the drives connected to the internal FDC (Floppy
Disk Controller). Units 8 and 9 are reserved for this controller. These
can be either the internal floppy drive (unit 8) and another floppy
drive (unit 9) attached to the same ribbon cable, or mounted D81
disk images. BACKUP can be used to copy from floppy to floppy,
floppy to image, image to floppy and image to image, depending on
image mounts and the existence of a second physical floppy drive.

100

Remarks:

Examples:

BANK

Format:

Usage:

Remarks:

Example:

BEGIN

Format:

Usage:

Remarks:

The second form of BACKUP, specifying drives for source and target,
is meant to be used for dual drive units connected to the IEC bus. For
example: CBM 4040, 8050, 8250 via an IEEE-488 to IEC adapter.
In this case, the backup is then done by the disk unit internally.

source unit or drive # of source disk.
target unit or drive # of target disk.

The target disk will be formatted and an identical copy of the source
disk will be written.
BACKUP cannot be used to backup from internal devices to IEC de-
vices or vice versa.

Using BACKUP

BACKUP U§ TO U9 : REM BACKUP INTERNAL DRIVE 8 TO DRIVE 3
BACKUP U9 TO U8 : REM BACKUP DRIVE 9 TO INTERNAL DRIVE 8

BACKUP DB T0 D1, U0 : REM BACKUP ON DUAL DRIVE CONNECTED UIA IEC

BANK bank number

Selects the memory configuration for BASIC commands that use 16-
bit addresses. These are LOAD, LOADIFF, PEEK, POKE, SAVE, SYS,
and WAIT. Refer to the system memory map in the MEGA65 Book
for more information.

A value > 127 selects memory mapped I/O. The default value at
system startup for the bank number is 128. This configuration has
RAM from $0000 to $1FFF, the BASIC and KERNAL ROM, and I/O
from $2000 to $FFFF.

Using BANK

BANK 1 :REM SELECT MEMORY CONFIGURATION 1

BEGIN ... BEND

The beginning of a compound statement to be executed after THEN
or ELSE. This overcomes the single line limitation of the standard IF
... THEN ... ELSE clause.

Do not jump with GOTO or GOSUB into a compound statement, as
it may lead to unexpected results.

101

Example:

BEND

Format:

Usage:

Remarks:

Example:

BLOAD

Format:

Usage:

Using BEGIN and BEND

10 GET A%

20 IF A$2="A" AND A$(="2" THEN BEGIN
30 PH=PHS+AS

40 IF LENCPHS)T THEN 90

30 BEND :REM IGNORE ALL EXCEPT (A-2)
60 IF ASCOCHRS(13) GOTOD 10
30 PRINT "PH=";PHS

BEGIN ... BEND

The end of a compound statement to be executed after THEN or
ELSE. This overcomes the single line limitation of the standard IF ...
THEN ... ELSE clause.

The example below shows a quirk in the implementation of the com-
pound statement. If the condition evaluates to FALSE, execution
does not resume right after BEND as it should, but at the beginning
of the next line. Test this behaviour with the following program:

Using BEGIN and BEND

10 IF 2 3 1 THEN BEGIN:A$="ONE"
20 B&="TH0"

30 PRINT A%;" ";BS; :BEND:PRINT " QUIRK"
40 REM EXECUTION RESUMES HERE FOR Z (= 1

BLOAD filename [,B bank] [,P address] [,R] [,D drive] [,U unit]
Loads a file of type PRG into RAM at address P. (“Binary load.”)

BLOAD has two modes: The flat memory address mode can be used
to load a program to any address in the 28-bit (256MB) address
range where RAM is installed. This includes the standard RAM banks
0 to 5, as well as the 8MB of "attic RAM” at address $8000000.

This mode is triggered by specifying an address at parameter P that
is larger than $FFFF. The bank parameter is ignored in this mode.

102

Remarks:

Examples:

BOOT

Format:

Usage:

For compatibility reasons with older BASIC versions, BLOAD accepts
the syntax with a 16-bit address at P and a bank number at B as well.
The attic RAM is out of range for this compatibility mode.

The optional parameter R (RAW MODE) does not interpret or use the
first two bytes of the program file as the load address, which is oth-
erwise the default behaviour. In RAW MODE every byte is read as
data.

filename the name of a file. Either a quoted string such as "MT#", or
a string expression in brackets such as (FI$).

bank specifies the RAM bank to be used. If not specified, the current
bank, as set with the last BANK statement will be used.

address overrides the load address that is stored in the first two
bytes of the PRG file.

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units
such as the 1541, 1571, 0r 1581.

unit device number on the IEC bus. Typically in the range from 8 to
11 for disk units. If a variable is used, it must be placed in brackets.
The unit # defaults to 8.

BLOAD cannot cross bank boundaries.

BLOAD uses the load address from the file if no P parameter is given.

Using BLOAD

BLOAD "ML DATA", B@, U3
BLOAD "SPRITES"
BLOAD "ML ROUTINES", Bi, P32768

BLOAD (FI%), B(BAY), P(PA), UCUNX)
BLOAD "CHUNK",P(48B00608) :REM LOAD TO ATTIC RAM

BOOT filename [,B bank] [,P address] [,D drive] [,U unit]
BOOT SYS
BOOT

Loads and runs a program or boot sector from a disk.

BOOT filename loads a file of type PRG into RAM at address P and
bank B, and starts executing the code at the load address.

103

BOOT SYS loads the boot sector (512 bytes in total) from sector O,
track 1 and unit 8 to address $0400 in bank 0, and performs a I3k
40480 afterwards (Jump To Subroutine).

BOOT with no parameters attempts to load and execute a file named
AUTOBOOQOT.C65 from the default unit 8. It's short for RUN ” AUTO-
BOOT.C65".

filename the name of a file. Either a quoted string such as "MT#", or
a string expression in brackets such as (FI$).

bank specifies the RAM bank to be used. If not specified, the current
bank, as set with the last BANK statement, will be used.

address overrides the load address, that is stored in the first two
bytes of the PRG file.

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units
such as the 1541, 1571, 0r 1581.

unit device number on the IEC bus. Typically in the range from 8 to
11 for disk units. If a variable is used, it must be placed in brackets.
The unit # defaults to 8.

Examples: Using BOOT

BOOT 5¥S

BOOT (FI%), BBAZ), PCPA), UCUNZ)
Bo0T

BORDER
Format: BORDER colour

Usage: Sets the border colour of the screen.
colour the palette entry number, in the range 0 - 255

All colours within this range are customisable via the PALETTE com-
mand. See appendix E on page 279 for the list of colours in the
default system palette.

Example: Using BORDER

10 BORDER 4 : REM SELECT BORDER COLOUR PURPLE

104

BOX

Format:

Usage:

Remarks:

Examples:

BOX x0,y0, x2,y2 [, solid]
BOX x0,y0, x1,y1, x2,y2, x3,y3 [, solid]

Bitmap graphics: draws a box.

The first form of BOX with two coordinate pairs and an optional solid
parameter draws a simple rectangle, assuming that the coordinate
pairs declare two diagonally opposite corners.

The second form with four coordinate pairs declares a path of four
points, which will be connected with lines. The path is closed by
connecting the last coordinate with the first.

The quadrangle is drawn using the current drawing context set with
SCREEN, PALETTE and PEN. The quadrangle is filled if the parameter
solid is not 0.

BOX can be used with four coordinate pairs to draw any shape that
can be defined with four points, not only rectangles. For example
rhomboids, kites, trapezoids and parallelograms. It is also possible
to draw bow tie shapes.

Using BOX

B0 0,0, 160,8, 160,80, 8,80

BO® 0,0, 166,80, 160,0, 0,80

BOX 20,6, 140,60, 160,80, 0,80

105

BSAVE

Format:

Usage:

BSAVE filename, P start TO P end [,B bank] [,D drive] [,U unit]

Saves a memory range to a file of type PRG. (“Binary save.”)

BSAVE has two modes: The flat memory address mode can be used
to save a memory block in the 28-bit (256MB) address range where
RAM is installed. This includes the standard RAM banks 0 to 5, as
well as the 8MB of "attic RAM” at address $8000000.

This mode is triggered by specifying addresses for the start and end
parameter P, that are larger than $FFFF. The bank parameter is ig-
nored in this mode. This flat memory mode allows saving ranges
greater than 64K.

For compatibility reasons with older BASIC versions, BSAVE accepts
the syntax with 16-bit addresses at P and a bank number at B as
well. The attic RAM is out of range for this compatibility mode. This
mode cannot cross bank boundaries, so start and end address must
be in the same bank.

filename the name of a file. Either a quoted string such as "MI#", or
a string expression in brackets such as (FI$). If the first character of
the filename is an at sign 'e’, it is interpreted as a "save and replace”
operation. It is not recommended to use this option on 1541 and
1571 drives, as they contain a "save and replace bug” in their DOS.

start the first address, where the saving begins. It also becomes the
load address, which is stored in the first two bytes of the PRG file.

end address where the saving ends. end-1 is the last address to be
used for saving.

bank the RAM bank to be used. If not specified, the current bank, as
set with the last BANK statement, will be used.

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units
such as the 1541, 1571, 0r 1581.

unit device number on the IEC bus. Typically in the range from 8 to
11 for disk units. If a variable is used, it must be placed in brackets.
The unit # defaults to 8.

106

Remarks:

Examples:

BUMP

Format:

Returns:

Remarks:

Example:

The length of the file is end - start + 2.

If the number after an argument letter is not a decimal number, it
must be set in parenthesis, as shown in the third and fourth line of
the examples.

The PRG file format that is used by BSAVE requires the load address
to be written to the first two bytes. If the saving is done with a bank
number that is not zero, or a start address greater than $FFFF, this
information will not fit. For compatibility reasons, only the two low
order bytes are written. Loading the file with the BLOAD command
will then require the full 16-bit range of the load address as a pa-
rameter.

Using BSAVE

BSAUE "ML DATA", P 32768 TO P 33792, BO, U9
BSAVE "SPRITES", P 1536 TO P 2058

BSAVE "ML ROUTINES", Bi, P(53000) TO P($A000)
BSAVE (FI$), B(BAZ), P(PA) TO PCPE), UCUNX)

BUMP(type)

A bitfield of sprites currently colliding with other sprites (type=1) or
screen data (type=2).

Each bit set in the returned value indicates that the sprite corre-
sponding to that bit position was involved in a collision since the last
call of BUMP. Calling BUMP resets the collision mask, so you will al-
ways get a summary of collisions encountered since the last call of
BUMP.

It's possible to detect multiple collisions, but you will need to evaluate
the sprite coordinates to detect which sprites have collided.

Using BUMP

10 §% = BUMP(1) : REM SPRITE-SPRITE COLLISION
20 IF (57 AND 6) = 6 THEN PRINT "SPRITE 1 & 2 COLLISION"
30 REM ---

40 5/ = BUNP(2) : REM SPRITE-DATA COLLISION
30 IF (54 > 8) THEN PRINT "“SOME SPRITE HIT DATA REGION"

107

BVERIFY

Format:

Usage:

Remarks:

Examples:

Sprite| Return|Mask
0000 0001
2|00000010
4100000100
810000 1000
160001 0000
3210010 0000
6410100 0000
128 | 1000 0000

j—

NONO A ONDN — O

BVERIFY filename [,P address] [,B bank] [,D drive] [,U unit]
Compares a memory range to a file of type PRG. (“Binary verify.")

filename the name of a file. Either a quoted string such as "MT#", or
a string expression in brackets such as (FI$).

bank specifies the RAM bank to be used. If not specified, the current
bank, as set with the last BANK statement, will be used.

address is the address where the comparison begins. If the param-
eter P is omitted, it is the load address that is stored in the first two
bytes of the PRG file that will be used.

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units
such as the 1541, 1571, 0r 1581.

unit device number on the IEC bus. Typically in the range from 8 to
11 for disk units. If a variable is used, it must be placed in brackets.
The unit # defaults to 8.

BVERIFY can only test for equality. It gives no information about
the number, or position of different valued bytes. In direct mode
BVERIFY exits either with the message K or with VERIFY ERROR. In program
mode, a VERIFY ERROR either stops execution or enters the TRAP
error handler, if active.

Using BVERIFY

BUERIFY "ML DATA", P 32768, BA, U3
BUERIFY "SPRITES", P 1336

BUERIFY "ML ROUTINES", B1, PCDEC("3000"))
BUERIFY (FI$), B(BAY), P(PA), UCUNZ)

108

CATALOG

Format:

Usage:

Remarks:

Examples:

CATALOG [filepattern] [, W] [,R] [,D drive] [,U unit]
$ [filepattern] W] [,R] [,D drive] [,U unit]

Prints a file catalog/directory of the specified disk.

The W (Wide) parameter lists the directory three columns wide on the
screen and pauses after the screen has been filled with a page (63
directory entries). Pressing any key displays the next page.

The R (Recoverable) parameter includes files in the directory which
are flagged as deleted but still recoverable.

filepattern is either a quoted string, for example: "M#' or a string
expression in brackets, e.g. ()1$)

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units
such as the 1541, 1571, 0r 1581.

unit device number on the IEC bus. Typically in the range from 8 to
11 for disk units. If a variable is used, it must be placed in brackets.
The unit # defaults to 8.

CATALOG is a synonym of DIRECTORY and DIR, and produces the
same listing. The filepattern can be used to filter the listing. The
wildcard characters * and ? may be used. Adding ,T=to the pattern
string, with T specifying a filetype of P, S, U or R (for PRG, SEQ, USR,
REL) filters the output to that filetype.

The shortcut symbol $ can only be used in direct mode.
Using CATALOG

CATALOG

["BLACK SHURF " BS 2f
368 "STORY PHOBOS" SEQ
21 "Co0%E" PRG
& "Ciagt PRG
104 BLOCKS FREE.

CATALOG "*,T=5"
G 'BLACK SHURF " BS 2A
308 "STORY PHOBOS" SEQ
164 BLOCKS FREE.

Below is an example showing how a directory looks with the wide
parameter:

109

DIR W
1 "BEGIN"
1 "BEND"
1 "BUKP"
1 "CHAR"
1 "CHRS"
4 "CIRCLE"
1 "CLOsE"
i IICLRII

P 1 "FREAD" 2 "PAINT.COR"
P 1"FRE" 3 "PALETTE.COR"
P 2 “GETH" 1 "PEEK"
P 1 “BETKEY" 3 "PEN"
P 1 MGET" 1 "PLAY"
P 2"GOSUR" 2 "POINTER"
P 2"6OT0.COR" 1 "POKE"
P 2 "GRAPHIC" 1 "pos"
2 "COLLISION" P 1 "HELP" 1 "poT"
1 "CURSOR" S N 1 "PRINTH"
o “DATA BASE" R 2 "INPUTH" 1 "PRINT"
1 "DATA" P2 MINPUT" 1 "RCOLOR. COR"
1 "DEF FN" pooo2m 1 "READ"
i "pIy P 1 "LINE INPUTH" 1 "RECORD"
1" P 3 LINE" 1 "REM"
3 "ELLIPSE" P 1"L00P" 1 "RESTORE"

P 1 "MIDS" 1 "RESUME"

P 1MHOD" 1 "RETURN"

P 1 "HOUSPR" 1 "REVERS"

P 1 NERT" 3 "RGRAPHIC"

Po2"N 1 "RMOUSE"

1 “ELSE"

i IIELII

1 "ENVELOPE"
2 "ERIT"

1 "FOR"

CHANGE

Format: CHANGE /findstring/ TO /replacestring/ [, line range]
CHANGE "findstring” TO "“replacestring” |, line range]

Usage: Edits the BASIC program that is currently in memory to replace all
instances of one string with another.

An optional line range limits the search to this range, otherwise the
entire BASIC program is searched. At each occurrence of the find-
string, the line is listed and the user is prompted for an action:

. perform the replace and find the next string
. m do not perform the replace and find the next string
. replace the current and all following matches

. exit the command, and don't replace the current match

Remarks: Almost any character that is not part of the string, including letters
and punctuation, can be used instead of /.

110

Examples:

CHAR

Format:

Usage:

However, using the double quote character finds text strings that are
not tokenised, and therefore not part of a keyword.

For example, CHANGE "LOOP" T0 "00PS" will not find the BASIC keyword LIOP,
because the keyword is stored as a token and not as text. However
CHANGE /L00P/ T0 /00PS/ will find and replace it (possibly causing §tNTA% ERRORs).

Due to a limitation of the BASIC parser, CHANGE is unable to match
the REM and DATA keywords. See FIND.

Can only be used in direct mode.
Using CHANGE

CHANGE "¥X$" TO “UUS", 2006-2700

CHANGE /IN/ TO Z0UT/
CHANGE &IN& TO EOUTE

CHAR column, row, height, width, direction, string [, address of char-
acter set]

Bitmap graphics: displays text on a graphic screen.

column (in units of character positions) is the start position of the
output horizontally. As each column unit is 8 pixels wide, a screen
width of 320 has a column range of 0 - 39, while a screen width of
640 has a column range of 0 - 79.

row (in pixel units) is the start position of the output vertically. In
contrast to the column parameter, its unit is in pixels (not character
positions), with the top row having the value of 0.

height is a factor applied to the vertical size of the characters, where
1 is normal size (8 pixels), 2 is double size (16 pixels), and so on.

width is o factor applied to the horizontal size of the characters,
where 1 is normal size (8 pixels) 2 is double size (16 pixels), and so
on. direction controls the printing direction:

* Tup

* 2 right
* 4 down
+ 8 left

Reamapls

The optional address of character set can be used to select a char-
acter set, different to the default character set at $29800, which
includes upper and lower case characters.

Three character sets (see also FONT) are available:
+ $29000 Font A (ASCII)
+ $3D000 Font B (Bold)
- $2D000 Font C (CBM)

The first part of the font (upper case / graphics) is stored at $xx000
- $xx7FF.

The second part of the font (lower case / upper case) is stored at
$xx800 - $xxFFF.

string is a string constant or expression which will be printed. This
string may optionally contain one or more of the following control
characters:

Expression | Keyboard Shortcut [Description
CHRS(D) CTRL+B Blank Cell

CHRS () CTRL+F Flip Character
CHRS(9) CTRL+! AND With Screen
CHR$(15) CTRL+O OR With Screen
CHRS(29) CTRL+X XOR With Screen
CHR%(18) RVSON Reverse

CHR$(146) RVSOFF Reverse Off

CHRS (147) CLR Clear Viewport
CHRS(21) CTRL+U Underline
CHRS(25)+"-" CTRL+Y + "-" Rotate Left
CHRS(25)+"+" CTRL+Y +"+" Rotate Righ’r
CHRS(26) CTRL+Z Mirror

CHRS(157) Cursor Left Move Left

CHRS(29) Cursor Right Move Right
CHR(143) Cursor Up Move Up

CHR$(17) Cursor Down Move Down

Notice that the start position of the string has different units in the
horizontal and vertical directions. Horizontal is in columns and verti-
cal is in pixels.

Refer to the CHR$ function on page 114 for more information.

Using CHAR

112

10 SCREEN 640,400,2
20 CHAR 28,188,4,4,2,"HEGABS", 529600

30 GETKEY A$
40 SCREEN CLOSE

Will print the text "MEGA&5" at the centre of a 640 x 400 graphic
screen.

CHARDEF

Format:

Usage:

Remarks:

Examples:

CHDIR

Format:

Usage:

CHARDEF index, bit-matrix
Changes the appearance of a character.

index is the screen code of the character to change (e:0, A: 1, B:2,
...). See appendix D on page 275 for a list of screen codes.

bit-matrix is a set of 8 byte values, which define the raster repre-
sentation for the character from top row to bottom row. If more than
8 values are used as arguments, the values 9 - 16 are used for the
character index+1, 17 - 24 for index+2, etc.

