
YOU CAN COUNT ON fmfTTTTTius ram

(C)1983 BT WILLI KDSCHE

Complete Pascal Software Development
Package for the Commodore 64

Llill>++4+<Minn US
P.O. Box 7211

Grand Rapids, Ml 49510

U.K. Distributor
'Adamsoft',

18 Norwich Avenue,
Rochdale,
OL11 5JZ.

Tel: (0706) 524304.

COPYRIGHT NOTICE

ABACUS Software makes this package available for use on a
single computer only. It is unlawful to copy any portionof
this software package onto any medium for any purpose other
than backup. It is unlawful to give away or resell copies of
any part of this package. Any unauthorized distribution of
this product deprives the authors of their deserved
royalties. For use on multiple computers, please contact
ABACUS Software to make such arrangements.

WARRANTY

ABACUS Software makes no warranties, expressed or implied as
to the fitness of this software product for any particular
purpose. In no event will ABACUS Software be liable for
consequential damages. ABACUS Software will replace any copy
of the software which is unreadable if returned within 90
days of purchase. Thereafter there will be a nominal charge
for replacement.
If you are not satisfied with our software, you may return
it within 30 days, in the original condition with your
purchase receipt for a refund. We want you to be a happy
customer.

PREFACE

With the advent of the affordable home computer, Pascal has
become a very popular language. In the past four years we
have seen a tremendous offering in both Pascal compilers and
application software written in the Pascal langauge.
The Commodore 64 has become one of the most sought after
micros because of its tremendous features at an unbelievably
low price. And the number of high quality software offerings
for the Commodore 64 has skyrocketed in the past six months.
We believe that ZOOM Pascal 64 is one such package. It has
excellent features at a very reasonable price.
Although ZOOM Pascal 64 is a subset of standard Pascal, it
contains extensions and features that make it a very useful
software package. In addition to the full string handling
functions, there are several machine language oriented
features that make it very useful: hex number input and
output; byte anding and oring, file handling procedures and
function.
The most attractive feature of ZOOM Pascal 64 is that it
creates true 6502 machine code. This make ZOOM Pascal 64
extremely fast when compared to BASIC or other Pascal
compilers. Only one other Pascal compiler creates true 6502
machine code, KMMM Pascal by WILSERV Industries.
In fact, ZOOM Pascal 64 and KMMM Pascal were written by the
same person, Willi Kusche. ZOOM Pascal 64 is thus a subset
of KMMM Pascal. If you are interested, KMMM Pascal also
includes these features: RECORDS for creating structured
data types; pointers and procedures for dynamic allocation;
fast EDITOR/COMPILER to speed up program development.
KMMM Pascal may be ordered directly from:

WILSERV INDUSTRIES
P.0. Box 456
Bellmawr, NJ 08031
609/227-8696

In the meantime, ZOOM Pascal 64 should provide you with a
complete Pascal package. It is suitable for learning this
fascinating language as well as for program development. You
should note that programs compiled under ZOOM Pascal 64 may
be distributed without royalties.
We thank Willi Kusche for his cooperation in making ZOOM
Pascal 64 available.
Arnie Lee
Grand Rapids, MI
September 29, 19F3

TABLE OF CONTENTS

1.0 Introduction 1
1.1 Distribution diskette 2
1.2 Compiling a sample program 4
2.0 THE EDITOR 6
2.1 Operating Instructions 7
2.2 Creating a Pascal source file 8
2.2 Updating a Pascal source file 10
2.4 The Window mode 11
2.5 The Command mode 12
2.6 ASCII files 16
3.0 THE COMPILER/TRANSLATOR 17
3.1 Operating Instructions 18
3.2 Differences from standard Pascal 21
3.3 Program structure 23
3.3.1 Program heading part 24
3.3.2 Label declarations 25
3.3.3 Constant declarations 26
3.3.4 Type delcarations 27
3.3.5 Variable declarations 28
3.3.6 Procedure & Function declarations 29
3.3.7 Statement part 30
3.4 Reserved Words 31
3.5 Predeclared Identifiers 32
3.6 String Functions 34
3.7 Input and Output Procedures 36
3.8 External Files 39
3.9 Output Field widths 41
3.10 Error messages 42
3.11 File name syntax 43
4.0 APPENDICES 44

Appendix A - Reserved words 44
Appendix B - Predeclared identifiers 45
Appendix C - Bibliography 46

ZOOM Pascal 64 from ABACUS Software

1.0 INTRODUCTION

ZOOM Pascal 64 is a true compiler. It generates 6502 machine
language from a Pascal source file. Most versions of Pascal
use some form of interpreter. This explains why, in timing
tests, ZOOM Pascal 64 was the fastest version.
ZOOM Pascal 64 is a subset of the Pascal described by Jensen
and Wirth in their book, which is the 'bible' for Pascal.
It is also a subset of and supplies all of the string
functions of UCSD Pascal. The section Differences from standard Pascal explains the major differences between ZOOM
Pascal 64 and standard Pascal.
This manual is only a guide to use of ZOOM Pascal 64 and is
not intended to teach the user how to write programs in
Pascal. Consult ouc of tha reference in the Append*^ C -
the bibliography for more information about Pascal
programming.
ZOOM Pascal 64 runs on standard Commodore 64 with a 1541
disk drive. Although ZOOM Pascal 64 can work with a
cassette drive, use of a cassette drive is suitable only for
small source or data files. ZOOM PASCAL 64 is therefore not
distributed on cassette and ABACUS Software does not support
a cassette version.
For those of you who are unfamiliar with compilers, you must
follow several steps before you can RUN a Pascal program:

1) First you must create the source program written in
the high-level Pascal language. You use the EDITOR
(ZE-64 on the distribution diskette) to create and
or modify your source program.