The character bitmap changes are applied to the VIC character gen-
erator, which resides in RAM at the address $FF7E000.

All changes are volatile and the VIC character set can be restored
by a reset or by using the FONT command.

Using CHARDEF

CHARDEF 1,4FF, 581,481,481, 481,581,481, 5FF :REM CHANGE ‘A’ TO RECTANGLE

CHARDEF 3,$18,518,518,518, 418,518, 518,500 :REM MAKE ‘I’ SANS SERIF

CHDIR dirname [,U unit]
Changes the current working directory.

dirname the name of a directory. Either a quoted string such as
"SIHEDIR", or a string expression in brackets such as (IR%).

Dependent on the unit, CHDIR is applied to different filesystems.

UNIT 12 is reserved for the SD-Card (FAT filesystem). This command
can be used to navigate to subdirectories and mount diskimages that
are stored there. CHDIR"..” ,U12 changes to the parent directory on
UNIT 12.

113

Examples:

CHRS

Format:
Returns:

Remarks:

Example:

CIRCLE

Format:

Usage:

For other units managed by CBDOS (typically 8 and 9), CHDIR is
used to change into or out of subdirectories on floppy or disk image
of type D81. Existing subdirectories are displayed as filetype CBM
in the parent directory, they are created with the command MKDIR.
CHDIR " /" ,U unit changes to the root directory.

Using CHDIR

CHDIR "ADVENTURES",Ui2 :REM ENTER ADVENTURES ON 5D CARD
CHDIR "..",U12 :REM G0 BACK TO PARENT DIRECTORY
CHDIR "RACING",012 :REM ENTER SUBDIRECTORY RACING
["HEGAGS "

800 "MEGAGS GAMES" CBM
808 "MEGAGS TOOLS" CBM

608 "BASIC PROGRAMS" CBM
960 BLOCKS FREE.

CHDIR "MEGABS GAMES",U8 :REM ENTER SUBDIRECTORY ON FLOPPY DISK
CHDIR "/, 08 :REM GO BACK TO ROOT DIRECTORY

CHR$(numeric expression)
A string containing one character of the given PETSCII value.

The argument range is from 0 - 255, so this function may also be
used to insert control codes into strings. Even the NULL character,
with code 0, is allowed.

CHRS is the inverse function to ASC. The complete table of charac-
ters (and their PETSCII codes) is on page 259.

Using CHRS

10 QUOTES = CHR$(34)
20 ESCAPES = CHR$(2T)

30 PRINT QUOTES;"MEGABS";QUOTES : REM PRINT "MEGAGS"
40 PRINT ESCAPES;"0"; : REM CLEAR TO END OF LINE

CIRCLE xc, yc, radius [, flags, start, stop]

Bitmap graphics: draws a circle.

114

Remarks:

This is a special case of ELLIPSE, using the same value for horizontal
and vertical radius.

xc the x coordinate of the centre in pixels
yc the y coordinate of the centre in pixels
radius the radius of the circle in pixels

flags controls filling, arcs and the position of the 0 degree angle.
Default setting (zero) is don't fill, draw legs and the 0 degree radian
points to 3 o’ clock.

Bit [Name | Value | Action if set

0 [l 1 Fill circle or arc with the current pen colour
1 | legs 2 Suppress drawing of the legs of an arc

2 | combs |4 Let the zero radian point to 12 o' clock

The units for the start- and stop-angle are degrees in the range of
0 to 360. The 0 radian starts at 3 o’ clock and moves clockwise.
Setting bit 2 of flags (value 4) moves the zero-radian to the 12 o
clock position.

start start angle for drawing an arc
stop stop angle for drawing an arc

CIRCLE is used to draw circles on screens with an aspect ratio of
1:1 (for example: 320 x 200 or 640 x 400). Whilst using other
resolutions (such as 640 x 200), the shape will be an ellipse instead.

The example program uses the random number function RND for cir-
cle colour, size and position. So it shows a different picture for each

run.

115

Example: Using CIRCLE

100 REM CIRCLE CAFTER F.BOWEN)

110 BORDER 6 :REM BLACK

120 SCREEN 320,200,4 :REM SIMPLE SCREEN SETUP
130 PALETTE 0,0,0,0,0 :REM BLACK

148 PALETTE 0,1,RNDC.)*16,RNDC.)*16,15 :REM RANDOM COLOURS
138 PALETTE 8,2,RNDC.)%16,15,RND(. %16

168 PALETTE 8,3,13,RNDC.)%16,RND(.)%16

176 PALETTE 0,4, RND(.)*16,RND(, 16,15

188 PALETTE @,5,RND(.)*16,15,RND(,)#16

199 PALETTE 0,6,15,RNDC.)%16,RND(. %16

200 SCNCLR b :REM CLEAR

218 FORI=0T032 :REM CIRCLE LOOP
220 PEN 8,RNDC,)x6+1 :REM RANDOM PEN
230 R=RND(.)36+ :REM RADIUS

240 XC=R+RND(,)%320: IF(XC+R)Y319THENZ40:REM X CENTRE

250 YC=R+RND(,)%200: IF(YC+R)Y199THEN2S0:REM ¥ CENTRE

260 XC=XC+HT%320:YC=YC+HT%200

270 CIRCLE XC,YC,R,. :REM DRAW

200 NEXT

290 GETKEY p% :REM WAIT FOR KEY
300 SCREEN CLOSE:BORDER 6

CLOSE
Format: CLOSE channel

Usage: Closes an input or output channel.

channel number, which was given to a previous call of commands
such as APPEND, DOPEN, or OPEN.

Remarks: Closing files that have previously been opened before a program
has completed is very important, especially for output files. CLOSE
flushes output buffers and updates the directory information on disks.
Failing to CLOSE can corrupt files and disks. BASIC does not auto-
matically close channels nor files when a program stops.

Example: Using CLOSE

10 OPEN 2,8,2,"TEST, S, W"

20 PRINTH2, "TESTSTRING"
30 CLOSE 2 : REM OMITTING CLOSE GENERATES A SPLAT FILE

116

CLR

Format:

Usage:

Remarks:

Example:

CLRBIT

Format:

Usage:

Remarks:

Example:

CLR
CLR variable

Clears BASIC variable memory.

After executing CLR, all variables and arrays will be undeclared. The
run-time stack pointers and the table of open channels are also reset.
RUN performs CLR automatically.

CLR variable clears (zeroes) the variable. variable can be a nu-
meric variable or a string variable, but not an array.

CLR should not be used inside loops or subroutines, as it destroys
the return address. After CLR, all variables are unknown and will be
initialised when they are next used.

Using CLR

10 #=3: P4="HEGAGS"
20 CLR
30 PRINT #;P4

RUN

CLRBIT address, bit number
Clears (resets) a single bit at the address.

If the address is in the range of $0000 to $FFFF (0 - 65535), the
memory bank set by BANK is used.

Addresses greater than or equal to $10000 (decimal 65536) are
assumed to be flat memory addresses and used as such, ignoring
the BANK setting.

The bit number is a value in the range of 0 - 7.

CLRBIT is a short version of using a bitwise AND to clear a bit, but
you can only clear one bit at a time. Refer to SETBIT to set a bit
instead.

Using CLRBIT

117

10 BANK 128 :REM SELECT SYSTEM MAPPING
20 CLRBIT $D8ii,4 :REM DISABLE DISPLAY

30 CLRBIT $D616,3 :REM SWITCH TO 38 OR 76 COLUMN HODE

CMD

Format: CMD channel [, string]

Usage: Redirects the standard output from screen to a channel.

This enables you to print listings and directories to other output chan-
nels. It is also possible to redirect this output to a disk file, or a mo-
dem.

channel number, which was given to a previous call of commands
such as APPEND, DOPEN, or OPEN.

The optional string is sent to the channel before the redirection be-
gins and can be used, for example, for printer or modem setup es-
cape sequences.

Remarks: The CMD mode is stopped with PRINT#, or by closing the channel
with CLOSE. It is recommended to use PRINT# before closing to make
sure that the output buffer has been flushed.

Example: Using CMD to print a program listing:

OPEN 1,4 :REM OPEN CHANNEL #1 TO PRINTER AT UNIT 4
CHb 1

LIST

PRINTHL

CLOSE 1

COLLECT

Format: COLLECT [,D drive] [,U unit]

Usage: Rebuilds the Block Availability Map (BAM) of a disk, deleting splat files

(files which have been opened, but not properly closed) and marking
unused blocks as free.

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units
such as the 1541, 1571, 0r 1581.

118

Remarks:

Examples:

unit device number on the IEC bus. Typically in the range from 8 to
11 for disk units. If a variable is used, it must be placed in brackets.
The unit # defaults to 8.

While this command is useful for cleaning a disk from splat files, it is
dangerous for disks with boot blocks or random access files. These
blocks are not associated with standard disk files and will therefore
be marked as free and may be overwritten by further disk write op-
erations.

Using COLLECT

COLLECT
COLLECT U3

COLLECT D@, U3

COLLISION

Format:

Usage:

Remarks:

Info:

Example:

COLLISION type [, line number]

Enables or disables a user-programmed interrupt handler for sprite
collision.

With a handler enabled, a sprite collision of the given type interrupts
the BASIC program and performs a GOSUB to line number. This
handler must give control back with RETURN.

type the collision type for this interrupt handler:

Type | Description

Sprite - Sprite Collision
2 | Sprite - Data - Collision
3 | Light Pen

—

line number the line number of a subroutine which handles the sprite
collision and ends with RETURN

A call without the line number argument disables the handler.

It is possible to enable the interrupt handler for all types, but only one
can execute at any time. An interrupt handler cannot be interrupted
by another interrupt handler. Functions such as BUMP, LPEN and
RSPPOS may be used for evaluation of the sprites which are involved,
and their positions.

COLLISION wasn't completed in BASIC 10. It is available in BASIC
é5.

Using COLLISION

119

10 COLLISION 1,70 : REM ENABLE

20 SPRITE 1,1 : HOUSPR 1,120, O : MOUSPR 1,045
30 SPRITE 2,1 : MOUSPR 2,120,100 : MOUSPR 2,180H5
40 FOR I=1 TO 50000:NEXT

30 COLLISION 1 : REM DISABLE

60 END

70 REM SPRITE {-> SPRITE INTERRUPT HANDLER
80 PRINT "BUMP RETURNS";BUMP(1)

99 RETURN: REM RETURN FROM INTERRUPT

COLOR
Format: COLOR colour
Usage: Sets the foreground text colour for subsequent PRINT commands.
colour the palette entry number, in the range 0 - 31
See appendix E on page 279 for the list of colours in the default
system palette.
Remarks: This is another name for FOREGROUND.
Example: Using COLOR
COLOR 2
PRINT "THIS IS RED"
COLOR 3
PRINT "THIS IS CYAN"
CONCAT
Format: CONCAT appendfile [,D drive] TO targetfile [,D drive] [,U unit]
Usage: Appends (concatenates) the contents of the file appendfile to the

file targetfile. Afterwards, targetfile contains the contents of both
files, while appendfile remains unchanged.

appendfile is either a quoted string, for example: "MIH" or a string
expression in brackets, for example: (F1%)

targetfile is either a quoted string, for example: "$ffE" or a string
expression in brackets, for example: (F§4)

If the disk unit has dual drives, it is possible to apply CONCAT to files
which are stored on different disks. In this case, it is necessary to

120

Remarks:

Examples:

CONT

Format:

Usage:

Remarks:

Example:

specify the drive# for both files. This is also necessary if both files
are stored on drive# 1.

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units
such as the 1541, 1571, 0r 1581.

unit device number on the IEC bus. Typically in the range from 8 to
11 for disk units. If a variable is used, it must be placed in brackets.
The unit # defaults to 8.

CONCAT is executed in the DOS of the disk drive. Both files must
exist and no pattern matching is allowed. Only files of type SEQ
may be concatenated.

Using CONCAT

CONCAT "NEW DATA" TO "ARCHIVE" ,U9

CONCAT "ADDRESS",DA TO "ADDRESS BOOK",DL

CONT

Resumes program execution after a break or stop caused by an END
or STOP statement, or by pressing .

This is a useful debugging tool. The BASIC program may be stopped
and variables can be examined, and even changed. The CONT
statement resumes execution.

CONT cannot be used if a program has stopped because of an error.
Also, any editing of a program inhibits continuation. Stopping and
continuation can spoil the screen output, and can also interfere with
input/output operations.

Using CONT

10 [=I+1:60T0 1B
RUN

BREAK IN 10

READY,

PRINT I
347

CONT

121

COPY

Format:

Usage:

Remarks:

Examples:

COPY source [,D drive] [,U unit] TO [target] [,D drive] [,U unit]

Copies a file to another file, or one or more files from one disk to
another.

source is either a quoted string, e.g. "MTA" or a string expression in
brackets, e.g. (FI$).

target is either a quo’red string, e.g. "BACLKIP" or a string expression in
brackets, e.g. (F§3)

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units
such as the 1541, 1571, 0r 1581.

unit device number on the IEC bus. Typically in the range from 8 to
11 for disk units. If a variable is used, it must be placed in brackets.
The unit # defaults to 8.

If none or one unit number is given, or the unit numbers before and
after the TO token are equal, COPY is executed on the disk drive
itself, and the source and target files will be on the same disk.

If the source unit (before TO) is different to the target unit (after TO),
COPY executes a CPU-driven routine that reads the source files into
a RAM buffer and writes to the target unit. In this case, the target file
name cannot be chosen, it will be the same as the source filename.
The extended unit-to-unit copy mode allows the copying of single
files, pattern matching files or all files of a disk. Any combination of
units is allowed, internal floppy, D81 disk images, IEC floppy drives
such as the 1541, 1571, 1581, or CMD floppy and hard drives.

The file types PRG, SEQ and USR can be copied. If source and target
are on the same disk, the target filename must be different to the
source file name.

COPY cannot copy DEL files, which are commonly used as titles or
separators in disk directories. These do not conform to Commodore
DOS rules and cannot be accessed by standard OPEN routines.

REL files cannot be copied from unit to unit.

Using COPY

COPY U8 TO U9 :REM COPY ALL FILES
COPY "CODES" TO "BACKUP" :REM COPY SINGLE FILE

COPY "%, TXT",U8 TO U3 :REM PATTERN COPY
COPY "Mx",U3 TO ULL :REM PATTERN COPY

122

COSs

Format: COS(numeric expression)
Returns: The cosine of an angle.

The argument is expected in units of radians. The result is in the range
(-1.0to +1.0)

Remarks: A value in units of degrees can be converted to radians by multi-
plying it with 7 /180.

Examples: Using COS

PRINT CO5(B.T)
B.76484218

R=60:PRINT COSCY * « / 180)
]

CURSOR

Format: CURSOR <ON | OFF> [{, column, row, style}]
CURSOR column, row

Usage: Moves the text cursor to the specified position on the current text
screen.

ON or OFF displays or hides the cursor. When the cursor is ON, it will
appear at the cursor position during GETKEY.

column and row specify the new position.
style sets a solid (1) or flashing (0) cursor.
Example: Using CURSOR

SCNCLR

CURSOR 1,2

PRINT "A"; : SLEEP 1
PRINT "B"; : SLEEP 1
PRINT "C"; = SLEEP §
CURSOR 20,16

PRINT "D"; = SLEEP §
CURSOR ,5 :REM MOUE THE CURSOR TO ROW 5 BUT DO NOT CHANGE THE COLUMN
PRINT “E"; : SLEEP 1

168 CURSOR b :REM MOUE THE CURSOR TO THE START OF THE ROW

110 PRINT "F"; : SLEEP 1

123

CuUT
Format: CUT x, y, width, height

Usage: Bitmap graphics: copies the content of the specified rectangle with
upper left position x, y and the width and height to a buffer, and
fills the region afterwards with the colour of the currently selected
pen.

The cut out can be inserted at any position with the command PASTE.

Remarks: The size of the rectangle is limited by the 1K size of the buffer. The
memory requirement for a cut out region is width * height * number
of bitplanes / 8. It must not equal or exceed 1024 byte. For a 4-
bitplane screen for example, a 45 x 45 region needs 1012.5 byte.

Example: Using CUT

10 SCREEN 320,2600,2

20 BOX 60,60,300,189,1 :REM DRAW A WHITE BOX

30 PEN 2 :REM SELECT RED PEN

40 CUT 140,80,40,40 :REM CUT OUT A 40 * 40 REGION
30 PASTE 10,16,40,40 :REM PASTE IT TO NEW POSITION
B0 GETKEY A$:REM HAIT FOR KEYPRESS

70 SCREEN CLOSE

DATA

Format: DATA [constant [, constant ...]]

Usage: Defines constants which can be read by READ statements in a pro-
gram.

124

Numbers and strings are allowed, but expressions are not. ltems are
separated by commas. Strings containing commas, colons or spaces
must be placed in quotes.

RUN initialises the data pointer to the first item of the first DATA
statement and advances it for every read item. It is the program-
mer’s responsibility that the type of the constant and the variable in
the READ statement match. Empty items with no constant between
commas are allowed and will be interpreted as zero for numeric vari-
ables and an empty string for string variables.

RESTORE may be used to set the data pointer to a specific line for
subsequent reads.

Remarks: [t is good programming practice to put large amounts of DATA state-
ments at the end of the program, so they dont slow down the search
for line numbers after GOTO, and other statements with line number
targets.

Example: Using DATA

1 REM DATA

16 READ NAS, UE

20 READ N% : FOR I=2 TO N% : READ GL(I) : NEXT I
30 PRINT "PROGRAM:";NA4;" VERSION:";VE

40 PRINT "N-POINT GAUSSLEGENDRE FACTORS E1":

30 FOR 1=2 TO NZ:PRINT I;GL(I):NERT I

60 END

80 DATA "MEGAGS",1.1

30 DATA 5,0.5128,8,3573,0.2760,0,2252

RUN

PROGRAM:HEGAGS VERSION: 1.1
N-POINT GAUSSLEGENDRE FACTORS Ei
2 0512

30,3513

4 0.216

30,2232

DCLEAR
Format: DCLEAR [,D drive] [,U unit]

Usage: Sends an initialise command to the specified unit and drive.

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units
such as the 1541, 1571, 0r 1581.

125

unit device number on the IEC bus. Typically in the range from 8 to
11 for disk units. If a variable is used, it must be placed in brackets.
The unit # defaults to 8.

The DOS of the disk drive will close all open files, clear all channels,
free buffers and re-read the BAM. All open channels on the computer
will also be closed.

Examples: Using DCLEAR

DCLEAR
DCLEAR U9

DCLEAR DB, U9

DCLOSE

Format: DCLOSE [U unit]
DCLOSE # channel

Usage: Closes a single file or all files for the specified unit.

channel number, which was given to a previous call to commands
such as APPEND, DOPEN, or OPEN.

unit device number on the IEC bus. Typically in the range from 8 to
11 for disk units. If a variable is used, it must be placed in brackets.
The unit # defaults to 8.

DCLOSE is used either with a channel argument or a unit number,
but never both.

Remarks: [t is important to close all open files before a program ends. Other-
wise buffers will not be freed and even worse, open files that have
been written to may be incomplete (commonly called splat files), and
no longer usable.

Examples: Using DCLOSE

DCLOSE#? :REM CLOSE FILE ASSIGNED TO CHANNEL 2

DCLOSE U9:REM CLOSE ALL FILES OPEN ON UNIT 9

DEC

Format: DEC(string expression)

Returns: The decimal value of a hexadecimal string.