2) Next you compile this source program into an
intermediate form in memory called P-code. The
COMPILER (ZC-64 on the distribution diskette)
checks source program for grammar errors and
semantics and notifies the user of any such errors.

3) If the source program compiles without error, then
the TRANSLATOR (called ZT-64 on the distribution
diskette) converts the P-code into true 6502 machine
language. When the TRANSLATOR is finished, the
program is now ready to RUN or SAVE to disk. This
object program is a machine language equivalent to
the high level Pascal source program which you wrote
in step 1.

Compiled programs are compatible with Commodore BASIC. They
are loaded into memory and executed as if they were BASIC
programs, even though they are written in machine language.
Compiled Pascal programs may be distributed without any
royalties to the author.

1

ZOOM Pascal 64 from ABACUS Software

1.1 DISTRIBUTION DISKETTE

The distribution diskette contains the following:

* ZE-64
* ZC-64

* ZT-64

* PCCEXMP
* PLSTCBMD
* PRANDCR
* PRANDUPD

* PSIEVE
* BSIEVE

EDITOR for creating Pascal source
files
COMPILER for compiling the source
file to intermediate P-code
TRANSLATOR for translating the inter­
mediate P-code to executable 6502
machine language
sample source program to read and
write to the disk command channel,
sample source program to access the
diskette directory
sample source program to create a
random file on diskette
sample source program to update a
random file on diskette
sample source program to find all
prime numbers between 1 and 1000.
sample BASIC program equivalent to
PSEIVE to demonstrate the difference
in execution between compiled Pascal
and interpreted BASIC.

The EDITOR and TRANSLATOR are unprotected. You should copy
them to a separate disk immediately. To do this:

1) FORMAT A BLANK DISKETTE by inserting a new diskette
into the disk drive and typing:

OPBN1,8,15:PRINT#1,"N:name,xx":CLOSEl
where name is any 16 character diskette name
and xx is a two-digit diskette identifier

2) COPY THE EDITOR by inserting the distribution diskette
into the drive and typing:

LOAD "ZE-64”,8<RETURN>
After the EDITOR is loaded, replace the distribution
diskette with the newly formatted diskette and type:

SAVE "ZE-64”,8<RETURN>
3) COPY THE TRANSLATOR by inserting the distribution

diskette into the drive and typing:
LOAD "ZT—64",8<RETURN>

After the TRANSLATOR is loaded, replace the

2

ZOOM Pascal 64 from ABACUS Software

distribution diskette with the newly formatted
diskette and type:

SAVE "ZT—64",8<RETURN>

4) The Pascal Compiler ZC-64 is protected in order
to safeguard the copyright of this software
package. It cannot be copied by normal computer
equipment. Therefore you will have to use the
distribution diskette when compiling your source
programs.

The next part of the manual, SECTION 1.2, shows you how to
compile a sample Pascal source program contained on the
distribution diskette.

3

ZOOM Pascal 64 from ABACUS Software

1.2 COMPILING A SAMPLE PROGRAM

To become familiar with ZOOM Pascal 64, we suggest that you
compile and translate several of the sample source programs
contained on the distribution diskette. Throughout this section only, you should use the distribution diskette,
since the sample source files are on it. When the compiler
asks you to REMOVE THE DISTRIBITION DISKETTE, leave it in
the drive and press the <RETURN> key.
NOTE after you compile the sample program: When later
writing your own Pascal source programs, use a diskette
containing a copy of the EDITOR and TRANSLATOR as described
in SECTION 1.1. Use the distribution diskette only to load
the COMPILER.

1) Type: LOAD "ZC64",8 <RETURN>
2) After the compiler is loaded, type: RUN <RETURN>
3) The copyright message displays and a short time

after the computer asks you to:
REMOVE DISTRIBUTION DISKETTE PRESS RETURN WHEN READY

Do not remove the distribution diskette. Instead
just press the <RETURN> key.

SOURCE FILE NAME?
PSIEVE <RETURN>
TEXT LITERALS IN SOURCE?
N <RETURN>
USE PRINTER?
N <RETURN>

The source program now compiles to Pcode in memory.
7) When it is complete the computer asks:

PRESS RETURN WHEN READY

4) The computer asks:

Type:
5) The computer asks:

Type:

6) The computer asks:
Type:

Simply press the <RETURN> key.
8) The computer asks: EXECUTE TRANSLATOR?

Type: Y <RETURN>
The Pcode is now converted to 6502 machine code.

4

ZOOM Pascal 64 from ABACUS Software

9) When completed type: RUN <RETURN>
The SIEVE program runs and displays all of the
prime number between 1 and 1000.

10) You can save the compiled SIEVE program by typing:
SAVE "SIEVE",8 <RETURN>

11) To compare the speed of the compiled program to a
BASIC version of the SIEVE, you can run the BASIC
program BSIEVE.

The remainder of this manual is divided into three major
parts.
Part 2 describes the EDITOR which is used to create and
modify your Pascal source program.
Part 3 describes the COMPILER/TRANSLATOR syntax and rules
for writing programs under ZOOM Pascal 64.
Part 4 contains the appendices.

5

ZOOM Pascal 64 from ABACUS Software

2.0 THE EDITOR

The EDITOR is used to create and maintain your Pascal
language source program.
The EDITOR has two modes of operation.
First, there is the COMMAND MODE. The COMMAND MODE is used
primarily to control file access, but can also be used to
edit a Pascal program. In the COMMAND MODE, the EDITOR
operates by reacting to commands which you enter. You know
you are in the COMMAND MODE when you see a blinking cursor
next to an asterisk. A command consists of a single or
double letter abbreviation which specifies the operation to
be performed.
Second, there is the WINDOW MODE. The WINDOW MODE is used as
a full screen editor. You enter the WINDOW MODE when you
type a W command from COMMAND MODE. The EDITOR, in effect,
opens a window into the text buffer. The EDITOR transfers
to the screen as many lines of the text buffer as the screen
can hold, beginning with the line pointed to by the current
position of the character pointer. You can use the cursor
positioning keys to move the solid cursor around the screen.
If you leave the screen boundary by pressing the cursor up
key while at the top of the screen or pressing the cursor
down key while at the bottom of the screen, you scroll the
window through the text buffer. The STOP key returns the
EDITOR to the COMMAND MODE.
Users whose only exposure to an editor is the one that is
part of BASIC, should make sure that they understand the
next paragraph. This is because the <RETURN> key works
quite differently while the EDITOR is running.
Before starting the EDITOR, the user must decide on a
character to be used as a command separator or escape
character. We recommend you use the exclamation point. This
manual assumes that you have chosen the character ! as the escape character. After entering the escape character the
EDITOR prompts you with an asterisk, indicating that it is
ready to a series of commands (command string) indicates
that the EDITOR has executed the previous command string and
is ready to accept another command string.

6

ZOOM Pascal 64 from ABACUS Software

2.1 OPERATING INSTRUCTIONS
The EDITOR is named ZE-64 on the distribution diskette.
You may copy the EDITOR to a backup diskette by following
the directions in the Section 1.1 (DISTRIBUTION DISKETTE).
To run the EDITOR do the following:

1) Type:
LOAD "ZE-64",8 <RETURN>

2) After the EDITOR is loaded type:
RUN <RETURN>

3) After printing a copyright statement, the EDITOR
prompts the user for the escape character.
Type:

! (no <RETURN> key necessary)
4) The EDITOR now displays an asterisk indicating

that it is ready to accept a command. The user
may then enter a single command or a series of
commands (command string). Two consecutive
escape characters (!!) terminate the command
string. Appearance of an asterisk after entry
of a command indicates that the EDITOR has
executed all of the previous commands and is
ready to accept another command string.

You may use the DELete key is the only way to correct keying
errors when entering commands. However the EDITOR is not
very bright when you delete a carriage return in the command
string.
The EDITOR echos the space key as an underline character
when accepting command string characters. This aids the
user in determining the position of the cursor.
The H command terminates the EDITOR and returns control to
BASIC.

7

ZOOM Pascal 64 from ABACUS Software

2.2 CREATING A Pascal SOURCE FILE

This section assumes that you have just started the EDITOR
and are using the exclaimation point (!) as the escape
character.
Press the I key once. The letter I appears next to the
prompting asterisk and the blinking cursor is now to the
immediate right of the letter I.
Now press the A key followed by the <RETURN> key. Repeat
this two key sequence for each letter of the alphabet from B
to X. Finally, press the escape character key twice (!!).
At this point, the characters *IA should be on the top line
of the screen, the characters !!* on the bottom line of the
screen and the letters B through X on the lines between,
with each letter on a separate line. If this is not the
case, press the H key once and the escape character key
twice to return to BASIC. Then enter the BASIC command RUN
to restart the EDITOR and go back to the beginning paragraph
of this section.
You may have noticed that nothing happened as you pressed
each key (except the last), other than having the key echoed
on the screen. This is because the EDITOR merely stored each
key stroke in a command buffer. Since the first letter
stored was the letter I, you were entering the INSERT
command. Everything following the letter I, up to but not
including the escape character was stored in the text
buffer. The INSERT command was not actually executed until
the second consecutive escape character was found.
Now, let’s take a look at the text buffer via the window
mode. To do this, press the following five keys: B!W!!. The
B gets vou to the beginning of the text buffer. The W gets
you into the WINDOW MODE of the EDITOR.
Take a moment to note some of the characteristics of the
WINDOW MODE. The bottom line in white is the status line. It
shows whether the screen is in the text or graphics mode. A
carriage return in the text buffer displays as a back arrow
character on the screen (<-). Finally, the cursor is a solid
white block, instead of a blinking white block.
Now press the cursor right, cursor down, cursor left and
cursor up keys. The solid cursor should be in the upper left
hand corner of the screen. If it isn't, press the HOME key.
Now make space for ten new lines by pressing the INSERT LINE
key ten times. The INSERT LINE key is the Fl-key. Next,
press the zero key bollowed by the <RETURN> key. Repeat this
sequence for the digits zero to line and the letters A to N,
each on a separate line.

8

ZOOM Pascal 64 from ABACUS Software

Now press the CLR key (shifted HOME key). This moves the
solid cursor to the bottom line of the window. Next press
the cursor down key a few times. Each time you do, a line
scrolls off the top of the screen and a new line appears at
the bottom. If you press the cursor down key often enough
and the last line of the text buffer is displayed, then
further depressions of the cursor down key causes the cursor
to fill with white lines.
To get back to the beginning of the text buffer, press the
HOME key. Then press the cursor up key until the screei no
longer changes.
Finally, delete the lines with digits on them by press the DELETE LINE key ten times. The DELETE LINE key is the F3-
key.
To store the file onto disk, you must return to the COMMAND
MODE. To return to the COMMAND MODE, simply press the STOP
key.
The command to write the text buffer to disk is:

GVO:LETTERS!P!GC!!
The GW letter paid is the command to open an ouptut file and
is mnemonic for "Get ready to Write".
The GW letter pair must immediately be followed by the
output file name, which in turn, must have a device
specifier. Thus the file name is LETTERS and the drive is
drive 0.