126

Remarks:

Example:

DEF FN

Format:

Usage:

Remarks:

Example:

The argument range is “0” to “FFFFFFFF". DEC() ignores everything
after the first non-hex digit or the eighth character.

Allowed digits in uppercase/graphics mode are 0 - 9 and A - F
(P1234367898BCDEF) and in lowercase/uppercase mode are 0 - 9 and a
~ f (0423456 789abcdes).

Using DEC

PRINT DECC"DBG")
33248

POKE DEC("568"),235

DEF FN name(real variable) = [expression]

Defines a single statement user function with one argument of type
real, that returns a real value when evaluated.

The definition must be executed before the function can be used in
expressions. The argument is a dummy variable, which will be re-
placed by the argument when the function is used.

The function argument is not a real variable and will not overwrite a
variable with that name. It only represents the argument value within
the function definition.

Using DEF FN

10 PD = « 7 180

20 DEF FN CD(X)= COS(XPD): REM COS FOR DEGREES
30 DEF FN $D(X)= SINCXPD): REM SIN FOR DEGREES
40 FOR D=0 TO 360 STEP 36

30 PRINT USING "H";D

60 PRINT USING " . 54" FNCD(D);

70 PRINT USING " Bi.H4";FNSD(D)

80 NEXT D

RUN

@ 1.00 b6.00
9 0.00 1.600
180 -1.60 .80
210 0.00 -1.00
360 1.00 .00

127

DELETE

Format:

Usage:

Remarks:

Examples:

DIM

Format:

Usage:

DELETE [line range]
DELETE filename [,D drive] [,U unit] [,R]

The first form deletes a range of lines from the BASIC program. The
second form deletes one or more files from a disk.

line range consists of the first and last line to delete, or a single line
number. If the first number is omitted, the first BASIC line is assumed.
The second number in the range specifier defaults to the last BASIC
line.

filename is either a quoted string, for example: "$#f"™ or a string
expression in brackets, for example: (F§$)

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units
such as the 1541, 1571, 0r 1581.

unit device number on the IEC bus. Typically in the range from 8 to
11 for disk units. If a variable is used, it must be placed in brackets.
The unit # defaults to 8.

R Recover a previously deleted file. This will only work if there were
no write operations between deletion and recovery, which may have
altered the contents of the file.

DELETE filename is a synonym of SCRATCH filename and ERASE
filename.

Using DELETE

DELETE 106 :REM DELETE LINE 100

DELETE 246-358 :REM DELETE ALL LINES FROM 240 TO 330
DELETE 308- :REM DELETE FROM 500 TO END

DELETE -76 :REM DELETE FROM START TO 78

DELETE "DRM",U9 :REM DELETE FILE DRM ON UNIT §
DELETE "#=SEQ" :REM DELETE ALL SEQUENTIAL FILES
DELETE "Rx=PRG" :REM DELETE PROGRAM FILES STARTING WITH ‘R’

DIM name(limits) [, name(limits) ...]
Declares the shape, bounds and the type of a BASIC array.

As a declaration statement, it must be executed only once and be-
fore any usage of the declared arrays. An array can have one or

128

Remarks:

Example:

DIR

Format:

Usage:

more dimensions. One dimensional arrays are often called vectors
while two or more dimensions define a matrix. The lower bound of
a dimension is always zero, while the upper bound is as declared.
The rules for variable names apply for array names as well. You can
create byte arrays, integer arrays, real arrays and string arrays. It is
legal to use the same identifier for scalar variables and array vari-
ables. The left parenthesis after the name identifies array names.

Byte arrays consume one byte per element, integer arrays two bytes,
real arrays five bytes and string arrays three bytes for the string de-
scriptor plus the length of the string itself.

If an array identifier is used without being previously declared, an
implicit declaration of an one dimensional array with limit of 10 is
performed.

Using DIM

1 REM DIM

10 DIM A%(8) : REM ARRAY OF 9 ELEMEMTS

20 DIM XX(2,3) : REM ARRAY OF 3X4 = 12 ELEMENTS

30 FOR 1=6 T0 8§ : AZ(I)=PEEK(236+1) : PRINT AZ(I);: NERT:PRINT

40 FOR 1=6 70 2 : FOR J=B TO 3 : READ XRCI,J):PRINT RXCI,1);: NERT J,1
30 EAD

60 DATA 1,-2,3,-4,5,-6,7,-8,9,-10,11,-12

RUN
4992 36 6000680
1-23-45-67-89-10 11-12

DIR [filepattern] [, W] [,R] [,D drive] [,U unit]
DIRECTORY [filepattern] [[W] [,R] [,D drive] [,U unit]
$ [filepattern] W] [,R] [,D drive] [,U unit]

Prints a file directory/catalog of the specified disk.

The W (Wide) parameter lists the directory three columns wide on the
screen and pauses after the screen has been filled with a page (63
directory entries). Pressing any key displays the next page.

The R (Recoverable) parameter includes files in the directory, which
are flagged as deleted but are still recoverable.

filepattern is either a quoted string, for example: "M#' or a string
expression in brackets, e.g. (1%

129

Remarks:

Examples:

DISK

Format:

Usage:

Remarks:

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units
such as the 1541, 1571, 0r 1581.

unit device number on the IEC bus. Typically in the range from 8 to
11 for disk units. If a variable is used, it must be placed in brackets.
The unit # defaults to 8.

DIR is a synonym of CATALOG and DIRECTORY, and produces the
same listing. The filepattern can be used to filter the listing. The
wildcard characters * and 7 may be used. Adding,T= to the pattern
string, with T specifying a filetype of P, S, U or R (for PRG, SEQ, USR,
REL) filters the output to that filetype.

The shortcut symbol $ can only be used in direct mode.
Using DIR

DIR
['BLACK SHURF " BS 2A

308 "STORY PHOBOS" SEQ

21 "C803g" PRG
4 "CLae" PRG
104 BLOCKS FREE.

For a DIR listing with the wide parameter, please refer to the example
under CATALOG on page 109.

DISK command [,U unit]
n command [,U unit]

Sends a command string to the specified disk unit.

unit device number on the IEC bus. Typically in the range from 8 to
11 for disk units. If a variable is used, it must be placed in brackets.
The unit # defaults to 8.

command is a string expression.

The command string is interpreted by the disk unit and must be com-
patible to the used DOS version. Read the disk drive manual for
possible commands.

Using DISK with no parameters prints the disk status.

The shortcut key n can only be used in direct mode.

130

Examples:

DLOAD

Format:

Usage:

Remarks:

Using DISK

DISK "I6" :REM INITIALISE DISK IN DRIVE @

DISK "UBX8" :REM CHANGE UNITH TO 8

DLOAD filename [,D drive] [,U unit]
DLOAD "$[pattern=type]” [,D drive] [,U unit]
DLOAD "$$[pattern=type]” [,D drive] [,U unit]

The first form loads a file of type PRG into memory reserved for BASIC
programs.

The second form loads a directory into memory, which can then be
viewed with LIST. It is structured like a BASIC program, but file sizes
are displayed instead of line numbers.

The third form is similar to the second one, but the files are numbered.
This listing can be scrolled like a BASIC program with the keys m

or m, edited, listed, saved or printed.

A filter can be applied by specifying a pattern or a pattern and
a type. The asterisk matches the rest of the name, while the 7
matches any single character. The type specifier can be a character
of (P,S,U,R), that is Program, Sequential, User, or Relative file.

filename the name of a file. Either a quoted string such as "MIf", or
a string expression in brackets such as (FI$).

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units
such as the 1541, 1571, 0r 1581.

unit device number on the IEC bus. Typically in the range from 8 to
11 for disk units. If a variable is used, it must be placed in brackets.
The unit # defaults to 8.

The load address that is stored in the first two bytes of the PRG file is
ignored. The program is always loaded into BASIC memory. This en-
ables loading of BASIC programs that were saved on other comput-
ers with different memory configurations. After loading, the program
is re-linked and ready to be RUN or edited.

It is possible to use DLOAD in a running program. This is called over-
laying, or chaining. If you do this, then the newly loaded program
replaces the current one, and the execution starts automatically on
the first line of the new program. Variables, arrays and strings from

131

Examples:

DMA

Format:

Usage:

Remarks:

Examples:

the current run are preserved and can also be used by the newly
loaded program.

Every DLOAD, of either a program or a directory listing, will replace
a program that is currently in memory.

Using DLOAD

DLOAD "APOCALYPSE"
DLOAD "MEGA TOOLS",U9
DLOAD (FI4),UCUNZ)

DLOAD "$" :REM LOAD WHOLE DIRECTORY - WITH FILE SIZES
DLOAD "&5" :REM LOAD WHOLE DIRECTORY - SCROLLABLE
DLOAD "4§K%=P" :REM DIRECTOY WITH PRG FILES STARTING with ‘X’

DMA command [, length, source address, source bank, target ad-
dress, target bank [, sub]]

DMA ("Direct Memory Access”) is obsolete, and has been replaced
by EDMA.

command The lower two bits control the function: 0: copy, 1: mix,
2: swap, 3: fill. Note that only copy and fill are implemented in
the MEGA6S5 DMAcontroller at the time of writing. Other DMAgic
command bits can also be set, for example, to allow copying data in
the reverse direction, or holding the source or destination address.

length number of bytes (in the range 0 to 65535). NOTE: Specifying
a length of 0 will be interpreted as a length of 65536 (exactly 64
kilobytes).

source address 164-bit address of read area or fill byte
source bank bank number for source (ignored for fill mode)
target 16-bit address of write area

target bank bank number for target

sub sub command

DMA has access to the lower TMB address range organised in 16
banks of 64 K. To avoid this limitation, use EDMA, which has access
to the full 256MB address range.

A sequence of DMA calls to demonstrate fast screen drawing oper-
ations

132

DMA 6, B0x23, 2048, 8, 6, 4 :REM SAVE SCREEN TO 500000 BANK 4
DHA 3, 88%25, 32, 6, 2048, O :REM FILL SCREEN WITH BLANKS

DHA 6, 86x25, 8, 4, 2048, 6 :REM RESTORE SCREEN FROM 580000 BANK 4
DMA 2, 80, 2048, 0, 2048+80, O :REM SWAP CONTENTS OF LINE 1 & 2 OF SCREEN

DMODE

Format: DMODE jam, complement, stencil, style, thick

Usage: Bitmap graphics: sets “display mode” parameters of the graphics

context, which is used by drawing commands.

Mode Values
jam 0-1
complement |0 - 1
stencil 0-1
style 0-3
thick 1-8

DO

Format: DO ... LOOP
DO [<UNTIL | WHILE> logical expression]
. . . statements [EXIT]
LOOP [<UNTIL | WHILE> logical expression]

Usage: DO and LOOP define the start of a BASIC loop.

Using DO and LOOP alone without any modifiers creates an infinite
loop, which can only be exited by the EXIT statement. The loop can
be controlled by adding UNTIL or WHILE after the DO or LOOP.

Remarks: DO loops may be nested. An EXIT statement only exits the current
loop.

Examples: Using DO and LOOP

133

DOPEN

Format:

Usage:

Remarks:

10 PH&="":D0
20 GET A%:PH5=PHs+AS
30 LOOP UNTIL LENCPHS))T OR A$=CHR$(13)

10 D0 : REM WAIT FOR USER DECISION
20 GET A%
30 LOOP UNTIL AS="Y" OR A%="N" OR A$="y" OR A%="n"

10 D0 WHILE ABSCEPS) » 0,601
20 GOSUB 2086 : REM ITERATION SUBROUTINE
30 LooP

10 T%=0 : REM INTEGER LOOP 1-169
20 D0: I¥=I¥H
30 LOOP WHILE Ik < 161

DOPEN# channel, filename [,L [reclen]] [[W] [,D drive] [,U unit]
Opens a file for reading or writing.
channel number, where:

* 1 <= channel <= 127 line terminator is CR.

* 128 <= channel <= 255 line terminator is CR LF.

L indicates, that the file is a relative file, which is opened for read-
/write, as well as random access.

The reclen record length is mandatory for creating relative files. For
existing relative files, reclen is used as a safety check, if given.

W opens a file for write access. The file must not exist.

filename the name of a file. Either a quoted string such as "MI1#", or
a string expression in brackets such as (F15).

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units
such as the 1541, 1571, 0r 1581.

unit device number on the IEC bus. Typically in the range from 8 to
11 for disk units. If a variable is used, it must be placed in brackets.
The unit # defaults to 8.

DOPEN# may be used to open all file types. The sequential file type
SEQ is default. The relative file type REL is chosen by using the L

134

Examples:

DOT

Format:

Usage:

Example:

parameter. Other file types must be specified in the filename, e.g.
by adding ”,P” to the filename for PRG files or ”,U” for USR files.

If the first character of the filename is an at sign @', it is interpreted
as a "save and replace” operation. It is not recommended to use
this option on 1541 and 1571 drives, as they contain a "save and
replace bug” in their DOS.

Using DOPEN

DOPENH3, "DATA", U9
DOPEN#L130, (DD$), UCUNZ)
DOPENH3, "USER FILE,U"

DOPENH2,"DATA BASE",L240
DOPENHd, "MYPROG,P" - REM OPEN PRG FILE

DOT x, y [,colour]

Bitmap graphics: draws a pixel at screen coordinates x and y. The
optional third parameter defines the colour to be used. If not speci-
fied, the current pen colour will be used.

Using DOT:

10 SCREEN 320,200,5

20 BOX 58,36,270, 130

30 VIEWPORT 58,36,220,100
40 FORI=0TOI27

50 DOT I+1+1,1+1,1

60 NEXT

70 GETKEY A

80 SCREEN CLOSE

135

DPAT

Format:

Usage:

DS

Format:

Usage:

Remarks:

Example:

DS$

Format:

DPAT type [, number, pattern ...]

Bitmap graphics: sets the drawing pattern of the graphics context
for drawing commands.

There a four predefined pattern types, that can be selected by spec-
ifying the type number (1, 2, 3, or 4) as a single parameter.

A value of zero for the type number indicates a user defined pattern.
This pattern can be set by using a bit string that consists of either 8,
16, 24, or 32 bits. The number of used pattern bytes is given as the
second parameter. It defines how many pattern bytes (1, 2, 3, or 4)
follow.

* Type 0-4
* Number number of following pattern bytes (1 - 4)
* Pattern pattern bytes

DS
The status of the last disk operation.

This is a volatile variable. Each use triggers the reading of the disk
status from the current disk device in usage.

DS is coupled to the string variable DS$ which is updated at the
same time.

Reading the disk status from a disk device automatically clears any
error status on that device, so subsequent reads will return 0, if no
other activity has since occurred.

DS is a reserved system variable.

Using DS

108 DOPENHL,"DATA"

118 TF D§C20 THEN PRINT“COULD NOT OPEN FILE DATA":STOP

DS$

136

Usage:

Remarks:

Example:

DSAVE

Format:

Usage:

Remarks:

Example:

DTS

Format:

The status of the last disk operation in text form of the format:
Code,Message,Track,Sector.

DSS$ is coupled to the numeric variable DS. It is updated when DS is
used. DS$ is set to 89,0K,00,00 if there was no error, otherwise it is set
to a DOS error message (listed in the disk drive manuals).

DSS is a reserved system variable.

Using DS$

108 DOPENHL,"DATA"

118 IF DSC20 THEN PRINT DSé:STOP

DSAVE filename [,D drive] [,U unit]
Saves the BASIC program in memory to a file of type PRG.

filename the name of a file. Either a quoted string such as "MT", or
a string expression in brackets such as (F1$). The maximum length of
the filename is 16 characters. If the first character of the filename
is an at sign ‘e’ it is interpreted as a “save and replace” operation. It
is not recommended to use this option on 1541 and 1571 drives, as
they contain a "save and replace bug” in their DOS.

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units
such as the 1541, 1571, 0r 1581.

unit device number on the IEC bus. Typically in the range from 8 to
11 for disk units. If a variable is used, it must be placed in brackets.
The unit # defaults to 8.

DVERIFY can be used after DSAVE to check if the saved program on
disk is identical to the program in memory.

Using DSAVE

DSAVE "ADUENTURE"
DSAVE "ZORK-T",U9

DSAVE "DUNGEON",D1,018

DTS

137

Usage: The current date, as a string.

The date value is updated from RTC (Real-Time Clock). The string
DTS is formatted as: "DD-MON-YYYY”, for example: "04-APR-
2021".

Remarks: DTS is a reserved system variable. For more information on how to
set the Real-Time Clock, refer to the MEGA65 Book.

Example: Using DTS

100 PRINT "TODAY IS: “;DT4

DVERIFY
Format: DVERIFY filename [,D drive] [,U unit]

Usage: Verifies that the BASIC program in memory is equivalent to a file of
type PRG.

filename the name of a file. Either a quoted string such as "MT#", or
a string expression in brackets such as (FI$).

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units
such as the 1541, 1571, 0r 1581.

unit device number on the IEC bus. Typically in the range from 8 to
11 for disk units. If a variable is used, it must be placed in brackets.
The unit # defaults to 8.

Remarks: DVERIFY can only test for equality. It gives no information about the
number or position of different valued bytes. DVERIFY exits either
with the message 0k or with VERIFY ERROR.

Example: Using DVERIFY

DUERTFY "ADVENTURE"
DVERTFY "ZORK-I",U9

DVERTFY "DUNGEON",D1,U18

EDIT
Format: EDIT <ON | OFF>

Usage: Enables or disables the text editing mode of the screen editor.

138

Example:

EDIT ON enables text editing mode. In this mode, you can create,
edit, save, and load files of type SEQ as text files using the same line
editor that you use to write BASIC programs. In this mode:

+ The prompt appears as 0, instead of READ.

* The editor does no tokenising/parsing. All text entered after a
linenumber remains pure text, BASIC keywords such as FOR and
GOTO are not converted to BASIC tokens, as they are whilst in
program mode.

* The line numbers are only used for text organisation, sorting,
deleting, listing, etc.

* When the text is saved to file with DSAVE, a sequential file (type
SEQ) is written, not a program (PRG) file. Line numbers are not
written to the file.

+ DLOAD in text mode can load only sequential files. Line num-
bers are automatically generated for editing purposes.

+ Text mode applies to lines entered with line numbers only. Lines
with no line number are executed as BASIC commands, as usual.

EDIT OFF disables text editing mode and returns to BASIC program
editing mode. The MEGA&S5 starts in BASIC program editing mode.

Sequential files created with the text editor can be displayed (with-
out loading them) on the screen by using TYPE <filename>.

Using EDIT

139

EDMA

Format:

Usage:

ready,
edit on

ok,
100 This is a simple text editor,
dsave "example"

ok,
new

ok,
catalog

B "demoempty " 00 34
1 "example" 58q
3159 blocks free

ok,
type "example"
This is a simple text editor,

ok,
dload "example"

loading

ok,
list

1800 This is a simple text editor.

ok,

EDMA command, length, source, target
Copies or updates a large amount of memory quickly.

EDMA ("Extended Direct Memory Access”) is the fastest method to
manipulate memory areas using the DMA controller. Please refer to
the MEGA6S5 Book for more details on EDMA.

command 0: copy, 1: mix, 2: swap, 3: fill.

Because this two bits of the command share the same register with
other bits you can for example use bit 5 to reverse loop operation.

140

Remarks:

Examples:

This is also working in overlapping memory regions for source and
target. Please see the example below.

length number of bytes (in the range 0 to 65535). NOTE: Specifying
a length of 0 will be interpreted as a length of 65536 (exactly 64
kilobytes).

source 28-bit address of read area or fill byte.
target 28-bit address of write area.

EDMA can access the entire 256MB address range, using up to 28
bits for the addresses of the source and target.