The P command actually writes the text buffer to the disk
and is mnemonic for "Put".

The GC command closes the output file.

Notice that the escape character separates commands and the
double escape character (!!) tells the EDITOR to perform the
entire command string immediately.

9

ZOOM Pascal 64 from ABACUS Software

2.3 UPDATING A Pascal SOURCE PILE

This section assumes that you have just started the EDITOR
and are using the exclamation point as the escape character.
It also assumes that you have successfully created a file
named LETTERS on the diskette after following the
instructions in the prior section.
To create a revised version of a file on diskette, use the
UY command. This is a mnemonic for "Update and Yank" file
into memory. Therefore, to update the LETTERS file created
previously, use the command string:

UYO:LETTERS!V!!

This command string brings the LETTERS file into the text
buffer and puts the EDITOR into the WINDOW MODE. After
making any desired changes in the window mode, drop back to
the COMMAND MODE by pressing the STOP key. To complete the
file update, use the letter pair UE which is mnemonic for
"Update End".
To copy a file from one diskette to another, an alternate
series of commands must be used. Therefore, to read the
LETTERS file created previously, use the command:

GRIXTTERS! Y!GC!!

The GR letter paid command is mnemonic for "Get ready for
Read" and must be immediately followed by the name of the
file to read.
The Y command reads the file opened by the GR command
and is mnemonic for "Yank" file into memory.
The GC letter pair command closes the input file so that the
diskette may be removed from the drive.
After placing the diskette to receive the output file into
the drive, use the command string:

GWO:NEVNAME!P!GC!!

The GW letter paid is the command to open an output file and
is mnemonic for "Get ready to Write".
The GW command must be immediately followed by the output
file name which, in turn, must have a device specifier.
The P command actually writes the file stored in the text
buffer to the diskette and is mnemonic for "Put".
The GC command closes the output file.

10

ZOOM Pascal 64 from ABACUS Software

2.4 THE WINDOW MODE

In the WINDOW MODE, the commands valid in COMMAND MODE have
no effect. The cursor left, cursor right, cursor up, cursor
down, character insert, character delete, home and shifted
return keys react the same way as they do in BASIC.
The <RETURN> key replaces the character under the solid
cursor with a substitute carriage return character (<-).
clears the rest of the line to spaces and positions the
solid cursor at the beginning of the next line. Any other
key, which is not a control key, replaces the character
under the solid cursor and moves the solid cursor one
position to the right.
The CLR key does not clear the screen, but instead moves the
solid cursor to the bottom of the screen.
Two keys are used to delete or insert lines. The Fl-key is
used to insert a blank line at the cursor position. The F3-
key is used to delete a line at the cursor position.
Normally, pressing a key such as the letter A replaces a
character on the screen. It is possible to active an insert
mode within the window mode so that any characters are
automatically inserted in a line, rather than replacing
characters in a line. To activate the insert mode, press the
F7-key followed by the ISRT/DEL key. The words INSERT MODE
appears on the status line. The STOP key is used to
terminate the insert mode.

Any control keys which are not specifically mentioned in
prior paragraphs are ignored in the window mode.
The STOP key returns you to the command mode. Since the STOP
key is also used to terminate the insert mode withing the
window mode, you must press the STOP key twice to return to
the command mode if the insert mode is active.

11

ZOOM Pascal 64 from ABACUS Software

2.5 THE COMMAND MODE

To understand the COMMAND MODE of the EDITOR, it is
necessary to introduce the concept of the character pointer.
Since Pascal source programs do not have line numbers, we
need to have another way of telling the EDITOR which line or
lines we wish to work on. For this purpose, there is a
character pointer to which the user can refer.
There are many different commands in command mode. They are
listed alphabetically:
B - move character pointer to Beginning of text

buffer
Csss!ttt!

nD

PD

FM

GC
GRd:f f f

change character(s) in text buffer
The change command must be followed by two
text strings. Each text string must be
terminated by the escape character. The
first string sss may not be longer than 80
characters. The second string ttt may be any
length. The EDITOR searches the text buffer
for an exact match of string sss. If it
finds a match, it replaces it with the new
string ttt. If the second string is a null
string, then the change command acts as a
search and delete command. After completion,
the character pointer is immediately to the
right of the last character changed.
delete character(s) in text buffer
The character immediately to the right of
the character pointer is removed from the
text buffer. If the D command is proceeded
by a repeat value n, then n characters to
the right of the character pointer are
removed from the text buffer.
Flip Display
This command toggles the screen between
graphics mode and text mode.
Flip Memory
.This command examines every character in the
text buffer. Any character in the range of A
to Z is changed to its lower case
equivalent. Any character in the range of a
to z is chaanged to its upper case
equivalent.
close file(s)
open input file (Get ready for Read)

12

ZOOM Pascal 64 from ABACUS Software

GWdrfff - open ouput file (Get ready for Write)

H - Halt (exit editor)
I - Insert character(s) into text buffer

All text must be entered using the I
command. This command must be followed by
at least one character to be inserted. All
characters following the I up to but not
including the escape character, are stored
in the text buffer. The text string to be
inserted may be of any length and may
include any number of carriage return
characters. The point of insertion is the
current position of the character pointer.
After completion of the insert command, the
character pointer is immediately to the
right of the last character inserted.

nJ - move character pointer to specific line in
text buffer
This command moves the character pointer to
a specific line in the text buffer. The J
command (Jump) must be preceeded by a number
which is the line number to move the
character pointer to.