Using EDMA

EDMA B, 4808, $F700, 58060600 :REM COPY SCALAR UARIABLES TO ATTIC RAM
EDMA 3, 8023, 32, 2048 :REM FILL SCREEN WITH BLANKS

EDMA 0, 80%25, 2048, 58000800 :REM COPY SCREEN TO ATTIC RAM

By adding 32 (bit 5) to the command parameter, the DMA operation
can be performed in reverse order:

10 PRINT "{MEGAE3!"
20 EDMA 8,10,2048,3020 : REM 2048 IS BEGINNING OF SCREEN RAM

30 EDMA 32,10,2048,3100 : REM 3020 AND 3100 ARE THE LOWER PART OF THE SCREEN

141

Listing and output of the last example:

HEGAGD!

READY.
Ly

18 PRINT"LMEGABS!"

20 ED , 18,2048, 3020
38 EDMA 32,18, 2048, 3108
READY.

MEGAGD!
! SBHGEN

EL
Format: EL
Usage: The line number where the most recent BASIC error occurred, or the

value -1 if there was no error.
Remarks: EL is a reserved system variable.

This variable is typically used in a TRAP routine, where the error line
is taken from EL.

Example: Using EL
10 TRAP 100

20 PRINT SQR(-1) :REM PROVOKE ERROR
30 PRINT "AT LINE 36":REM HERE TO RESUME

40 END

108 IF ERYD THEN PRINT ERRSCER);" ERROR"

118 PRINT " IN LINE";EL

120 RESUME NEXT :REM RESUME AFTER ERROR

142

ELLIPSE

Format:

Usage:

Remarks:

Example:

ELLIPSE xc, yc, xr, yr [, flags, start, stop]
Bitmap graphics: draws an ellipse.

xc is the x coordinate of the centre in pixels
yc is the y coordinate of the centre in pixels
xr is the x radius of the ellipse in pixels

yr is the y radius of the ellipse in pixels

flags control filling, arcs and orientation of the zero radian (combs
flag named after retroCombs). Default setting (zero) is: Don't fill,
draw legs, start drawing at 3 ‘o clock.

Bit | Name | Value | Action if set

0 [fill 1 Fill ellipse or arc with the current pen colour
1 |legs 2 Suppress drawing of the legs of an arc

2 |combs |4 Drawing (0 degree) starts at 12 ‘o clock

The units for the start- and stop-angle are degrees in the range of
0 to 360. The O radian starts at 3 o’ clock and moves clockwise.
The combs-flag shifts the 0 radian and the start position to the 12
‘o clock position.

start start angle for drawing an elliptic arc.
stop stop angle for drawing an elliptic arc.

ELLIPSE is used to draw ellipses on screens at various resolutions. If a
full ellipse is to be drawn, start and stop should be either omissed or
set both to zero (not 0 and 360). Drawing and filling of full ellipses
is much faster, than using elliptic arcs.

Using ELLIPSE

143

/=320%57: H/=200%57 :REM SCREEN SETTINGS
{772 :REM CENTRE AND RADII
172!
:REM OPEN SCREEN
140 ELLIPSE CRX,CYZ, CX-4,CY1-4
138 PEN2:CIRCLE CXX,CYX,RYZ-4,2
168 PEN3:CIRCLE CRY,CYZ,RY¥X-14,2
170 PEN4:CIRCLE CRY,CYZ,RY¥%-24,0,135,43
180 PENS:ELLIPSE CX7,CY4/2,RRA/4,R¥4/4,1
199 PENG:CIRCLE 126%57,CY7,48,1,45,315
200 PENT:CIRCLE 200%57,CY7,48,1,225,133
210 PEND:CHAR 34,CY4/2-8,2,2,2,"NEGABS", 530000
220 GETKEY A% :REM HAIT FOR ANY KEY

230 SCREEN CLOSE :REM CLOSE GRAPHICS SCREEN

ELSE
Format: IF expression THEN true clause [:ELSE false clause]
Usage: ELSE is an optional part of an IF statement.

expression a logical or numeric expression. A numeric expression is
evaluated as FALSE if the value is zero and TRUE for any non-zero
value.

true clause one or more statements starting directly after THEN on
the same line. A line number after THEN performs a GOTO to that
line instead.

false clause one or more statements starting directly after ELSE on
the same line. A linenumber after ELSE performs a GOTO to that
line instead.

Remarks: There must be a colon before ELSE. There cannot be a colon or end-
of-line after ELSE.

144

Example:

END

Format:

Usage:

Remarks:

Example:

The standard IF ... THEN ... ELSE structure is restricted to a single
line. But the true clause and false clause may be expanded to

several lines using a compound statement surrounded with BEGIN
and BEND.

When the true clause does not use BEGIN and BEND, ELSE must be
on the same line as IF.

Using ELSE

168 REM ELSE

118 RED4=CHR$(28) :BLACK$=CHRS (144) : HHITES=CHRS (5)
120 INPUT “ENTER A NUMBER";V

138 IF UC THENPRINT REDS; :ELSEPRINT BLACKS;

148 PRINT U - REM PRINT NEGATIVE NUMBERS IN RED
130 PRINT HHITES

160 INPUT "END PROGRAM: (Y/K)";h%

170 IF A%="Y" THENEND

188 IF A$="N" THEN120:ELSE1GO

Using ELSE with BEGIN and BEND.

100 A = 0 : GOSUB 200
116 4 = 1 : GOSUB 260
128 END

200 IF # = B THEN BEGIN

210 PRINT "HELLD"

220 BEND : ELSE BEGIN
230 PRINT "GOODBYE"
240 BEND

238 RETURN

END
Ends the execution of the BASIC program.

The READY, prompt appears and the computer goes into direct mode
waiting for keyboard input.

END does not clear channels nor close files. Variable definitions are
still valid after END. The program may be continued with the CONT
statement. After executing the last line of a program, END is exe-
cuted automatically.

Using END

145

10 TF U € 0 THEN END : REM NEGATIVE NUMBERS END THE PROGRAM

20 PRINT U

ENVELOPE

Format: ENVELOPE n [{, attack, decay, sustain, release, waveform, pw}]

Usage: Sets the parameters for the synthesis of a musical instrument for use
with PLAY.

n envelope slot (0 - 9).
attack attack rate (0 - 15).
decay decay rate (0 - 15).
sustain sustain rate (0 - 15).
release release rate (0 - 15).

waveform 0: triangle, 1: sawtooth, 2: square/pulse, 3: noise, 4:
ring modulation.

pw pulse width (0 - 4095) for waveform.

There are 10 slots for storing instrument parameters, preset with the
following default values:

nl Al D| S| R|WF PW | Instrument
O] O] 9] O O] 2] 1536]|Piano
11121 0] 12] 0] 1 Accordion
2| 0| 0|15 O O Calliope

3| 0| 5| 5| 0| 3 Drum

41 9| 4| 4] 0] O Flute

5/ 0| 9| 2 1 1 Guitar

6| 0| 9| O O] 2| 512|Harpsichord
71 0] 92| 9| 0| 2|2048|0Organ

8| 8| 9| 4| 1| 2| 512|Trumpet

9| O 9| 0| O O Xylophone

Example: Using ENVELOPE

10 ENVELOPE 9,18,5,16,35,2, 4000
20 V0L 8

30 TEMPO 30
40 PLAY "T9040 COEFGAB U3T8 CDEFGAB L","T3030 H CGEQG TT HCGEQG L"

146

ER

Format:

Usage:

Remarks:

Example:

ERASE

Format:

Usage:

Remarks:

ER

The number of the most recent BASIC error that has occurred, or -1
if there was no error.

ER is a reserved system variable.

This variable is typically used in a TRAP routine, where the error num-
ber is taken from ER.

Using ER

10 TRAP 100
20 PRINT SQR(-1) :REM PROVOKE ERROR
30 PRINT "AT LINE 30":REM HERE TO RESUME

40 END

160 IF ERXD THEN PRINT ERRSCER);" ERROR"

110 PRINT " IN LINE";EL

120 RESUME NEXT :REM RESUME AFTER ERROR

ERASE filename [,D drive] [,U unit] [,R]
Erases (deletes) a disk file.

filename the name of a file. Either a quoted string such as "MTA", or
a string expression in brackets such as (FI$).

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units
such as the 1541, 1571, 0r 1581.

unit device number on the IEC bus. Typically in the range from 8 to
11 for disk units. If a variable is used, it must be placed in brackets.
The unit # defaults to 8.

R Recover a previously erased file. This will only work if there were
no write operations between erasing and recovery, which may have
altered the contents of the disk.

ERASE filename is a synonym of SCRATCH filename and DELETE

filename.

In direct mode, the success and the number of erased files is printed.
The second to last number from the message contains the number of
successfully erased files.

147

Examples:

ERRS

Format:

Returns:

Remarks:

Example:

EXIT

Format:

Usage:
Remarks:

Example:

Using ERASE

ERASE "DRM",U3 :REM ERASE FILE DRM ON UNIT 9
81, FILES SCRATCHED, 61,00
ERASE "OLD*" :REM ERASE ALL FILES BEGINNING WITH "OLD"

81, FILES SCRATCHED, 04,00
ERASE "R¥=PRG" :REM ERASE PROGRAM FILES STARTING WITH ‘R’
81, FILES SCRATCHED, 09,00

ERRS(number)
The string description of a given BASIC error number.
number a BASIC error number (1 - 41)

This function is typically used in a TRAP routine, where the error num-
ber is taken from the reserved variable ER.

Arguments out of range (1 - 41) will produce an ILLEGAL QUANTITY
error.

Using ERRS

10 TRAP 100

20 PRINT SQR(-1) :REM PROVOKE ERROR
30 PRINT "AT LINE 30":REM HERE TO RESUME
40 END

100 IF ERYD THEN PRINT ERRSCER);" ERROR"
110 PRINT " IN LINE";EL
120 RESUME NEXT :REM RESUME AFTER ERROR

EXIT

Exits the current DO .. LOOP and continues execution at the first
statement after LOOP.

In nested loops, EXIT exits only the current loop, and continues exe-
cution in an outer loop (if there is one).

Using EXIT

148

EXP

Format:

Returns:

Remarks:

Examples:

FAST

Format:

Usage:

1 REM EXIT

10 OPEN 2,8,8,"5" : REM OPEN CATALOG

15 IF DS THEN PRINT DS$: STOP: REM CANT READ

20 GETH2,DS,D¢ : REM DISCARD LOAD ADDRESS
23 0 : REM LINE LOOP

30 GETH2,DS,D¢ : REM DISCARD LINE LINK

33 IF §T THEN ERIT : REM END-OF-FILE

40 GETH2,L0,HI : REM FILE SIZE BYTES
45 5=L0 + 236 * HI : REM FILE SIZE

30 LINE INPUTH2, F$: REM FILE NAME

33 PRINT §;F% : REM PRINT FILE ENTRY
60 LOOP

69 CLOSE 2

EXP(numeric expression)

The value of the mathematical constant Euler's number
(2.71828183) raised to the power of the argument.

An argument greater than 88 produces an VERFLOH ERRIR.
Using EXP

PRINT EXP(1)
2.71828183

PRINT EXP(B)
i

PRINT EXP(LOG(2))

2

FAST [speed]
Sets CPU clock speed to 1MHz, 3.5MHz or 40MHz.
speed CPU clock speed where:

* 1sets CPU to 1MHz.

* 3 sets CPU to 3MHz.

* Anything other than 1 or 3 sets the CPU to 40MHz.

149

Remarks: Although it's possible to call FAST with any real number, the precision
part (the decimal point and any digits after it), will be ignored.

FAST is a synonym of SPEED.

FAST has no effect if PIKE 8,65 has previously been used to set the CPU
to 40MHz.

Example: Using FAST

10 FAST :REM SET SPEED TO MAXIMUM (48 MHZ)
20 FAST 4 :REM SET SPEED T0 1 HHZ

30 FAST 3 :REM SET SPEED TO 3.5 MHZ
40 FAST 3.5 :REM SET SPEED T0 3.5 MHZ

FGOSUB
Format: FGOSUB numeric expression
Usage: Evaluates the given numeric expression, then calls (GOSUBs) the

subroutine at the resulting line number.

Warning: Take care when using RENUMBER to change the line numbers of your
program that any FGOSUB statements still use the intended num-
bers.

Example: Using FGOSUB:

10 INPUT "WHICH SUBROUTINE TO EXECUTE 168,200,300";LI
20 FGOSUB LI :REM HOPEFULLY THIS LINE # EXISTS
30 GOTO 16 :REM REPEAT

108 PRINT "AT LINE 160":RETURN
200 PRINT “AT LINE 200":RETURN
300 PRINT "AT LINE 360":RETURN

FGOTO
Format: FGOTO numeric expression
Usage: Evaluates the given numeric expression, then jumps (GOesTO) to the

resulting line number.

Warning: Take care when using RENUMBER to change the line numbers of your
program that any FGOTO statements still use the intended numbers.

Example: Using FGOTO:

150

10 INPUT "WHICH LINE # TO EXECUTE 160,200,380";L1
20 FGOTO LT :REM HOPEFULLY THIS LINE # EXISTS
30 EAD

108 PRINT "AT LINE 100":END
200 PRINT "AT LINE 200":END
300 PRINT “AT LINE 300":END

FILTER
Format: FILTER sid [{, freq, Ip, bp, hp, res}]

Usage: Sets the parameters for a SID sound filter.
sid 1: right SID, 2: left SID
freq filter cut off frequency (0 - 2047)
Ip low pass filter (0: off, 1: on)
bp band pass filter (0: off, 1: on)
hp high pass filter (0: off, 1: on)
resonance resonance (0 - 15)

Remarks: Missing parameters keep their current value. The effective filter is
the sum of of all filter settings. This enables band reject and notch
effects.

Example: Using FILTER

10 PLAY "TTX103PSC"

13 SLEEP 6.82

20 PRINT "LOW PASS SHEEP" :L=1:B=0:H=0:GOSUB 160
30 PRINT "BAND PASS SWEEP":L=0:B=1:H=0:G0SUB 160
40 PRINT "HIGH PASS SHEEP":L=0:B=:H=1:G0SUB 106
30 G0TO 26

100 REM %% SHEEP %kx

118 FOR F = 58 T0 1950 STEP 50

128 IF F)= 1000 THEN FF = 2000-F : ELSE FF = F
130 FILTER 1,FF,L,B,H,13

140 PLAY "¥1"

150 SLEEP .82

160 NEXT F

170 RETURN

151

FIND

Format:

Usage:

Remarks:

Example:

FIND /string/ [, line range]
FIND "string” [, line range]

Searches the BASIC program that is currently in memory for all in-
stances of a string.

It searches a given line range (if specified), otherwise the entire BA-
SIC program is searched.

At each occurrence of the "find string” the line is listed with the string
highlighted.

can be used to pause the output.

Almost any character that is not part of the string, including letters
and punctuation, can be used instead of the slash /.

Using double quotes " as a delimiter has a special effect: The search
text is not tokenised. FIND "FOR” will search for the three letters F,
O, and R, not the BASIC keyword FOR. Therefore, it can find the word
FOR in string constants or REM statements, but not in program code.

On the other hand, FIND /FOR/ will find all occurrences of the BASIC
keyword, but not the text "FOR” in strings.

Partial keywords cannot be searched. For example, FIND /LOO/ will
not find the keyword LOOP.

Due to how BASIC is parsed, finding the REM and DATA keywords
requires using the colon as the delimiter: FIND :REM TODO: This does
not work with the CHANGE command.

FIND is an editor command that can only be used in direct mode.

Using FIND

READY.
LIST

10 REM PARROT COLOUR SCHEME
20 FONT B :REM SERIF
D 5 :REM GREEN
0 :REM BLACK
T ‘REM SYSTEM PURPLE
:REM REM BLUE
:REM KEYWORD YELLOW
READY,
FIND /0L0
10 REM PARROT COLOUR SCHEME
READY,
FIND /HIGHLIGHT/
50 4 {EM SYSTEM PURPLE
60 14 EM REM BLUE
0 7 EM KEYWORD YELLOW

READY.
[|

152

FN

Format:

Usage:

Example:

FONT

Format:

Usage:

FN name(numeric expression)

FN functions are user-defined functions, that accept a numeric ex-
pression as an argument and return a real value. They must first be
defined with DEF FN before being used.

Using FN

10 PD =« 7 180

20 DEF FN CD(X)= COS(XPD): REM COS FOR DEGREES
30 DEF FN SDCX)= SINCXPD): REM SIN FOR DEGREES
40 FOR D=0 TO 360 STEP 96

30 PRINT USING "HRH";D

60 PRINT USING " Hi.54"; FNCD(D);

70 PRINT USING " i, #8";FNSD(D)

80 NEXT D

RUN

8 1.00 b6.00
30 0.00 1.00
180 -1.60 .00
210 9.06 -1.60
360 1.60 0.00

FONT <A |B|C>
Updates all characters to the given built-in font.

FONT A is the PETSCII font with several lowercase characters re-
placed with ASCII punctuation.

FONT B is an alternate appearance of FONT A.

FONT C is the PETSCII font. This is the default when the MEGAG5 is
first switched on.

This resets any changes made by the CHARDEF command.

The ASCII symbols of fonts A and B are typed by pressing the keys
in the table below, some of which also require the holding down of

the n key. The codes for uppercase and lowercase are swapped
compared to ASCII.

153

Remarks:

Examples:

FOR

Format:

Usage:

Remarks:

Examples:

Code |Key PETSCII | ASCII

$5C |[Pound £ \ (backslash)
$5E | Up Arrow (next to RESTORE) t ~ (caret)

$5F |Left Arrow (next to 1) ¢ _ (underscore)
$7B |MEGA + Colon + { (open brace)
$7C |MEGA + Dot : | (pipe)

$7D |MEGA + Semicolon | } (close brace)
$7E |MEGA + Comma i ~ (tilde)

The additional ASCII characters provided by FONT A and B are only
available while using the lowercase character set.

Using FONT

FONT A :REM ASCII - ENABLE {|}_~~

FONT B :REM LIKE A, WITH A SERIF FONT
FONT C :REM COMMODORE FONT (DEFAULT)

FOR index = start TO end [STEP step] ... NEXT [index]
FOR statements start a BASIC loop with an index variable.

index may be incremented or decremented by a constant value on
each iteration. The default is to increment the variable by 1. The
index variable must be a real variable.

start is used to initialise the index.

end is checked at the end of an iteration, and determines whether
another iteration will be performed, or if the loop will exit.

step defines the change applied to to the index variable at the end
of an iteration. Positive step values increment it, while negative val-
ues decrement it. It defaults to 1.0 if not specified.

For positive increments end must be greater than or equal to start,
whereas for negative increments end must be less than or equal to
start.

It is bad programming practice to change the value of the index
variable inside the loop or to jump into or out of a loop body with
GOTO.

Using FOR

154

10 FOR D=6 TO 360 STEP 36
WR=D%a/180

30 PRINT D;R;SINCR);COSCR); TANCR)
40 NEXT D

10 DIN M(20,20)

20 FOR 1=0 T0 20

30 FOR J=1 T0 20

40 MCLD) =1 +100 %]
30 NEXT J,1

FOREGROUND
Format: FOREGROUND colour
Usage: Sets the foreground text colour for subsequent PRINT commands.

colour the palette entry number, in the range 0 - 31

See appendix E on page 279 for the list of colours in the default
system palette.

Remarks: This is another name for COLOR.
Example: Using FOREGROUND

READY.
FOREGROUND 7

EERD?.
FORMAT
Format: FORMAT diskname [,1id] [,D drive] [,U unit]
Usage: Formats a disk. This erases all data on the disk.
I The disk ID.

diskname is either a quo’red string, e.g. "MTH" or a string expression
in brackets, e.g. (). The maximum length of diskname is 16 char-
acters.

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units
such as the 1541, 1571, 0r 1581.

155

Remarks:

Examples:

FRE

Format:

Returns:

Example:

unit device number on the IEC bus. Typically in the range from 8 to
11 for disk units. If a variable is used, it must be placed in brackets.
The unit # defaults to 8.

FORMAT is another name for the HEADER command.

For new floppy disks which have not already been formatted in
MEGAG5 (1581) format, it is necessary to specify the disk ID with
the I parameter. This switches the format command to low level for-
mat, which writes sector IDs and erases all contents. This takes some
time, as every block on the floppy disk will be written.

If the | parameter is omitted, a quick format will be performed. This
is only possible if the disk has already been formatted as a MEGAS5
or 1581 floppy disk. A quick format writes the new disk name and
clears the block allocation map, marking all blocks as free. The disk
ID is not changed, and blocks are not overwritten, so contents may be
recovered with ERASE R. You can read more about ERASE on page
147.

Using FORMAT

FORMAT "ADUENTURE",IDK : FORMAT DISK WITH NAME ADVENTURE AND ID DK
FORMAT "ZORK-I",U3 - FORMAT DISK IN UNIT 9 HITH NAME ZORK-I

FORMAT "DUNGEON",D1,U16: FORMAT DISK IN DRIVE 1 UNIT 10 WITH NAME DUNGEON

FRE(bank)

The number of free bytes for banks 0 or 1, or the ROM version if the
argument is negative.

FRE(O) returns the number of free bytes in bank 0, which is used for
BASIC program source.

FRE(1) returns the number of free bytes in bank 1, which is the bank
for BASIC variables, arrays and strings. FRE(1) also triggers “garbage
collection”, which is a process that collects strings in use at the top
of the bank, thereby defragmenting string memory.

FRE(-1) returns the ROM version, a six-digit number of the form 32583
Using FRE:

156

FREAD

Format:

Usage:

Example:

10 PH = FRE(B)
20 UM = FRECL)
30 RV = FREC-1)

40 PRINT PM;" FREE FOR PROGRAM"
30 PRINT UM;" FREE FOR VARIABLES"
60 PRINT RU;" ROM UERSION"

FREAD# channel, pointer, size

Reads size bytes from channel to memory starting at the 32-bit ad-
dress pointer.

channel number, which was given to a previous call to commands
such as DOPEN, or OPEN

FREAD can be used to read data from disk directly into a variable. It
is recommended to use the POINTER statement for the pointer argu-
ment, and to compute the size parameter by multiplying the number
of elements with the item size.

Type ltem Size
Byte Array 1
Integer Array 2
Real Array 5

Keep in mind that the POINTER function with a string argument does
not return the string address, but the string descriptor. It is not rec-
ommended to use FREAD for strings or string arrays unless you are
fully aware on how to handle the string storage internals.

To read into an array, ensure that you always specify an array index
so that POINTER returns the address of an element. The start address
of array () is POINTER(XY(6)). POINTER(XY) returns the address of the scalar
variable #f.

Using FREAD:

157

100 N=23

118 DI BE(N),CE(N)

120 DOPENH2,"TERT"

130 FREADH2,POINTER(BE()),N
149 DCLOSEH#2

156 FORT=OTON-1:PRINTCHRS(BECI)); :NEXT
166 FORT=OTON-1:C&(1)=B&(N-1-1):NEXT
170 DOPENH?,"REVERS",H

180 FWRITEH2, POINTER(CE(0)) N

190 DCLOSEH#2

FREEZER
Format: FREEZER

Usage: Invokes the Freezer menu.

Remarks: Entering the FREEZER command is an alternative to holding and re-

leasing the key.

Examples: Using FREEZER

FREEZER :REM CALL FREEZER MENU
FWRITE

Format: FWRITE# channel, pointer, size

Usage: Writes size bytes to channel from memory starting at the 32-bit ad-
dress pointer.

channel number, which was given to a previous call to commands
such as APPEND, DOPEN, or OPEN.

FWRITE can be used to write the value of a variable to a file. It is
recommended to use the POINTER statement for the pointer argu-
ment and compute the size parameter by multiplying the number of
elements with the item size.

Refer to the FREAD item size table on page 157 for the item sizes.

Keep in mind that the POINTER function with a string argument does
not return the string address, but the string descriptor. It is not rec-
ommended to use FWRITE for strings or string arrays unless you are
fully aware on how to handle the string storage internals.

158

Example:

GCOPY

Format:

Usage:

Remarks:

Example:

GET

Format:

To write an array, ensure that you always specify an array index so
that POINTER returns the address of an element. The start address
of array () is POINTER(XY(8)). POINTER(XY) returns the address of the scalar
variable 1.

Using FWRITE:

108 N=23

118 DI B&(N),C&(N)

120 DOPENH2,"TEXT"

130 FREADH2,POINTERCBE(H)),N
148 DCLOSEH#2

1356 FORT=OTON-1:PRINTCHRS (BE(I)); :NEXT
168 FORI=0TON-1:CE(I)=B&(N-1-1):NEXT
170 DOPENHZ,"REVERS", H

180 FHRITEH2, POINTER(CE(D)) N

198 DCLOSEH#2

GCOPY x, y, width, height

Bitmap graphics: copies the content of the specified rectangle with
upper left position x, y and the width and height to a buffer.

The copied region can be inserted at any position with the command
PASTE.

The size of the rectangle is limited by the 1K size of the buffer. The
memory requirement for a region is width * height * number of bit-
planes / 8. It must not equal or exceed 1024 byte. For a 4-bitplane
screen for example, a 45 x 45 region needs 1012.5 byte.

Using GCOPY (see also CUT).

10 SCREEN 320,200,2
20 BOX 60,60,300,180,1 :REM DRAW A WHITE BOX
30 GCOPY 140,80,40,40 :REM COPY A 40 % 40 REGION

40 PASTE 10,16,40,40 :REM PASTE IT TO NEW POSITION
30 GETKEY A$:REM WAIT FOR KEYPRESS
60 SCREEN CLOSE

GET variable

159

Usage:

Remarks:

Example:

GET#

Format:

Usage:

Remarks:

Example:

Gets the next character, or byte value of the next character, from
the keyboard queue.

If the variable being set to the character is of type string and the
queue is empty, an empty string is assigned to it, otherwise a one
character string is created and assigned instead. If the variable is
of type numeric, the byte value of the key is assigned to it, other-
wise zero will be assigned if the queue is empty. GET does not wait
for keyboard input, so it's useful to check for key presses at regular
intervals or in loops.

GETKEY is similar, but waits until a key has been pressed.
Using GET:

10 DO: GET p%: LOOP UNTIL A% OO ™

40 IF A% = "W" THEN 1060 :REM GO NORTH
30 IF A4 = "A" THEN 2060 :REM GO WEST
B0 IF A = "S" THEN 3000 :REM GO EAST

70 IF A = "Z" THEN 4060 :REM GO SOUTH
80 IF A$ = CHR5(13) THEN 5000 :REM RETURN
30 6070 16

GET# channel, variable [, variable ...]

Reads a single byte from the channel argument and assigns single
character strings to string variables, or an 8-bit binary value to nu-
meric variables.

This is useful for reading characters (or bytes) from an input stream
one byte at a time.

channel number, which was given to a previous call to commands
such as DOPEN, or OPEN.

All values from 0 to 255 are valid, so GET# can also be used to read
binary data.

Using GET# to read a disk directory:

160

1 REM GETH

10 OPEN 2,8,8,"5" : REM OPEN CATALOG

15 IF DS THEN PRINT DS$: STOP: REM CANT READ

20 GETH2,DS,D¢ : REM DISCARD LOAD ADDRESS
23 0 : REM LINE LOOP

30 GETH2,DS,D¢ : REM DISCARD LINE LINK

33 IF §T THEN ERIT : REM END-OF-FILE

40 GETH2,L0,HI : REM FILE SIZE BYTES
45 5=L0 + 236 * HI : REM FILE SIZE

30 LINE INPUTH2, F$: REM FILE NAME

33 PRINT §;F% : REM PRINT FILE ENTRY
60 LOOP

69 CLOSE 2

GETKEY
Format: GETKEY variable
Usage: Gets the next character, or byte value of the next character, from

the keyboard queue. If the queue is empty, the program will wait
until a key has been pressed.

After a key has been pressed, the variable will be set and program
execution will continue. When used with a string variable, a one char-
acter string is created and assigned. Otherwise if the variable is of
type numeric, the byte value is assigned.

Example: Using GETKEY:

10 GETKEY A% :REM HAIT AND GET CHARACTER
40 IF A% = "W"' THEN 1060 :REM GO NORTH
30 IF A% = "A" THEN 2000 :REM GO WEST

B0 IF A% = "S" THEN 3000 :REM GO EAST

70 IF A4 = "2" THEN 4060 :REM GO SOUTH

80 IF A$ = CHR$(13) THEN 5000 :REM RETURN
30 GOTO 16

G064
Format: G064
Usage: Switches the MEGAG5 to C64-compatible mode.

If you're in direct mode, a security prompt fRE Y0U SURE? is displayed,
which must be responded with Y to continue.

161

Example:

GOSUB

Format:

Usage:

Remarks:

Example:

You can switch back to MEGA65 mode with this command: 5558552
Using GO64:

6064

ARE YOU SURE?

GOSUB line

GOSUB (GOto SUBroutine) continues program execution at the
given BASIC line number, saving the current BASIC program counter
and line number on the run-time stack. This enables the resumption
of execution after the GOSUB statement, once a RETURN statement
in the called subroutine is executed. Calls to subroutines vio GOSUB
may be nested, but the subroutines must always end with RETURN,
otherwise a stack overflow may occur.

Unlike other programming languages, BASIC 65 does not support ar-
guments or local variables for subroutines.

Programs can be optimised by grouping subroutines at the beginning
of the program source. The GOSUB calls will then have low line num-
bers with fewer digits to decode. The subroutines will also be found
faster, since the search for subroutines often starts at the beginning
of the program.

Using GOSUB:

16 GOTO 180 :REM TO MAIN PROGRAM

20 REM *%x SUBROUTINE DISK STATUS CHECK wxx
30 DD=DS:IF DD THEN PRINT "DISK ERROR";DS$
40 RETURN

30 REM %% SUBROUTINE PROMPT Y/N sex

60 DO:INPUT “CONTINUE (Y/N)";h%

70 LOOP UNTIL A$="Y" OR AS="N"

80 RETURN

90 REM %%x MAIN PROGRAM xx

100 DOPENH2,"BIG DATA"

118 GOSUB 36: IF DD THEN DCLOSEH2:GOSUB 60:REM ASK
120 TF A%="N" THEN STOP

138 GOTO 168: REM RETRY

162

GOTO

Format: GOTO line
GO TO line
Usage: Continues program execution at the given BASIC line number.
Remarks: If the target line number is higher than the current line number, the
search starts from the current line, proceeding to higher line numbers.
If the target line number is lower, the search starts at the first line
number of the program. It is possible to optimise the run-time speed
of the program by grouping often used targets at the start (with lower
line numbers).
GOTO (written as a single word) executes faster than GO TO.
Example: Using GOTO:
16 GOTO 186 :REM TO MAIN PROGRAM
20 REM sx SUBROUTINE DISK STATUS CHECK sk
30 DD=DS:IF DD THEN PRINT "DISK ERROR";DS4
40 RETURN
30 REM s%x SUBROUTINE PROMPT Y/N sexx
60 DO:INPUT “CONTINUE (¥/N)";A$
70 LOOP UNTIL A3="¥" OR A%="N"
80 RETURN
90 %k MAIN PROGRAM sxx
100 DOPENH2,"BIG DATA"
116 GOSUB 38: IF DD THEN DCLOSEH2:GOSUB 60:REM ASK
120 TF A%="N" THEN STOP
136 GOTO 166: REM RETRY
GRAPHIC
Format: GRAPHIC CLR
Usage: Bitmap graphics: initialises the BASIC bitmap graphics system. It
clears the graphics memory and screen, and sets all parameters of
the graphics context to their default values.
Once the graphics system has been cleared, commands such as LINE,
PALETTE, PEN, SCNCLR, and SCREEN can be used to set graphics
system parameters.
Example: Using GRAPHIC:

163

HEADER

Format:

Usage:

Remarks:

108 REM GRAPHIC

118 GRAPHIC CLR : REM INITIALISE
126 SCREEN DEF 1,1,1,2 : REM 640 X 400 % 2
130 SCREEN OPEN 1 : REM OPEN IT

140 SCREEN SET 1,1 - REM VIEW IT

130 PALETTE 1,6,, 8,0 : REM BLACK

160 PALETTE 1,1,8,13,8 - REM GREEN

170 SCNCLR 6 : REM FILL SCREEN WITH BLACK

180 PEN 0,1 : REM SELECT PEN

199 LINE 50,58,390,350 : REM DRAW LINE

200 GETKEY ps : REM HAIT FOR KEYPRESS

216 SCREEN CLOSE 1 : REM CLOSE SCREEN AND RESTORE PALETTE

HEADER diskname [,1 id] [,D drive] [,U unit]
Formats a disk. This erases all data on the disk.
I The disk ID.

diskname is either a quoted string, e.g. "MT#" or a string expression
in brackets, e.g. (M§%). The maximum length of diskname is 16 char-
acters.

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units
such as the 1541, 1571, 0r 1581.

unit device number on the IEC bus. Typically in the range from 8 to
11 for disk units. If a variable is used, it must be placed in brackets.
The unit # defaults to 8.

HEADER is another name for the FORMAT command.

For new floppy disks which have not already been formatted in
MEGAG5 (1581) format, it is necessary to specify the disk ID with
the | parameter. This switches the format command to low level for-
mat, which writes sector IDs and erases all contents. This takes some
time, as every block on the floppy disk will be written.

If the | parameter is omitted, a quick format will be performed. This
is only possible if the disk has already been formatted as a MEGAS5
or 1581 floppy disk. A quick format writes the new disk name and
clears the block allocation map, marking all blocks as free. The disk
ID is not changed, and blocks are not overwritten, so contents may be
recovered with ERASE R. You can read more about ERASE on page
147.

164

Examples:

HELP

Format:

Usage:

Remarks:

Example:

HEXS

Format:

Returns:

Remarks:

Example:

Using HEADER

HEADER "ADVENTURE",IDK : FORMAT DISK WITH NAME ADVENTURE AND ID DK
HEADER "ZORK-I",U3 ~: FORMAT DISK IN UNIT 9 WITH NAME ZORK-I

HEADER "DUNGEON",D1,U16: FORMAT DISK IN DRIVE 1 UNIT 18 WITH NAME DUNGEON

HELP

Displays information about where an error occurred in a BASIC pro-
gram.

When the BASIC program stops due to an error, HELP can be used
to gain further information. The interpreted line is listed, with the
erroneous statement highlighted or underlined.

Displays BASIC errors. For errors related to disk I/O, the disk status
variable DS or the disk status string DS$ should be used instead.

Using HELP

10 #=1.E20
20 B=f+h:C=EXPCA):PRINT 4,8,C
RUN

20VERFLOW ERROR IN 20
READY,
HELP

20 B=f+h: (L6 PRINT 4,8,C

HEX$(numeric expression)
A four character hexadecimal representation of the argument.

The argument must be in the range of 0 - 65535, corresponding to
the hex numbers $0000-$FFFF.

If real numbers are used as arguments, the fractional part will be
ignored. In other words, real numbers will not be rounded.

Using HEXS:

165

PRINT HEX$(18),HERS(106), HEX$(1000.9)

BoeA 0064 038

HIGHLIGHT

Format:

Usage:

Remarks:

Example:

IF

Format:

Usage:

HIGHLIGHT colour [, mode]
Sets the colours used for code highlighting.

Different colours can be set for system messages, REM statements
and BASIC 65 keywords.

colour is one of the first 16 colours in the current palette. See ap-
pendix E on page 279 for the list of colours in the default system
palette.

mode indicates what the colour will be used for.
+ 0 system messages (the default mode)
* 1 REM statements
+ 2 BASIC keywords

The system messages colour is used when displaying error messages,
and in the output of CHANGE, FIND, and HELP. The colours for REM
statements and BASIC keywords are used by LIST.

Using HIGHLIGHT to change the colour of BASIC keywords to red.

,_
o
=

L0 WORLD ==

M =%k THIS IS HELLD WORLD #=
"HELLD WORLD"

1
2
R
H
R
L
1
H
R
]

IF expression THEN true clause [ELSE false clause]

Starts a conditional execution statement.

166

expression a logical or numeric expression. A numeric expression is
evaluated as FALSE if the value is zero and TRUE for any non-zero
value.

true clause one or more statements starting directly after THEN on
the same line. A line number after THEN performs a GOTO to that
line instead.

false clause one or more statements starting directly after ELSE on
the same line. A linenumber after ELSE performs a GOTO to that
line instead.

Remarks: The standard IF ... THEN ... ELSE structure is restricted to a single
line. But the true clause and false clause may be expanded to

several lines using a compound statement surrounded with BEGIN
and BEND.

Example: Using IF

1 REM IF

10 RED$=CHRS(28) : BLACKS=CHR3(144) : WHITES=CHRS(3)
20 INPUT "ENTER A NUMBER";U

30 IF UCB THEN PRINT REDS; : ELSE PRINT BLACKS;

40 PRINT U : REM PRINT NEGATIVE NUMBERS IN RED

30 PRINT WHITES

60 INPUT "END PROGRAM: (Y/N)"; A4
70 IF A$="Y" THEN END

80 IF A$="N" THEN 20 : ELSE 60

IMPORT

Format: IMPORT filename [,D drive] [,U unit]

Usage: Loads BASIC code in text format from a file of type SEQ into memory
reserved for BASIC programs.

filename the name of a file. Either a quoted string such as "MIf", or
a string expression in brackets such as (FI$).

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units
such as the 1541, 1571, 0r 1581.

unit device number on the IEC bus. Typically in the range from 8 to
11 for disk units. If a variable is used, it must be placed in brackets.
The unit # defaults to 8.

167

Remarks:

Examples:

INPUT

Format:

Usage:

Remarks:

Example:

The program is loaded into BASIC memory and converted from text
to the tokenised form of PRG files. This enables loading of BASIC
programs that were saved as plain text files as program listing.

After loading, the program is re-linked and ready to be RUN or
edited. It is possible to use IMPORT for merging a program text file
from disk to a program already in memory. Each line read from the
file is processed in the same way, as if typed from the user with the
screen editor.

There is no EXPORT counterpart, because this function is already
available. The sequence DIPEMH,"LISTING",H:CHD 1:LIST:DCLOSEHL converts the
program in memory to text and writes it to the file, that is named in
the DOPEN statement.

Using IMPORT

IMPORT "APOCALYPSE"
IMPORT "MEGA TOOLS",U3

IMPORT (FI$),UCUNX)

INPUT [prompt <, | ;>] variable [, variable ...]

Prompts the user for keyboard input, printing an optional prompt
string and question mark to the screen.

prompt optional string expression to be printed as the prompt

If the separator between prompt and variable list is a comma, the
cursor is placed directly after the prompt. If the separator is a semi-
colon, a question mark and a space is added to the prompt instead.

variable list list of one or more variables that receive the input

The input will be processed after the user presses .

The user must take care to enter the correct type of input, so it
matches the variable list types. Also, the number of input items
must match the number of variables. A surplus of input items will be
ignored, whereas too few input items trigger another request for in-
put with the prompt 1. Typing non numeric characters for integer or
real variables will produce a TYPE HISHATCH ERROR. Strings for string vari-
ables must be in double quotes (") if they contain spaces or commas.
Many programs that need a safe input routine use LINE INPUT and a
custom parser, in order to avoid program errors by wrong user input.