nK - Kill delete remainder of line or entire
line(s) in text buffer
This command deletes all characters to the
right of the character pointer, up to and
including the first occurance of a carriage
return character ($0D) from the text buffer.
If the K command is preceeded by a repeat
value n, then n lines to the right of the
character pointer are removed from the text
buffer.
move character pointer within text buffer by
Line(s)
This command moves the character pointer by
lines. The character pointer is moved to the
left until a carriage return character ($0D)
is found. The character pointer is set to
point immediately to the right of the
carriage return (beginning of the current
line). If the L command is preceeded by a
repeat value n, then a search for the nth
carriage return character to the right of
the current position of the character
pointer is initiated. If the repeat value is
preceeded by a minus sign, then the search
is to the left of the current position of
the character pointer, that is, towards the
beginning of the text buffer.

nL

\

13

ZOOM Pascal 64 from ABACUS Software

nM - Move character pointer within text buffer by
character(s)
This command moves the character pointer by
characters. The character pointer is moved
one character to the right, that is towards
the end of the text buffer. If the M command
is preceeded by a repeat value n, then the
character pointer is moved n characters to
the right. If the command is preceeded by a
minus sign, then the character pointer is
moved to the left, that is, towards the
beginning of the text buffer.

P - write output file from text buffer (PUT)
This command writes a diskette file from the
text buffer. This command must be preceeded
by a GW command.

Ssss! - Search for character string in text buffer
This command searches for a string sss.
character following the S, up to but not
including the escape character are used in
an exact match of the text buffer. The
search text may not be longer than 80
characters. The search begins with the
character immediately following the currenet
position of the character pointer and
continues to the end of the text buffer. If
an exact match is found, the command ends
with the character pointer immediately to
the right of the last matching character in
the text buffer. If no match is found STB ING NOT POUND is printed and the character
pointer is left at the beinning of the text
buffer.

nT - Type; display lines within text buffer.
This command displays text from the text
buffer. If only T is entered, the character
pointer is moved to the beginning of the
text buffer and the entire text buffer is
displayed on the screen. After completion of
the display, the character pointer remains
at the beginning of the text buffer. If the
command is preceeded by a repeat value n,
then only n lines of text are displayed
beginning at the current position of the
character pointer. If the character pointer
is not at the beginning of a line, only that
postion of the line to the right of the
character pointer is displayed. When only
part of the text buffer is displayed, the
position of the character pointer is not
changed•

All

14

ZOOM Pascal 64 from ABACUS Software

UA Update Abort; cancel outstanding file update
This command cancels any outstanding file
update without rewriting the file.

UDfff Utility Delete; delete file from diskette
This command delete a file on diskette. The
file fff is the name of the file to be
deleted.

UE Update End; write text buffer and close file
This command ends the update process by
rewriting the updated file to the diskette.

UI Utility Initialize; initialize drive
URfff!ggg Utility Rename; rename a file on diskette

This command renames a file on a diskette.
The first file fff is the existing file and
the second file ttt is the new file name.

UYdrfff - Update Yank; open and fill text buffer from
f ile.
This command opens the file fff on device d
to be updated and reads it into the text
buffer.

W enter Window mode

COMMANDS FROM WINDOW MODE
INSERT LINE F1KEY
DELETE LINE F3KEY
ENTER INSERT MODE F7KEY & ISRT/DEL key
LEAVE INSERT MODE STOPKEY
EXIT WINDOW MODE STOPKEY
CURSOR MOVEMENT KEYS same as BASIC
HOME CURSOR HOMEKEY
BOTTOM CURSOR CLRKEY

X - eXecute macro command
XM define Macro command

X? display macro command

Y - Yank; read input file into text buffer
Z - move character pointer to the end of the

text buffer
- display the current character pointer within

the text buffer
- display the number of lines stored in the

text buffer

15

ZOOM Pascal 64 from ABACUS Software

2.6 ASCII FILES

The EDITOR gives you the option of deciding whether or not
to translate to ASCII when storing the text buffer to an
external file or translating from ASCII when filling the
text buffer from an external file.
The translate mechanism is controlled by the state of the
screen mode. If you are not sure which mode the screen is
in, switch to the WINDOW MODE where the screenmode is always
displayed on the bottom status line.

If your machine is in graphics mode, no translation takes
place when reading into or writing out of the text buffer.
If you machine is in text mode, translation takes place when
executing a Y or a DY command. The EDITOR translates the
characters of the external file from ASCII to PET ASCII
format. Similarly translation occurs, if your computer is in
text mode and you execute a P or UE command. The EDITOR
translates the characters in the text buffer from PET ASCII
to ASCII before writing them to an external file,
od
The FD command is the only way to change the screen mode of
your computer when the EDITOR is active. The FD command is a
flip-flop command in that it changes the screen mode from
text to graphics or vice versa every time it is executed.
When an editing session is terminated, the EDITOR restores
the screen mode to the mode that was in effect when the
EDITOR was started.

16

ZOOM Pascal 64 from ABACUS Software

3.0 THE COMPILER/TRANSLATOR

After you have used the editor to create or modify your
Pascal source program you use the COMPILER/TRANSLATOR to
convert this high level language program to machine code.
The following instructions will detail the operation of the
COMPILER/TRANSLATOR.

17

ZOOM Pascal 64 from ABACUS Software

3.1 OPERATING INSTRUCTIONS

To begin, run the COMPILER by doing the following:

1) Type;
LOAD”ZC—64”,8 <RETURN>

2) After the COMPILER is loaded type:
RON <RETURN>

3) The remainder of the COMPILER is now loaded. The
screens displays a copyright message as the
software is loaded. The disk drive makes some
strange noise as loading nears completion, but this
is normal. Then the compiler prompts you to:

REMOVE DISTRIBUTION DISKETTE
PRESS ANY KEY WHEN READY

4) You should have previously created or modified you
source program on a diskette other than the
distribution diskette. Therefore you now remove
your distribution diskette from the drive and
insert the diskette containing your Pascal source
file. After changing diskettes press the <RETURN>
key.