Using INPUT:

168

INPUT#

Format:

Usage:

Remarks:

10 DI K5(100),A7(106),55(168):

20 00

30 INPUT "NAME, AGE, GENDER";NA%,AGY,SES

40 IF NA$="" THEN 30

30 IF NA$="END" THEN EXIT

60 IF AGZ C 18 OR AGX > 108 THEN PRINT “AGE?":G0TO 38

70 IF SE% > "M" AND SE% {3 “F" THEN PRINT "GENDER?":GOTO 30
80 REM CHECK OK: ENTER INTO ARRAY

30 N5 CN)=NAS: A7 CN)=AGZ: 55 (N)=5E4: N=N+1

108 LOOP UNTIL N=100

118 PRINT “RECEIVED";N;" NAMES"

INPUT# channel, variable [, variable ...]

Reads a record from an input device, e.g. a disk file, and assigns the
data to the variables in the list.

channel number, which was given to a previous call to commands
such as DOPEN, or OPEN.

variable list list of one or more variables, that receive the input.

The input record must be terminated by a RETURN character and must
be not longer than the input buffer (160 characters).

The type and number of data in a record must match the variable
list. Reading non numeric characters for integer or real variables will
produce a FILE DATA ERROR. Strings for string variables have to be put in
quotes if they contain spaces or commas.

LINE INPUT# may be used to read a whole record into a single string
variable.

Sequential files, that can be read by INPUT# can be generated by
programs with PRINT# or with the editor of the MEGA65. For exam-

ple:
EDIT ON

16 "CHUCK PEDDLE",1337,"ENGINEER OF THE 6302"
20 "JACK TRAMIEL",1328,"FOUNDER OF CBM"

30 "BILL MENSCH",1943,"HARDWARE"

DSAVE “CBM-PEOPLE"
EDIT OFF

169

Example:

INSTR

Format:

Usage:

Using INPUT#:

10 DI N5(100),B7(106),55(100):

20 DOPEN#2,"CBH-PEOPLE":REM OPEN SEQ FILE
23 IF DS THEN PRINT D§$:STOP:REM OPEN ERROR
30 FOR 1=0 T0 180

40 INPUTHZ, N5CD),BACTD, 84(D)

30 IF ST AND 64 THEN 88:REM END OF FILE

60 IF DS THEN PRINT D§$:GOTO 88:REM DISK ERROR
70 NEXT I

80 DCLOSEH?

110 PRINT "“READ";I+1;" RECORDS"

120 FOR J=0 TO I:PRINT N$(J):NEXT J

RUN

READ 3 RECORDS
CHUCK PEDDLE
JACK TRAMIEL
BILL MENSCH

TYPE "CBM-PEOPLE"

"CHUCK PEDDLE",1937,"ENGINEER OF THE 6362"
"JACK TRAMIEL",1928,"FOUNDER OF CBM"

"BILL MENSCH",1343,"HARDHARE"

INSTR(haystack, needle [, start])

Locates the position of the string expression needle in the string ex-
pression haystack, and returns the index of the first occurrence, or
zero if there is no match.

The string expression haystack is searched for the occurrence of the
string expression needle.

An enhanced version of string search using pattern matching is used
if the first character of the search string is a pound sign '£’. The pound
sign is not part of the search but enables the use of the " (dot)
as a wildcard character, which matches any character. The second
special pattern character is the "*’ (asterisk) character. The asterisk
in the search string indicates that the preceding character may never
appear, appear once, or repeatedly in order to be considered as a
match.

170

Remarks:

Examples:

INT

Format:

Returns:

Remarks:

Examples:

JOY

Format:

Returns:

The optional argument start is an integer expression, which defines
the starting position for the search in haystack. If not present, it
defaults to one.

If either string is empty or there is no match the function returns zero.

Using INSTR:

INSTR("ABCDEF", "CD") SRENT =3
INSTRC"ABCDEF","¥Y") tREMT =10
INSTRC'RATTIN, "£A%IN") : REM I =3
INSTRC"ABCDEF","£C.E") : REM I =3
INSTR(A$4BS,C4)

I
I
I
I
I

INT(numeric expression)
The integer part of a number.

This function is NOT limited to the typical 16-bit integer range (-
32768 to 32767), as it uses real arithmetic. The allowed range is
therefore determined by the size of the real mantissa which is 32-
bits wide (-2147483648 to 2147483647).

It is not necessary to use the INT function for assigning real values to
integer variables, as this conversion will be done implicitly, but only
for the 16-bit range.

Using INT:

NT(1.9) REM R =1
NT(-3.1) REM R = -3

NT(100000.5) :REM X = 160600
% = INT(100006.5) :REM ?ILLEGAL QUANTITY ERROR

JOY(port)
The state of the joystick for the selected controller port (1 or 2).

Bit 7 contains the state of the fire button. The stick can be moved in
eight directions, which are numbered clockwise starting at the upper
position.

171

Example:

KEY

Format:

Usage:

Left | Centre | Right
Up| 8 1 2
Centre| 7 0 3
Down| 6 5 4

Using JOY:

10 N = Jov(h)

20 IF N AND 128 THEN PRINT "FIRE! “;

30 REM N NEE SES SHH N
40 ON N AND 15 GOSUB 160,200,300,400,500,600,700, 800
30 G0TO 16

100 PRINT "GO NORTH" :RETURN

200 PRINT "60 NORTHEAST":RETURN
300 PRINT "GO EAST" :RETURN
400 PRINT "GO SOUTHEAST":RETURN
300 PRINT "GO SOUTH" :RETURN
608 PRINT "GO SOUTHWEST":RETURN
700 PRINT "GO WEST" :RETURN
800 PRINT "GO NORTHHEST":RETURN

KEY

KEY <ON | OFF>

KEY <LOAD | SAVE> filename
KEY number, string

Manages the function key macros in the BASIC editor.

Each function key can be assigned a string that is typed when
pressed. The function keys have default assignments on boot, and
can be changed by the KEY command.

KEY : list current assignments.

KEY ON : switch on function key strings. The keys will send assigned
strings if pressed.

KEY OFF : switch off function key strings. The keys will send their
character code if pressed.

KEY LOAD filename : loads key definitions from file.
KEY SAVE filename : saves key definitions to file.

KEY number, string : assigns the string to the key with the given num-
ber.

number can be any value within this range:

172

* 1- 14: corresponds to keys ranging from m to m
+ 18: corresponds to ﬂ
+ 16: corresponds to

Default assignments:

KEY

KEY 1,CHRSC2T)+"R"

KEY 2, CHRS(27)+"2"

KEY 3,"DIR"+CHR$(13)

KEY 4,"DIR "+CHRS(34)+"%=PRG"+CHRS (34)+CHRS(13)
KEY S,HUJ"

KEY 6,"KEY6"+CHRS (141)

KEY 7,"2"

KEY 8,"MONITOR"+CHRS(13)

KEY slnun

KEY 16,"KEY10"+CHRS(141)

KEY 11,"("

KEY 12,"KEY12"+CHRS(141)

KEY 13,CHRSC2T)4"0"

KEY 14,"1"+CHRS(27)+"0"

KEY 13,"HELP"+CHRS(13)

KEY 16,"RUN "+CHR$(34)+"%"+CHR$(34)+CHRS(13)

Remarks: The sum of the lengths of all assigned strings must not exceed 240
characters. Special characters such as RETURN or QUOTE are en-
tered using their codes with the CHR$ function. Refer to CHR$ on
page 114 for more information.

Examples: Using KEY:

KEY ON :REM ENABLE FUNCTION KEYS
KEY OFF :REM DISABLE FUNCTION KEYS
KEY :REM LIST ASSIGNMENTS

KEY 2,"PRINT «"+CHR$(14) :REM ASSIGN PRINT PI T0 F2
KEY SAUE "MY KEY SET" :REM SAUE CURRENT DEFINITIONS TO FILE
KEY LOAD "ELEVEN-SET" :REM LOAD DEFINITIONS FROM FILE

LEFTS
Format: LEFTS(string, n)

Returns: A string containing the first n characters from the argument string.

173

Remarks:

Example:

LEN

Format:

Returns:

Remarks:

Example:

LET

Format:
Usage:

Remarks:

Examples:

If the length of string is equal to or less than n, the resulting string
will be identical to the argument string.

string a string expression
n a numeric expression (0 - 255)
Empty strings and zero length strings are legal values.

Using LEFTS:

PRINT LEFT$("HEGA-63",4)

HEGA

LEN(string)
The length of a string.
string a string expression

Commodore BASIC strings can contain any character, including the
null character. Internally, the length of a string is stored in a string
descriptor.

Using LEN:

PRINT LENC""MEGA-65"+CHR$(13))

8

[LET] variable = expression
Assigns values (or results of expressions) to variables.

The LET statement is obsolete and not required. Assignment to vari-
ables can be done without using LET, but it has been left in BASIC
65 for backwards compatibility.

Using LET:

LET #=3 :REM LONGER AND SLOWER

A=3 :REM SHORTER AND FASTER

174

LINE

Format:

Usage:

Example:

LINE xbeg, ybeg [, xnext1, ynext1 ...]
Bitmap graphics: draws a line or series of lines.
If only one coordinate pair is given, LINE draws a dot.

If more than one pair is defined, a line is drawn on the current graph-
ics screen from the coordinate (xbeg/ybeg) to the next coordinate

pair(s).

All currently defined modes and values of the graphics context are
used.

Using LINE:

1 REM SCREEN EXAMPLE 1

10 SCREEN 320,200,2 :REM SCREEN #0 320 X 200 &% 2

20 PEN 1 :REM DRAWING PEN COLOUR 1 CHHITE)

30 LINE 25,25,299,175 :REM DRAM LINE

40 GETKEY A$:REM WAIT FOR KEYPRESS

30 SCREEN CLOSE :REM CLOSE SCREEN AND RESTORE PALETTE

LINE INPUT

Format:

Usage:

LINE INPUT [prompt <, | ;>] string variable [, string variable ...]

Prompts the user for keyboard input, printing an optional prompt
string and question mark to the screen.

prompt optional string expression to be printed as the prompt

If the separator between prompt and the first string variable is a
comma, the cursor is placed directly after the prompt. If the sepa-
rator is a semicolon, a question mark and a space is added to the
prompt instead.

string variable one or more string variables that accept one line of
input each

175

Remarks:

Example:

This differs from INPUT in how the input is parsed. LINE INPUT ac-
cepts every character entered on a line as a single string value. Only

the key does not produce a character.

If the variable list has more than one variable, LINE INPUT will use
the entire first line for the first variable, and present the 7?7 prompt
for each subsequent variable.

LINE INPUT only works with string variables. If a non-string variable
is used, LINE INPUT throws produces a TYPE HISHTCH ERROR after data has
been entered.

Using LINE INPUT:

10 LINE INPUT "ENTER A PHRASE: “,PH$
20 PRINT "THE PHRASE YOU ENTERED:";CHR$(13);" ";PH$
RUN

ENTER A PHRASE: YOU SAY "POTATO," I SA¥ "“POTATO."
THE PHRASE YOU ENTERED:
Y0U $AY "POTATO," I SAY "POTATO."

LINE INPUT#

Format:

Usage:

Remarks:

Example:

LINE INPUT# channel, variable [, variable ...]

Reads one record per variable from an input device, (such as a disk
drive) and assigns the read data to the variable.

The records must be terminated by a RETURN character, which will
not be copied to the string variable. Therefore, an empty line consist-
ing of only the RETURN character will result in an empty string being
assigned.

channel number, which was given to a previous call to commands
such as DOPEN, or OPEN.

variable list list of one or more variables, that receive the input.

Only string variables or string array elements can be used in the vari-
able list. Unlike other INPUT commands, LINE INPUT# does not inter-
pret or remove quote characters in the input. They are accepted as
data, as all other characters.

Records must not be longer than the input buffer, which is 160 char-
acters.

Using LINE INPUT#:

176

LIST

Format:

Usage:

Format:
Usage:

Remarks:

Examples:

10 DI N5(106)

20 DOPENH2, "DATR"

30 FOR 1=6 T0 180

40 LINE INPUTH2,N$(I)

30 IF §7=64 THEN 86:REM END OF FILE

60 IF DS THEN PRINT D5$:GOTO 88:REM DISK ERROR
70 NEXT I

80 DCLOSEH?

110 PRINT "READ";I;" RECORDS"

LIST [P] [line range]
Lists a range of lines from the BASIC program in memory.
Given a single line number, LIST lists that line.

Given a range of line numbers, LIST lists all lines in that range. A
range can be two numbers separated by a hyphen (-), or it can omit
the beginning or end of the range to imply the beginning or end of
the program. (See examples below.)

LIST [P] filename [,U unit]
Lists a range of lines from a BASIC program directly from a file.

The optional parameter P enables page mode. After listing a screen-
ful of lines, the listing will stop and display the prompt [HIRE] at the
bottom of the screen. Pressing Q quits page mode, while any other
key continues to the next page.

LIST output can be redirected to other devices via CMD.

Another way to display a program listing from memory on the screen

is to use the keys m and m, or n and ,

to scroll a BASIC listing on screen up or down.

Using LIST

LIST 106 :REM LIST LINE 100
LIST 240-336 :REM LIST ALL LINES FROM 240 TO 330
LIST 568- :REM LIST FROM 500 TO END

LIST -70 :REM LIST FROM START TO 78

LIST “DEMO" :REM LIST FILE "DEMD"

LIST P :REM LIST PROGRAM IN PAGE MODE
LIST P "MURK" :REM LIST FILE "MURK" IN PAGE MODE

177

LOAD

Format:

Usage:

Remarks:

LOAD filename [, unit [, flag]]
LOAD "$[pattern=type]” [, unit]
LOAD "3[pattern=type]” [, unit]
/ filename [, unit [, flag]]

The first form loads a file of type PRG into memory reserved for BASIC
programs.

The second form loads a directory into memory, which can then be
viewed with LIST. It is structured like a BASIC program, but file sizes
are displayed instead of line numbers.

The third form is similar to the second one, but the files are numbered.
This listing can be scrolled like a BASIC program with the keys m

or m, edited, listed, saved or printed.

A filter can be applied by specifying a pattern or a pattern and
a type. The asterisk matches the rest of the name, while the ?
matches any single character. The type specifier can be a character
of (P,S,U,R), that is Program, Sequential, User, or Relative file.

A common use of the shortcut symbol / is to quickly load PRG files.
To do this:

1. Print a disk directory using either DIR, or CATALOG.

2. Move the cursor to the desired line.

3. type [/ in the first column of the line, and press ,

RETURN

After pressing , the listed file on the line with the leading / will

be loaded. Characters before and after the file name double quotes
(") will be ignored. This applies to PRG files only.

filename is either a quoted string, e.g. "PRIE", or a string expression.

The unit number is optional. If not present, the default disk device is
assumed.

If flag has a non-zero value, the file is loaded to the address which
is read from the first two bytes of the file. Otherwise, it is loaded to
the start of BASIC memory and the load address in the file is ignored.

LOAD loads files of type PRG into RAM bank 0, which is also used for
BASIC program source.

LOAD "*” can be used to load the first PRG from the given unit.

LOAD "“$" can be be used to load the list of files from the given unit.
When using LOAD 8", LIST can be used to print the listing to screen.

178

LOAD is implemented in BASIC 65 to keep it backwards compatible
with BASIC V2.

The shortcut symbol / can only be used in direct mode.

By default the C64 uses unit 1, which is assigned to datasette tape
recorders connected to the cassette port. However the MEGA&S
uses unit 8 by default, which is assigned to the internal disk drive.
This means you don't need to add ,8 to LOAD commands that use it.

Examples: Using LOAD

LOAD "APOCALYPSE" :REM LOAD A FILE CALLED APOCALYPSE TO BASIC MEMORY
LOAD "MEGA TOOLS",9 :REM LOAD A FILE CALLED "MEGA TOOLS" FROM UNIT 3 TO BASIC MEMORY
LOAD "x",8,1 :LOAD THE FIRST FILE ON UNIT § TO RAM AS SPECIFIED IN THE FILE

LoAD "s" :REM LOAD WHOLE DIRECTORY - WITH FILE SIZES
LOAD "44" :REM LOAD WHOLE DIRECTORY - SCROLLABLE
LOAD "§4xx=P" :REM DIRECTORY, WITH PRG FILES STARTING with ‘X’

LOADIFF

Format: LOADIFF filename [,D drive] [,U unit]
Usage: Bitmap graphics: loads an IFF file into graphics memory.

The IFF (Interchange File Format) is supported by many different ap-
plications and operating systems. LOADIFF assumes that files con-
tain bitplane graphics which match the currently active graphics
screen for resolution and colour depth.

Supported resolutions are:

Width [Height | Bitplanes [Colours [Memory
320 200 |max. 8 max. 256 |max. 64 K
640 200 |max. 8 max. 256 |max. 128 K
320 400 |max. 8 max. 256 |max. 128 K
640 400 |max. 4 max. 16 |[max. 128 K

filename the name of a file. Either a quoted string such as "MT#", or
a string expression in brackets such as (FI$).

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units
such as the 1541, 1571, 0r 1581.

unit device number on the IEC bus. Typically in the range from 8 to
11 for disk units. If a variable is used, it must be placed in brackets.
The unit # defaults to 8.

179

Remarks:

Example:

LOCK

Format:

Usage:

Remarks:

Tools are available to convert popular image formats to IFF. These
tools are available on several operating systems, such as AMIGA OS,
macOS, Linux, and Windows. For example, ImageMagick is a free
graphics package that includes a tool called convert, which can be
used to create IFF files in conjunction with the ppmtoilbm tool from
the Netbpm package.

To use convert and ppmtoilbm for converting a JPG file to an IFF
file on Linux:

convert <myImage.jpg> <myImage.ppm>
ppmtoilbm -aga <myImage.ppm> > <myImage.iff>

Using LOADIFF

106 BANK128:SCNCLR

110 REM DISPLAY PICTURES IN 320 % 260 X 7 RESOLUTION

128 GRAPHIC CLR:SCREEN DEF @,0,6,7:SCREEN OPEN 0:SCREEN SET 9,0
130 FORI=ATOT: READF$

140 LOADIFF(F$+", IFF"):SLEEP 4:NEXT

130 DATA ALIEN,BEAKER, JOKER, PICARD, PULP, TROOPER, RIPLEY
168 SCREEN CLOSE 9

178 PALETTE RESTORE

LOCK filename/pattern [,D drive] [,U unit]
Locks a file on disk, preventing it from being updated or deleted.

The specified file or a set of files, that matches the pattern, is
locked and cannot be deleted with the commands DELETE, ERASE or
SCRATCH.

The command UNLOCK removes the lock.

filename the name of a file. Either a quoted string such as "MIf", or
a string expression in brackets such as (FI$).

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units
such as the 1541, 1571, 0r 1581.

unit device number on the IEC bus. Typically in the range from 8 to
11 for disk units. If a variable is used, it must be placed in brackets.
The unit # defaults to 8.

In direct mode the number of locked files is printed. The second to
last number from the message contains the number of locked files,

180

Examples: Using LOCK

LOCK "DRM",U3 :REM LOCK FILE DRM ON UNIT 3
83,FILES LOCKED, 61,00

LOCK "BS¥" :REM LOCK ALL FILES BEGINNING WITH "BS"
83,FILES LOCKED, 04,00

LOG
Format: LOG(numeric expression)
Returns: The natural logarithm of a number.

The natural logarithm uses Euler's number (2.71828183) as base,
not base 10 which is typically used in log functions on a pocket cal-
culator.

Remarks: The log function with base 10 can be computed by dividing the result
by log(10). LOG10() provides this feature as a function.

Example: Using LOG

PRINT LOB(1)
B

PRINT LOG(B)
?ILLEGAL QUANTITY ERROR

PRINT LOG(4)
1,38629436

PRINT LOG(168) / LOG(16)

2

LOG10
Format: LOG 10(numeric expression)
Returns: The decimal logarithm of the argument.

The decimal logarithm uses 10 as base.

Example: Using LOG10

181

PRINT LOG1B(1)
]

PRINT LOG16(B)
?ILLEGAL QUANTITY ERROR

PRINT LOGIB(S)
8.69897

PRINT LOG10(180);L0610¢(16);L0610¢1);L0610¢D.1);L0618(D.01)
210-1-2

LOOP

Format: DO ... LOOP
DO [<UNTIL | WHILE> logical expression]
. . . statements [EXIT]
LOOP [<UNTIL | WHILE> logical expression]

Usage: DO and LOOP define the start of a BASIC loop. Using DO and LOOP
alone without any modifiers creates an infinite loop, which can only
be exited by the EXIT statement. The loop can be controlled by
adding UNTIL or WHILE after the DO or LOOP.

Remarks: DO loops may be nested. An EXIT statement only exits the current
loop.

Examples: Using DO and LOOP

16 PHg="":D0
20 GET A%:PHs=PHs+AS
30 LOOP UNTIL LENCPHS)YT OR AS=CHR$(13)

16 D0 : REM WAIT FOR USER DECISION
20 BET A$
30 LOOP UNTIL A$="Y" OR A$="N" OR AS="y" OR AS="n"

10 D0 WHILE ABSCEPS) » 0.601
20 GOSUB 2080 : REM ITERATION SUBROUTINE
30 LooP

16 17=0 : REM INTEGER LOOP 1-160
20 00 [¥=I4H
30 LOOP WHILE Ik < 101

182

LPEN

Format:

Returns:

Remarks:

Example:

MEM

Format:

Usage:

Remarks:

LPEN(coordinate)
The state of a light pen peripheral.

This function requires the use of a CRT monitor (or TV), and a light
pen. It will not work with an LCD or LED screen. The light pen must
be connected to port 1.

LPEN(O) returns the X position of the light pen, the range is 60 - 320.
LPEN(1) returns the Y position of the light pen, the range is 50 - 250.

The X resolution is two pixels, therefore LPEN(O) only returns even
numbers. A bright background colour is needed to trigger the light
pen. The COLLISION statement may be used to enable an interrupt
handler.

Using LPEN

PRINT LPENCB),LPENC1) ~ :REM PRINT LIGHT PEN COORDINATES

MEM mask4,mask5

Reserves memory in banks 4 or 5 such that the bitmap graphics sys-
tem will not use it.

mask4 and mask$5 are byte values, that are interpreted as mask of
8 bits. Each bit set to 1 reserves an 8K segment of memory in bank
4 for the first argument and in bank 5 for the second argument.

=
ct

memory segment
$0000 - $1FFF
$2000 - $3FFF
$4000 - $5FFF
$6000 - $7FFF
$8000 - $9FFF
$A000 - $BFFF
$CO00 - $DFFF
$E000 - $FFFF

~NOoO Ok W N - OT

After reserving memory with MEM the graphics library will not use
the reserved areas, so it can be used for other purposes. Access to
bank 4 and 5 is possible with the commands PEEK, WPEEK, POKE,
WPOKE and EDMA.

183

Example:

MERGE

Format:

Usage:

Remarks:

Example:

If a graphics screen cannot be opened, because the remaining mem-
ory is not sufficient, the program stops with a 00T OF HEHIRY ERROR.

Some direct mode commands like RENUMBER use memory in banks
4 and 5 and do not honour MEM reservations. Such reservations are
only guaranteed during program execution.

Using MEM

10 MEM 1,3 :REM RESERVE 440008 - S41FFF AND $50800 - $33FFF
20 SCREEN 320,206 :REM SCREEN WILL NOT USE RESERVED SEGMENTS

40 EDMA 3,52000,0,54000:REM FILL SEGHENT WITH ZEROES

MERGE filename [,D drive] [,U unit]

Loads a BASIC program file from disk and appends it to the program
in memory.

filename the name of a file. Either a quoted string such as "MT#", or
a string expression in brackets such as (FI$).

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units
such as the 1541, 1571, 0r 1581.

unit device number on the IEC bus. Typically in the range from 8 to
11 for disk units. If a variable is used, it must be placed in brackets.
The unit # defaults to 8.

The load address that is stored in the first two bytes of the file is
ignored. The loaded program does not replace a program in mem-
ory (which is what DLOAD does), but is appended to a program in
memory. After loading, the program is re-linked and ready to run or
edit.

It is the user’s responsibility to ensure that there are no line number
conflicts among the program in memory and the merged program.
The first line number of the merged program must be greater than
the last line number of the program in memory.

Using MERGE

DLOAD "MAIN PROGRAM"

MERGE "LIBRARY"

184

MIDS

Format:

Usage:

Remarks:

Example:

MKDIR

Format:

Usage:

MIDS(string, index, n)
MIDS(string variable, index, n) = string expression

As a function, the substring of a string. As a statement, replaces a
substring of a string variable with another string.

string a string expression.

index start index (1 - 255).

n length of sub-string (0 - 255).

Empty strings and zero lengths are legal values.

Using MIDS:

10 A% = "MEGA-63"

20 PRINT HIDS(AS,3,4)
30 MID§(AS,35,1) = "+"
40 PRINT @S

RUN
GA-6
HEGA+63

MKDIR dirname ,L size [,U unit]
Makes (creates) a subdirectory on a floppy or D81 disk image.

dirname the name of a directory. Either a quoted string such as
"SOMEDIR", or a string expression in brackets such as (0R$).

MKDIR can only be used on units managed by CBDOS. These are
the internal floppy disk drive and SD-Card images of D81 type. The
command cannot be used on external drives connected to the serial
[EC bus.

The size parameter specifies the number of tracks, to be reserved
for the subdirectory, with one track = 40 sectors at 256 byte. The
first track of the reserved range is used as directory track for the
subdirectory.

The minimum size is 3 tracks, the maximm 38 tracks. There must be a
contiguous region of empty tracks on the floppy (D8 1 image), that is
large enough for the creation of the subdirectory. The error message
DISK FULL is reported if there isn't such a region.

185

Several subdirectories may be created as long as there are enough
empty tracks.

After successful creation of the subdirectory an automatic
CHDIR into this subdirectory is performed.

CHDIR " /" changes back to the root directory.
Examples: Using MKDIR

MKDIR "SUBDIR",L5 :REM MAKE SUBDIRECTORY WITH 5 TRACKS
DIR
[l"SUBDIR "D

168 BLOCKS FREE.

MOD
Format: MOD(dividend, divisor)

Returns: The remainder of a division operation.

Remarks: In other programming languages such as C, this function is imple-
mented as an operator (%). In BASIC 45 it is implemented as a func-
tion.

Example: Using MOD:

FOR T =0 T0 8: PRINT MODCI, 4);: NEXT I

B1230123°%8

MONITOR
Format: MONITOR

Usage: Invokes the machine language monitor.

Remarks: Using the MONITOR requires knowledge of the CSG4510 / 6502 /
6510 CPU, the assembly language they use, and their architectures.
More information on the MONITOR is available in the MEGA65
Book.

To exit the monitor press X.
Help text can be displayed with either ? or H.
Example: Using MONITOR

186

HONITOR

FILL
HUNT - § RO RING OR BYTES)
o[INIT [ADDRESS 1]

LENAME UNIT FRON 10
LENAME [UNIT [A

MOUNT

Format: MOUNT filename [,U unit]

Usage: Mounts a floppy image file of type D81 from SD-Card to unit 8 (de-
fault) or unit 9.

If no argument is given, MOUNT assigns the real floppy drive of the
MEGAG5 to unit 8.

filename the name of a file. Either a quoted string such as "MT#", or
a string expression in brackets such as (FI%).

unit device number on the IEC bus. Typically in the range from 8 to
11 for disk units. If a variable is used, it must be placed in brackets.
The unit # defaults to 8.

Remarks: MOUNT can be used either in direct mode or in a program. It
searches the file on the SD-card and mounts it, as requested, on
unit 8 or 9. After mounting the floppy image can be used as usual
with all DOS commands.

Examples: Using MOUNT

HOUNT “APOCALYPSE.D81" ;REM MOUNT IMAGE TO UNIT §
HOUNT “BASIC.D81",U3 :REM MOUNT IMAGE TO UNIT 9

HOUNT CFI4), UCUNZ) :REM HOUNT HITH VARIABLE ARGUMENTS
HOUNT :REM SELECT REAL FLOPPY DRIVE

187

MOUSE

Format:

Usage:

Remarks:

Examples:

MOUSE ON [{, port, sprite, pos}]
MOUSE OFF

Enables the mouse driver and connects the mouse at the specified
port with the mouse pointer sprite.

port mouse port 1, 2 (default) or 3 (both).
sprite sprite number for mouse pointer (default 0).
pos initial mouse position (x,y).

MOUSE OFF disables the mouse driver and frees the associated
sprite.

The "hot spot” of the mouse pointer is the upper left pixel of the sprite.

When the system boots, sprite 0 is initialised to a picture of a mouse
pointer.

Use RMOUSE() to test the location and button status of the mouse.
Using MOUSE:

REM LOAD DATA INTO SPRITE #0 BEFORE USING IT

HOUSE O, 1 :REM ENABLE MOUSE WITH SPRITE Ho
MOUSE OFF :REM DISABLE MOUSE

MOVSPR

Format:

Usage:

MOVSPR number, position
Moves a sprite to a location on screen.

Each pesition argument consists of two 16-bit values, which specify
either an absolute coordinate, a relative coordinate, an angle, or a
speed. The value type is determined by a prefix:

+ +value relative coordinate: positive offset.

+ -value relative coordinate: negative offset.

* #value speed.
If no prefix is given, the absolute coordinate or angle is used.
Therefore, the position argument can be used to either:

« set the sprite to an absolute position on screen.

+ specify a displacement relative from the current position.

188

Format:

Usage:

Remarks:

Example:

« trigger a relative movement from a specified position.

+ describe movement with an angle and speed starting from the
current position.

MOVSPR number, position is used to set the sprite immediately to
the position or, in the case of an angle#speed argument, describe
its further movement.

MOVSPR number, start-position TO end-position, speed

Places the sprite at the start position, defines the destination posi-
tion, and the speed of movement.

The sprite is placed at the start position, and will move in a straight
line to the destination at the given speed. Coordinates must be ab-
solute or relative. The movement is controlled by the BASIC interrupt
handler and happens concurrently with the program execution.

number sprite number (0 - 7).

position x,y | xrel,y | x,yrel | xrel,yrel | angle#speed.
x absolute screen coordinate pixel.

y absolute screen coordinate pixel.

xrel relative screen coordinate pixel.

yrel relative screen coordinate pixel.

angle compass direction for sprite movement [degrees]. 0: up, 90:
right, 180: down, 270: left, 45 upper right, etc.

speed speed of movement, configured as a floating point number in
the range of 0.0 - 127.0, in pixels per frame. PAL has 50 frames per
second whereas NTSC has 60 frames per second. A speed value of
1.0 will move the sprite 50 pixels per second in PAL mode.

The "hot spot” is the upper left pixel of the sprite.
Using MOVSPR:

108 CLR:SCNCLR:SPRITECLR

118 BLOAD “DEMOSPRITESL",BB,P1336
130 FORT=0T07: C=I+1:5P=0.07T%(I+)
148 MOUSPRI, 168,120

145 MOUSPRI, 45%IH5P

158 SPRITEL,L,C,,0,0

168 NEXT

170 SLEEP 3

180 FORI=0T07:HOUSPR I,0H0:NEXT

189

NEW

Format:

Usage:

Examples:

NEXT

Format:

Usage:

NEW
NEW RESTORE

Erases the BASIC program in memory, and resets all BASIC parame-
ters to their default values.

Since NEW resets parameters and pointers, (but does not overwrite
the address range of a BASIC program that was in memory), it is
possible to recover the program. If there were no LOAD operations,
or editing performed after NEW, the program can be restored with
the NEW RESTORE.

Using NEW:

NEW :REM RESET BASIC

NEW RESTORE :REM TRY TO RECOVER NEW'ED PROGRAM

FOR index = start TO end [STEP step] ... NEXT [index]

Marks the end of the BASIC loop associated with the given index
variable. When a BASIC loop is declared with FOR, it must end with
NEXT.

190

Remarks:

Example:

NOT

Format:

Usage:

Remarks:

Examples:

The index variable may be incremented or decremented by a con-
stant value step on each iteration. The default is to increment the
variable by 1. The index variable must be a real variable.

start value to initialise the index with.

end is checked at the end of an iteration, and determines whether
another iteration will be performed, or if the loop will exit.

step defines the change applied to to the index variable at the end
of every iteration. Positive step values increment it, while negative
values decrement it. It defaults to 1.0 if not specified.

The index variable after NEXT is optional. If it is omitted, the variable
for the current loop is assumed. Several consecutive NEXT state-
ments may be combined by specifying the indexes in a comma sep-
arated list. The statements NEXT I:NEXT J:NEXT K and NEXT 1,1,k are equivalent.

Using NEXT

10 FOR D=0 TO 360 STEP 30
0R=D%d/180

30 PRINT D;R;SINCR);COSCR); TANCR)
40 NEXT D

10 DI H(20,20)

20 FOR 1=0 T0 20

30 FOR J=1 T0 20

40 MCLLD) = 1+ 100 %]
30 NEXT J,1

NOT operand
Performs a bit-wise logical NOT operation on a 16-bit value.

Integer operands are used as they are, whereas real operands are
converted to a signed 16-bit integer (losing precision). Logical
operands are converted to a 16-bit integer, using $FFFF (decimal
-1) for TRUE, and $0000 (decimal 0) for FALSE.

Expression | Result
NOT B 1
NOT & B

The result is of type integer.
Using NOT

191

OFF

Format:

Usage:

Remarks:

Examples:

ON

Format:

Usage:

PRINT NOT 3
-4

PRINT NOT 64
-63

In most cases, NOT is used in IF statements.

OK=C 206 AND C 2= B

IF (NOT OK) THEN PRINT "NOT A BYTE VALUE"

keyword OFF

OFF is a secondary keyword used in combination with primary key-
words, such as KEY and MOUSE.

OFF cannot be used on its own.
Using OFF

KEY OFF :REM DISABLE FUNCTION KEY STRINGS

MOUSE OFF :REM DISABLE MOUSE DRIVER

ON expression GOSUB line number [, line number ...]
ON expression GOTO line number [, line number ...]
keyword ON

Performs GOSUB or GOTO to a line number selected by a number
expression.

Depending on the result of the expression, the target for GOSUB and
GOTO is chosen from the table of line addresses at the end of the
statement.

When used as a secondary keyword, ON is used in combination with
primary keywords, such as KEY and MOUSE.

expression is a positive numeric value. Real values are converted to
integer (losing precision). Logical operands are converted to a 16-
bit integer, using $FFFF (decimal - 1) for TRUE, and $0000 (decimal
0) for FALSE.

192

Remarks:

Example:

OPEN

Format:

Usage:

Negative values for expression will stop the program with an error
message. The line number list specifies the targets for values of 1,
2, 3, etc.

An expression result of zero, or a result that is greater than the num-
ber of target lines will not do anything, and the program will continue
execution with the next statement.

Using ON

20 KEY ON :REM ENABLE FUNCTION KEY STRINGS

30 HOUSE ON :REM ENABLE MOUSE DRIVER

40 N = JOYCL):IF N AND 128 THEN PRINT "FIRE! ;

60 REM N NEE SES SHH M
70 ON N AND 15 GOSUB 160,200,300,400,500, 608,700,800
80 60T0 46

160 PRINT "GO NORTH" :RETURN

200 PRINT "GO NORTHEAST":RETURN
300 PRINT "GO EAST" :RETURN
400 PRINT "GO SOUTHEAST":RETURN
300 PRINT "GO SOUTH" :RETURN
609 PRINT "GO SOUTHWEST":RETURN
700 PRINT "GO WEST" :RETURN
800 PRINT "GO NORTHHEST":RETURN

OPEN channel, first address [, secondary address |, filename]]
Opens an input/output channel for a device.
channel number, where:

* 1 <= channel <= 127 line terminator is CR.

* 128 <= channel <= 255 line terminator is CR LF.

first address device number. For IEC devices the unit number is the
primary address. Following primary address values are possible:

Unit | Device

0 | Keyboard

1| System Default

2 |RS232 Serial Connection
3

7

1

Screen
IEC Printer and Plotter
IEC Disk Drives

193

Remarks:

Example:

OR

Format:

Usage:

Remarks:

Example:

The secondary address has some reserved values for IEC disk units,
0: load, 1: save, 15: command channel. The values 2 - 14 may be
used for disk files.

filename is either a quoted string, e.g. "MTi" or a string expression.
The syntax is different to DOPEN#, since the filename for OPEN in-
cludes all file attributes, for example: "8:D4TA, 5, K"

For IEC disk units the usage of DOPEN# is recommended.

If the first character of the filename is an at sign 'e’, it is interpreted
as a "save and replace” operation. It is not recommended to use
this option on 1541 and 1571 drives, as they contain a "save and
replace bug” in their DOS.

Using OPEN

OPEN 4,4 :REH OPEN PRINTER
CHD 4 :REM REDIRECT STANDARD OUTPUT TO 4
LIST :REM PRINT LISTING ON PRINTER DEVICE 4

OPEN 3,8,3,"0:USER FILE,U"
OPEN 2,9,2,"0:DATA, §, W'

operand OR operand
Performs a bit-wise logical OR operation on two 16-bit values.

Integer operands are used as they are. Real operands are converted
to a signed 16-bit integer (losing precision). Logical operands are
converted to a 16-bit integer using $FFFF (decimal - 1) for TRUE, and
$0000 (decimal 0), for FALSE.

Expression | Result
00RO]
0ORr1 1
10R 0 1
10R1 1

The result is of type integer. If the result is used in a logical context,
the value of 0 is regarded as FALSE, and all other non-zero values
are regarded as TRUE.

Using OR

194

PAINT

Format:

Usage:

Example:

PRINT 1 OR 3
3

PRINT 128 OR 64
192

In most cases, OR is used in IF statements.

IF (C € 6 0R C>255) THEN PRINT "NOT # BYTE VALUE"

PAINT x, y, mode [, region border colour]

Bitmap graphics: performs a flood fill of an enclosed graphics area
using the current pen colour.

x, y is a coordinate pair, which must lie inside the area to be painted.
mode specifies the paint mode:

+ 0 The colour of pixel (x,y) defines the colour, which is replaced
by the pen colour.

* 1 The region border colour defines the region to be painted
with the pen colour.

* 2 Paint the region connected to pixel (xy).
region border colour defines the colour index for mode 1.