5) The screen displays a short identification and then
ask to to enter the:

SOURCE FILE NAME?
Type in name of the file to be compiled and then
press the <RETURN> key.
If the source file is not contained on the
diskette, then the COMPILER prompts you for another
source file name.

6) The screen displays another message:
TEXT LITERALS IN SOURCE?

If you enter Y, the screen is shifted to text mode;
entry of any other character leaves the screen in
graphics mode.

18

ZOOM Pascal 64 from ABACUS Software

7) The screen then displays the message:
USB PRINTER?

If you enter Y, the source listing is directed to a
printer; entry of any other character directs the
source listing to the screen.
If the source listing is directed to a printer,
there are two more prompts:
a) DEVICE NUMBER?

If you have a normal printer type 4 and the
<RETURN> key. Otherwise enter your printer
device number.

b) GENERATE LINE FEED?
Enter a Y if your p r i n t e r does not
automatically generate a line feed with a
carriage return.

If the source listing is directed to a printer,
each source line is preceeded by two numeric
values. The first number is a line number, which
can be later used to edit the source file. The
second number is the number of the first P-code
generated by the corresponding source statement.

8) The source program is now compiled.
If an error is found, an up arrow is displayed
under the source statement that caused the error.
An error message describing the error is also
displayed. You must use the EDITOR to correct an
error in the source file in such a case. Reset your
computer before rerunning the EDITOR.

9) If no errors are found the compiler asks you to:
PRESS RETURN WHEN READY:

This gives you an opportunity to read the remainder
of the source listing on the screen.

10) The compiler then prompts you with:

EXECUTE TRANSLATOR?
If you enter Y, then the TRANSLATOR is
automatically loaded and run. Entering any other
character allows you to compile another program.
NOTE: Be sure that a copy of the TRANSLATOR (called

19

ZOOM Pascal 64 from ABACUS Software

ZT-64) was saved to your source file diskette as
described in SECTION 1.1.
The TRANSLATOR makes two passes through the Pcode.
In a first pass, the TRANSLATOR counts the number
of Pcodes referred to by other Pcodes and displays
this count as n LABELS.
In a second pass, the TRANSLATOR generates the 6502
machine code and displays the statistics on the
screen.
The TRANSLATOR generates a machine language program
consisting of an 8K package of support subroutines
and the machine code generated from the Pascal
source statements. The combined program is
preceeded by a SYS statement which allows the
program to be executed like a normal BASIC program.

11) After the TRANSLATOR is finished, you can test the
compiled program by typing:

RON <RETURN>
12) You can also save your compiled program to disk by

typing:

SAVE" prog name**, 8 <RETURN>
You may now run this program on any other Commodore
64 without having to compile it again. It is truly
a machine language version of your original Pascal
source program.

20

ZOOM Pascal 64 from ABACUS Software

3.2 DIFFERENCES FROM STANDARD PASCAL

ZOOM Pascal 64 is not a full Pascal compiler. This section
describes those features of standard Pascal that are not
available with ZOOM Pascal 64. It also describes those
features of ZOOM Pascal 64 which are extension to standard
Pascal. This section is designed to give you a quick look at
ZOOM Pascal 64 features. Subsequent sections give you more
detail about the langauge elements.

A Pascal program consists of a program heading and a block.
A block consists of five declaration parts and a statement
part.

The program heading is optional for ZOOM Pascal 64 programs.
The five declaration parts of a block.'are:

* LABEL declaration part
* CONSTant declaration part
* TYPE declaration part
* VARiable declaration part
* PROCEDURE and FUNCTION declaration part

The LABEL declaration part is not recgonized by ZOOM Pascal
64. Therefore you may not use any LABEL declarations with
ZOOM Pascal 64 programs.
The CONSTant declaration part is compatible with standard
Pascal.
The TYPE declaration part recognizes only scalars and
subranges. You may not use the reserved words FILE, RECORD,
SET or pointer types. You may use the standard identifier
TEXT which is a standard type predeclared as a FILE OF CHAR.
Refer to the section INPUT/OUTPUT PROCEDURES for more
details.
The VARiable declaration part recognizes all keywords.
However the reserved word ARRAY may contain only one
dimension. You may also use the type STRING which is an
extension to standard Pascal.
The PROCEDURE and FUNCTION declaration part does not
recognize the reserved words PROCEDURE, FUNCTION or VAR in
the procedure or function header.
In the statement part:

* the reserved words WITH, GOTO, and IN are not recog­
nized .

* the functions EOF, EOLN and ROUND are not recognized
* the reserved words MEM, CALL, SHL and SHR are

21

ZOOM Pascal 64 from ABACUS Software

extensions

The reserved word MEM may appear as a factor is an
expression or may appear to the left of the assignement
symbol (:=), in order to allow access to any memory
location.
The reserved word CALL is procedure to allow you to execute
a machine language routine.
The reserved words SHL and SHR may appear as operators in a
term, to allow bit shifting.
You may use a special character $ in ZOOM Pascal 64. The $
may be used in two different ways:

1) When preceeding hexadecimal digits, it defines a
hexadecimal constant

2) When a suffix to a variable or expression in a
READ, READLN, WRITE or WRITELN procedure, four
hexadecimal digits are exptected as input or
written as output.