Using PAINT

10 SCREEN 320,260,2 :REM OPEN SCREEN

20 PALETTE 8,1,10,15,18 :REM COLOUR 1 TO LIGHT GREEN

30 PEN 1 :REM SET DRAWING PEN CPEN 8) TO LIGHT GREEN (1)
40 LINE 160,0,240,100 :REM 15T. LINE

30 LINE 240,100,80,100 :REM 2HD. LINE

60 LINE 86,168,168,0 :REM 3RD. LINE

70 PAINT 166,10 :REM FILL TRIANGLE WITH PEN COLOUR
80 GETKEY AR :REM WAIT FOR KEY

30 SCREEN CLOSE :REM END GRAPHICS

195

PALETTE

Format: PALETTE screen, colour, red, green, blue
PALETTE COLOR colour, red, green, blue
PALETTE RESTORE

Usage: PALETTE can be used to change an entry of the system colour
palette, or the palette of a screen.
PALETTE RESTORE resets the system palette to the default values.

screen screen number (0 - 3).
COLOR keyword for changing system palette.

colour index to palette entry (0 - 255). PALETTE can define colours
beyond the default system palette entries 0 - 3 1.

red red intensity (0 - 15).

green green intensity (0 - 15).

blue blue intensity (0 - 15).
Example: Using PALETTE

10 REM CHANGE SYSTEM COLOUR INDEX
20 REM --- INDER 9 (BROMN) TO (DARK BLUE)
30 PALETTE COLOR 9,8,8,7

10 GRAPHIC CLR :REM INITIALISE

20 SCREEN DEF 1,0,0,2 :REM 320 ¥ 200

30 SCREEN OPEN 1 :REM OPEN

40 SCREEN SET 1,1 :REM MAKE SCREEN ACTIVE

30 PALETTE 1,8, 8, 6, 8 :REM @ = BLACK

60 PALETTE 1,4, 15, 6, 8 :REM 1 = RED

70 PALETTE 1,2, 0, 0,15 :REM 2 = BLUE

80 PALETTE 1,3, 0,15, 8 :REM 3 = GREEN

30 PEN 2 :REM SET DRAWING PEN (PEN 8) TO BLUE (2)
160 LINE 166,8,240,100 :REM 15T, LINE

116 LINE 248,106,80,168 :REM 2ND. LINE

120 LINE 86,100,160,0 :REM 3RD. LINE

136 PAINT 166,16,0,2 :REM FILL TRIANGLE WITH BLUE (2)
140 GETKEY K5 :REM WAIT FOR KEY

130 SCREEN CLOSE 1 :REM END GRAPHICS

PASTE
Format: PASTE x, y, width, height

196

Usage:

Remarks:

Example:

PEEK

Format:

Returns:

Bitmap graphics: pastes the content of the CUT / GCOPY buffer
onto the screen. The arguments upper left position x, y and the width
and height specify the paste position on the screen.

The size of the rectangle is limited by the 1K size of the buffer. The
memory requirement for region is width * height * number of bit-
planes / 8. It must not equal or exceed 1024 byte. For a 4-bitplane
screen for example, a 45 x 45 region needs 1012.5 byte.

Using PASTE

10 SCREEN 320,200,2

20 BOX 60,60,300,180,1 :REM DRAH A WHITE BOX

30 PEN 2 :REM SELECT RED PEN

40 CUT 140,80,40,40 :REM CUT OUT £ 40 * 40 REGION
30 PASTE 10,18,40,40 :REM PASTE IT TO NEW POSITION
60 GETKEY A$:REM WAIT FOR KEYPRESS

70 SCREEN CLOSE

PEEK(address)

The byte value stored in memory at address, as an unsigned 8-bit
number.

If the address is in the range of $0000 to $FFFF (0 - 65535), the
memory bank set by BANK is used.

Addresses greater than or equal to $10000 (decimal 65536) are
assumed to be flat memory addresses and used as such, ignoring
the BANK setting.

197

Remarks:

Example:

PEN

Format:

Usage:

Remarks:

Example:

Banks 0 - 127 give access to RAM or ROM banks. Banks greater than
127 are used to access |/O, and the underlying system hardware
such as the VIC, SID, FDC, etc.

Using PEEK

10 BANK 128 :REM SELECT SYSTEM BANK
20 L = PEEK(502F8) :REM USR JUMP TARGET LOW
30 H = PEEK(502F9) :REM USR JUMP TARGET HIGH

0T=L1+206*H :REM 16-BIT JUMP ADDRESS
30 PRINT "USR FUNCTION CALLS ADDRESS";T

PEN [pen,] colour

Bitmap graphics: sets the colour of the graphic pen for the current
screen.

pen pen number (0 - 2):
+ 0 drawing pen (default, if only single parameter provided).
* 1 off bits in jam2 mode.
* 2 currently unused.

colour palette index, from the palette of the current screen

See appendix E on page 279 for the list of colours in the default
system palette.

The colour selected by PEN will be used by all graphic/drawing com-
mands that follow it. If you intend to set the drawing pen 0 to a
colour, you can omit the first parameter, and only provide the colour
parameter.

Using PEN

198

PIXEL

Format:

Returns:

PLAY

Format:

Usage:

10 GRAPHIC CLR :REM INITIALISE

20 SCREEN DEF 1,0,6,2 :REH 320 ¥ 200

30 SCREEN OPEN 1 :REH OPEN

40 SCREEN SET 1,1 :REM MAKE SCREEN ACTIVE

30 PALETTE 1,8, 6, 0, 8 :REM 0 = BLACK

60 PALETTE 1,4, 15, 0, @ :REM 1 = RED

70 PALETTE 1,2, 6, 0,15 :REM 2 = BLUE

80 PALETTE 1,3, 6,15, 8 :REM 3 = GREEN

90 PEN 1 :REM SET DRAWING PEN (PEN B) TO RED (1)
100 LINE 160,8,240,100 :REM DRAW RED LINE

118 PEN 2 :REM SET DRAWING PEN (PEN 8) TO BLUE (2)
120 LINE 248,100,80,100 :REM DRAW BLUE LINE

138 PEN 3 :REM SET DRAWING PEN (PEN 6) TO GREEN (3)
148 LINE 86,100,166,0 :REM DRAH GREEN LINE

150 GETKEY K5 :REM WAIT FOR KEY

160 SCREEN CLOSE 1 :REM END GRAPHICS

PIXEL(x, y)
Bitmap graphics: the colour of a pixel at the given position.
x absolute screen coordinate.

y absolute screen coordinate.

PLAY [{string 1, string2, string3, string4, string5, stringé}]

Starts playing a sequence of musical notes, or stops a currently play-
ing sequence.

PLAY without any arguments will cause all voices to be silenced, and
all of the music system’s variables to be reset (such as TEMPO).

PLAY accepts up to six comma-separated string arguments, where
each string describes the sequence of notes and directives to be
played on a specific voice on the two available SID chips, allowing
for up to 6-channel polyphony.

PLAY uses SID1 (for voices 1 to 3) and SID3 (for voices 4 to 6) of
the 4 SID chips of the system. By default, SID1 and SID2 are slightly
right-biased and SID3 and SID4 are slightly left-biased in the stereo
mix.

199

PLAY "CEG"
Pl-ﬁ? IIEIIJIIEIIJIIGII

Within a PLAY string, a musical note is a character (A, B, C, D, E, F,
or G), which may be preceded by an optional modifier.

Possible modifiers are:

Character | Effect
Sharp
§ Flat
. Dotted
H Whole Note
H Half Note
0 Quarter Note
I Eighth Note
§ Sixteenth Note
R Pause (rest)

Notice that the dot (.) modifier appears before the note name, not
after it as in traditional sheet music.

Directives consist of a letter, followed by a digit. Directives apply to
all future notes, until the parameter is changed by another directive.

Char-| Directive Argument Range
acter

0 Octave 0-6

T |Instrument Envelope |0 - 9

[Volume 0-9

H Filter 0-1

| Modulation 0-9

P Portamento 0-9

L |Loop N/

An octave is a range of notes from C to B. The default octave is 4,
representing the “middle” octave.

Instrument envelopes describe the nature of the sound. See ENVE-
LOPE for a list of default envelope styles, and information on how to
adjust the ten envelopes.

The modulation directive adds a pitch-based vibrato your note by the
magnitude you specify (1 - 9). A value of 0 disables it.

Similarly, the portamento directive slides between consecutive notes
at the speed you specify (1 - 9). A value of 0 disables it. Note
that the gate-off behaviour of notes is disabled while portamento

200

Remarks:

Example:

is enabled. To re-enable the gate-off behavior, you must disable
portamento (PO).

If a string ends with the L directive, the pattern loops back to the
beginning of the string upon completion.

You can omit a string for a given voice to allow an already playing
pattern in that voice to continue, using empty arguments:

PLAY "04EDCDEEERL", ,,"02CGEGCGEGL"

An example using voice 2 and voice 5:

PLAY ,"05T2IGAGFEDCEGOG,QCL", ,,"03T2.06.B 04ICO3GE.QCL"

RPLAY(voice) tests whether music is playing on the given voice, and
returns 1 if it is playing or O if it is not.

One caveat to be aware of is that BASIC strings have a maxi-
mum length of 255 bytes. If your melody needs to exceed this
length, consider breaking up your melody into several strings, then
use RPLAY(voice) to assess when your first string has finished and
then play the next string.

Instrument envelope slots may be modified by using the ENVELOPE
statement. The default settings for the envelopes are on page 146.

The PLAY statement makes use of an interrupt driven routine that
starts parsing the string and playing the melody. Program execution
continues with the next statement, and will not block until the melody
has finished. This is different to the Commodore 128, which stops
program execution during playback.

The & voice channels used by the PLAY command (on SID1+SID3)
are distinct to the 6 channels used by the SOUND command (on
SID2+SID4). Sound effects will not interrupt music, and vice versa.

Using PLAY

3 REM %% SIMPLE LOOPING EXAMPLE wex
10 ENVELOPE 9,18,5,10,5,0,300
20 VL 8

30 TEMPO 30
40 PLAY “0STSHCIDCDEHCG IGAGFEFDEWCL", "02TBQCGEGCGEG DBGB CGEGL"

201

3 REM %% MODULATION + PORTAMENTO EXAMPLE seex
10 TEHPO 20
20 M5 = "MJ T205POQD PSFPORPSQG .AIHAQA HGQE.C IDQE HFOD .DIRCQD HEQHCQD4HA"

30 M§ = Mé + "05QDHFQG.AIHAQA HGQE.C IDQEFEDHCO4BOSHC DO4AFD POR L"
40 B$ = "TOQRD2H.D.F.COL.A.HA.G.A QAIOZAGFE H.D.F.COL.A.#A.AD2 .D DL"
30 PLAY M$,BS

POINTER

Format: POINTER(variable)

Returns: The current address of a variable or an array element as a 32-bit
pointer.

For string variables, it is the address of the string descriptor, not the
string itself. The string descriptor consists of three bytes: length,
string address low, string address high. The string address is an offset
in bank 1.

For number-type scalar variables, it is the address of the value. The
format depends on the type. A byte variable (A%) is one byte, in a
“two’s complement” signed integer format. An integer variable (A%)
is two bytes, with the least significant byte first. A real variable (&) is
five bytes, in a compact floating point number format.

To get the address of an array, use POINTER with the first element
of the array (index 0 in each dimension). Array elements are stored
consecutively, in the format of the scalar record, with the left-most
index using the shortest stride. For example, an array dimensioned
as DIN #4(3,2) starts at address PIINTER(AZ(A,8)), has two-byte records, and
is ordered as:

(0,0) (1,0 (2,0) (3,0) (0,1) (1,1) (2,1) (3,1) ...

Remarks: The address values of arrays and their elements are constant while
the program is executing.
However, the addresses of strings (not their descriptors) may change
at any time due to “garbage collection.”

Example: Using POINTER

202

POKE

Format:

Returns:

Remarks:

Example:

10 BANK 9 :REM SCALARS ARE IN BANK 0
20 Hg="HELLD" :REM ASSIGN STRING TO HS

30 P=POINTER(HS) :REM GET DESCRIPTOR ADDRESS
40 PRINT "DESCRIPTOR AT: §";HERS(P)

50 L=PEEK(P):SP=WPEEK(P+1) :REM LENGTH & STRING POINTER
60 PRINT "LENGTH = ";L :REM PRINT LENGTH

70 BANK 1 :REM STRINGS ARE IN BANK 1

80 FOR I1#=0 TOL-1:PRINT PEEKCSP+I¥); :NEXT:PRINT
90 FOR 17=0 TOL-1:PRINT CHRSCPEEK(SP+I/)); :NEXT:PRINT

RUN

DESCRIPTOR AT: $FDT3
LENGTH = 3

7269 76 T 79
HELLD

POKE address, value [, value ...]

Writes one or more bytes into memory or memory mapped 1/O, start-
ing at address.

If the address is in the range of $0000 to $FFFF (0 - 65535), the
memory bank set by BANK is used.

Addresses greater than or equal to $10000 (decimal 65536) are
assumed to be flat memory addresses and used as such, ignoring
the BANK setting.

If value is in the range of 0 - 255, this is poked into memory, oth-
erwise the low byte of value is used. So a command like POKE #b,V AKD
235 can be written as PUKE D,V because POKE uses the low byte anyway.

The address is incremented for each data byte, so a memory range
can be written to with a single POKE.

Banks greater than 127 are used to access I/O, and the underlying
system hardware such as the VIC, SID, FDC, etc.

Using POKE

10 BANK 128 :REM SELECT SYSTEM BANK

20 POKE $02F8,0,24 :REM SET USR VECTOR TO $1808

203

POLYGON

Format:

Usage:

Remarks:

Example:

POS

Format:

POLYGON x, y, xrad, yrad, sides [{, drawsides, subtend, angle, solid}]

Bitmap graphics: draws a regular n-sided polygon. The polygon is
drawn using the current drawing context set with SCREEN, PALETTE,
and PEN.

X,y centre coordinates.

xrad,yrad radius in x- and y-direction.
sides number of polygon sides.
drawsides sides to draw.

subtend draw line from centre to start (1).
angle start angle.

solid fill (1) or outline (0).

A regular polygon is both isogonal and isotoxal, meaning all sides
and angles are alike.

Using POLYGON

100 SCREEN 328,200,1 :REM OPEN 320 x 200 SCREEN
110 POLYGON 160,100,40,48,6 :REM DRAW HONEYCOMB

120 GETKEY h% :REM WAIT FOR KEY
130 SCREEN CLOSE :REM CLOSE GRAPHICS SCREEN

Results in:

POS(dummy)

204

Returns:

Remarks:

Example:

POT

Format:

Returns:

Remarks:

Example:

PRINT

Format:

Usage:

The cursor column relative to the currently used window.
dummy a numeric value, which is ignored.

POS gives the column position for the screen cursor. It will not work
for redirected output.

Using POS

10 IF POS(B) 3 72 THEN PRINT :REM INSERT RETURN

POT(paddle)
The position of a paddle peripheral.
paddle paddle number (1 - 4).

The low byte of the return value is the paddle value, with 0 at the
clockwise limit and 255 at the anticlockwise limit.

A value greater than 255 indicates that the fire button is also being
pressed.

Analogue paddles are noisy and inexact. The range may be less than
0 - 255 and there could be some jitter in the values returned from
POT.

Paddles made for Atari game consoles return different values from
paddles made for Commodore computers. Commodore paddles
provide more accurate values in the 0 - 255 range.

Using POT

18 X = POT(1) : REM READ PADDLE #1

20B=X)2% : REM TRUE (-1) IF FIRE BUTTON IS PRESSED
30U =X AND 255 : REM PADDLE #1 VALUE

PRINT arguments

Prints a series of values formatted to the current output stream, typ-
ically the screen.

Values are formatted based on their type. For more control over
formatting, see PRINT USING.

205

Remarks:

Example:

PRINT#

Format:

Usage:

The following expressions and characters can appear in the argu-
ment list:

* numeric the printout starts with a space for positive and zero
values, or a minus sign for negative values. Integer values are
printed with the necessary number of digits. Real values are
printed in either fixed point form (typically 9 digits), or scientific
form if the value is outside the range of 0.01 to 999999999.

« string the string may consist of printable characters and control
codes. Printable characters are printed at the cursor position.
Control codes are executed.

¢ ; (semicolon) separates arguments of the list. It does not print
any characters. A semicolon at the end of the argument list
suppresses the automatic return (carriage return) character.

* , (comma) moves the cursor to the next tab position.

The SPC and TAB functions may be used in the argument list for
positioning.

CMD can be used to redirect printed characters to a device other
than the screen.

Using PRINT

10 FOR I=1 T0 18 : REM START LOOP

20 PRINT I, I¥1,SOR(I)
30 NEXT

PRINT# channel, arguments
Prints a series of values formatted to the device assigned to channel.

Values are formatted based on their type. For more control over
formatting, see PRINT# USING.

channel number, which was given to a previous call to commands
such as APPEND, DOPEN, or OPEN.

The following argument types are evaluated:

* numeric the printout starts with a space for positive and zero
values, or a minus sign for negative values. Integer values are
printed with the necessary number of digits. Real values are
printed in either fixed point form (typically 9 digits), or scientific
form if the value is outside the range of 0.01 to 999999999.

206

Remarks:

Example:

« string may consist of printable characters and control codes.
Printable characters are printed at the cursor position, while
control codes are executed.

* ; (semicolon) separates arguments of the list. It does not print
any characters. A semicolon at the end of the argument list
suppresses the automatic return (carriage return) character.

* , (comma) moves the cursor to the next tab position.

The SPC and TAB functions are not suitable for devices other than
the screen.

Using PRINT# to write a file to drive 8:

10 DOPEN#2,"TRBLE", H, U8
20 FOR I=1 T0 18 : REM START LOOP
30 PRINTHZ, T, IxI,SOR(I)

40 NEXT
30 DCLOSEH?

You can confirm that the file “TABLE’ has been written by typing DR
"t¥", and then view the contents of the file by typing TYPE "TABLE".

PRINT USING

Format:

Usage:

Remarks:

PRINT[# channel,] USING format; argument

Prints a series of values formatted using a pattern to the current out-
put stream (typically the screen) or an output channel.

The argument can be either a string or a numeric value. The format
of the resulting output is directed by the format string.

channel number, which was given to a previous call to commands
such as APPEND, DOPEN, or OPEN. If no channel is specified, the
output goes to the screen.

format string variable or a string constant which defines the rules for
formatting. When using a number as the argument, formatting can
be done in either CBM style, providing a pattern such as ##.# or in C
style using a <width.precision> specitier, such as /30 #7.2F 4% .

argument the number to be formatted. If the argument does not fit
into the format e.g. trying to print a 4 digit variable into a series of
three hashes (H#), asterisks will be used instead.

The format string is applied for one argument only, but it is possible
to append more with USING format;argument sequences.

207

Examples:

RCOLOR

Format:

Returns:

Example:

argument may consist of printable characters and control codes.
Printable characters are printed to the cursor position, while control
codes are executed. The number of # characters sets the width of the
output. If the first character of the format string is an equals '=" sign,
the argument string is centered. If the first character of the format
string is a greater than >’ sign, the argument string is right justified.

Using PRINT# USING

PRINT USING "Hi.HH";«, USING " [/6.4F1 ";50R(2)
3.14 11,4142

PRINT USING " C # # # 3 ";12%31
(3122

PRINT USING "H"; "ABCDE"
fBC

PRINT USING ">HHH"; "ABCDE"
CDE

PRINT USING "“ADDRESS: $/4K"; 63000
ADDRESS: SFOES

R5="HiH, 4, i - PRINT USING AS;1E8/3
33,333,333.3

RCOLOR(colour source)
The current colour index for the selected colour source.
Colour sources are:
* 0 background colour (VIC $D021).
* 1 text colour ($F1).
+ 2 highlight colour ($2D8).
+ 3 border colour (VIC $D020).
Using RCOLOR

16 C = RCOLOR(3) : REM C = colour index of border colour

208

RCURSOR

Format:

Usage:

Remarks:

Example:

READ

Format:

Usage:

Remarks:

Example:

RCURSOR {colvar, rowvar}
Reads the current cursor column and row into variables.

The row and column values start at zero, where the left-most