ZOOM Pascal 64 provides a number of non-standard functions
and procedures. The functions are: ANDB, NOTB, ORB, RND,
GETKEY, INKEY, CONCAT, COPY, DELETE, LEPTSTR, LENGTH, POS
and RIGHTSTR. The procedures are: CLOSE and EXIT.

22

ZOOM Pascal 64 from ABACUS Software

3.3 PROGRAM STRUCTURE

Every Pascal programs consists of a heading and a a block.
A block, in turn, consists of a declaration part and a
statement part.
The decla part is further subdivided into five parts;
the label declartion part; the constant declaration part;
the type declaration part; the variable declaration part;
and the procedure and function declaration part.
The following sections are organized the order that they
would appear in a program:

3.3.1 PROGRAM HEADING
DECLARATION part

3.3.2 LABEL declaration part
3.3.3 CONSTant declaration part
3.3.4 TYPE declaration part
3.3.5 VARIABLE declaration part
3.3.6 PROCEDURE and FUNCTION declaration part
3.3.7 STATEMENT part

23

ZOOM Pascal 64 from ABACUS Software

3.3.1 PROGRAM HEADING

A Pascal program consists of a program heading and a program
block. To allow compatibility with other version of ZOOM
Pascal 64, a program heading is NOT required.
The COMPILER scans for the reserved word PROGRAM at the
start of the Pascal source file. If it is not present, the
COMPILER displays the message HEADER MISSING, but continues
with the compilation.
If the Pascal source file does contain the reserved word
PROGRAM, the COMPILER expects an identifier to follow. The
COMPILER bypasses the words and characters following up to
and including a semi-colon.
Examples of valid program headings are:

PROGRAM SAMP1;
PROGRAM SAMP2(INPUT,OUTPUT);
PROGRAM PTEST(description,date);

24

ZOOM Pascal 64 from ABACUS Software

3.3.2 LABEL DECLARATIONS

ZOOM Pascal 64 does not recognized the label declaration
part. Therefore the GOTO reserved word cannot be used.
The non-standard procedure EXIT, if used properly can be
used in place of a label.

25

ZOOM Pascal 64 from ABACUS Software

3.3.3 CONSTANT DECLARATIONS

There are no restrictions in ZOOM Pascal 64 regarding the
constant declaration part. However, the COMPILER accepts the
dollar sign character ($) as a prefix to hexadecimal
constants.
If a $ is followed by two hexadecimal digits, then the
constant is declared to be type CHAR. If a $ is followed by
four hexadecimal digits, then the constant is declared to be
type INTEGER. If a $ is followed by any other number of
characters, an error results.
Please note that this extension is often handy, but is not
supported by standard Pascal. It should not be used in
programs that are to be moved to other systems.
The following are examples of constant declarations:

CONST ONE = 1; (* type is INTEGER *)
HALF = 0.5; (* type is REAL *>
THREEQUARTERS = .75; (* leading zero missing *>
HALFMILLION = 0.5E+6; (* type is REAL *>
LETTERA = 'A' ; (* type is CHAR *)STARTSTRING = 'START'; (* type is STRING *)
CLRSCREEN = $93; (* type is CHAR *)C64STAT0S = $0090; (* type in INTEGER *>

26

ZOOM Pascal 64 from ABACUS Software

3.3.4 TYPE DECLARATIONS

ZOOM Pascal 64 supports scalars and subranges. As a matter
of fact, if you declare a variable to be a subrange or a
scalar, you MUST use the TYPE declaration to define the
subrange or scalar. You may NOT declare any structured
types.

Examples of valid TYPE declarations are:
TYPE BYTE=0•.255;

COLOR=(RED, YELLOW, BLUE);
RANGE-1..50;

VAR CHARACTER: BYTE;
CARPAINT: COLOR;
VECTOR: ARRAY[RANGE] OF REAL;

Example of invalid TYPE declarations are:
TYPE ARRAYTYPE=ARRAY[1..50] OF REAL; (* structured

not allowed)
VAR CHARACTER: 0..255; (* must be declared

in TYPE *)
COLORVAR:(RED, YELLOW, BLUE); (* ditto *)

27

ZOOM Pascal 64 from ABACUS Software

3.3.5 VARIABLE DECLARATIONS

ZOOM Pascal 64 allows variable to be simple types or an
array of simple types. The standard simple types are:

BOOLEAN
CHAR
INTEGER
REAL
TEXT

TEXT is a standard Pascal shorthand for the declaration FILE
OF CHAR. In addition, a user defined type may be specified.
Remember that the type definition part may only specify
scalars or subranges.
As mentioned in TYPE DECLARATIONS, arrays may have only a
single dimension. The reserved word PACKED may preceed the
reserved ARRAY, but is treated as a comment.
ZOOM Pascal 64 also allows a variable to be declared to be
of type STRING. In the variable declaration, the word STRING
may, optionally, be followed by a numeric literal enclosed
in brackets, which specifies the maximum length of the
string variable. If length is not specified, the length
defaults to 80 characters. The maximum length of a string is
196 characters.
Examples of valid STRING VARIABLE declarations are:

VAR FIRSTNAME: STRING[12];
LASTNAME: STRING[25];
ADDRESS1, ADDRESS2: STRING!30];
CITY: STRING!20];
STATE: STRING!20];
ZIP: STRING!5];
LAZY: STRING; (* SAME AS STRING[80] *)

You may also have arrays of string variables such as:
ARRAY[0..n] OF STRING[length]

but the maximum length of the string is 127 in an array.
Also, the maximum length of a string that is passed into a
functionor procedure, or returned from a function is 80.
In order to optimize the run time speed of the generated
machine language program, NO check is made to insure that
the length of a string does not exceed the declared length.
This can definitely cause problems when a compiled program
is run. Therefore, do not be stingy when allocating the
length of variable of type STRING.

28

ZOOM Pascal 64 from ABACUS Software

3.3.6 PROCEDURE AND FUNCTION DECLARATIONS

A procedure is a subroutine that is activated by a procedure
statement. A function is a subroutine that returns a value
and therefore can be used as a factor in an expression.
The declaration of either a procedure or a function must
begin with a heading. The heading serves to identify the
number and types of parameters to be passed to the procedure
or function. Additionally, the function heading identifies
the type of the value returned by the function.
Standard Pascal allows the parameters passed to a procecure
or function to be either value, variable, procedure or
function paramaters. ZOOM Pascal 64 allows only value
parameters to be passed to procedures or functions.
Examples of PROCEDURE and FUNCTION declarations are:

PROCEDURE UPLOW(data:STRING);
FUNCTION SQUARED(numb:REAL):REAL;

29

ZOOM Pascal 64 from ABACUS Software

3.3.7 STATEMENT PART

The statement part of a Pascal program may be either a
simple statement or a compound statement. A compound
statement is a series of simple statements separated by a
semi-colon character and bounded by the reserved words BEGIN and END.
A statement may be either an assignement statement, a
procedure statement, a repetitive statement (WHILE, REPEAT
of FOR), a conditional statement (IF or CASE), a GOTO
statement or a WITH statement. ZOOM Pascal 64 does not
support the GOTO and WITH statements.
An assignment statement has the following format:

variable := expression
The variable and the expression must be of the same type.

Standard Pascal allows two exceptions to this rule. The
first is that if the type of the variable is REAL, then the
type of the expression may be INTEGER or a subrange thereof.
The second is that the type of the expression may be a
subrange of the variable or vice-versa.
ZOOM Pascal 64 allows these exception, plus two others. If
the variable is of type STRING, then the expression may be
of type CHAR. In this case, an automatic type conversion
occurs. If the variable is of type CHAR, then the expression
may be of type STRING. In this case, the first character of
the string is extracted and an automatic type conversion
occurs.
ZOOM Pascal 64 also allows a non-standard reserve word, MEM,
to be the variable in an assignement statement. The reserved
word MEM, must be subscripted by an integer expression. The
expression to the right of the := must be of type CHAR. This
statement has the same function as a POKE in BASIC. An
example of this is:

MEM[$0400] := 1; (* PLACE AND 'A* ON C64 SCREEN *)

30

ZOOM Pascal 64 from ABACUS Software

3.4 RESERVED WORDS

The standard Pascal reserved words are listed in Appendix A.
Of those reserved words, ZOOM Pascal 64 does not recognize
the following words: FILE, GOTO, IN, LABEL, NIL, RECORD, SET
and WITH.
Additionally, ZOOM Pascal 64 has defined four words as
reserved words. These are CALL, MEM, SHL and SHR.
Use of the MEM reserved word in a statement equivalent to a
BASIC POKE is explained in the previous section. The MEM
reserved word may also appear as a factor in an expression,
to serve as an equivalent to a BASIC PEEK. The word MEM must
be followed by an integer expression enclosed by brackets.
Examples are:

STATUS := ORD(MEM[$0090]); (* STATUS FOR C64 *)
The reserved words SHL and SHR may appear as a multiplying
operator between two factors in a term of an expression. An
integer factor to the left of SHL is shifted left by the
number of bits represented by the value of the integer
factor to the right of the SHL. Similarly, SHR causes a
shift right.
The following example shows how to store an address value in
memory:

MEM [STOREADDR] := CHR(ADDRVALUE); (* STORE IN LOW HALF *)
MEM[ST0READDR+1] : = CHR(ADDRVALUE SHR 8); (* STORE HIGH

HALF *)

31

ZOOM Pascal 64 from ABACUS Software

3.5 PREDECLARED IDENTIFIERS

In addition to the reserved words defined by standard
Pascal, there are words which are predeclared by stancard
Pascal. They differ from reserved words in that you may
redefine them for your own use. If you do so, then your
definition of these standard identifiers replaces the
defined usage in Pascal. However, doing so is not
recommended.
The complete list of standard identifiers appears in
Appendix B. All of the standard function identifiers have
been implemented except for EOF, EOLN and ROUND. The EOF
function may be emulated by using the MEM function to
examine the location mentioned in the prior section. The
EOLN function may be emulated by testing for a carriage
return character (* $0D *). The ROUND function may be
emulated by including the following function in your source
file:

FUNCTION ROUND(VAL: REAL): INTEGER;

Of the standard procedure identifiers, ZOOM Pascal 64 has
implemented the READ, RBADLN, RESET, REWRITE, WRITE and
WRITELN procedures. These procedures are discused more
thoroughly in the following sections of this manual.
In addition to the above mentioned standard predeclared
identifiers, additional predeclard identifiers are available
with ZOOM Pascal 64.
The predeclared type identifer STRING has already been
discussed in the section of this manual on variable
declarations. The string functions CONCAT, COPY, DELETE, LEFTSTR, MIDSTR, POS and RIGHTSTR are described in detail in
a following section.
In addition to the above string functions, ZOOM Pascal 64
supplies six other non-standard functions. They are ANDB,
NOTB, ORB, RND, GETKEY and INKEY.
The functions ANDB, NOTB and ORB allow Boolean operations on
INTEGER expressions. The functions ANDB, and ORB require two
parameters; NOTB arequires a single INTEGER parameter. All
three return an INTEGER value.
The function RND requires a single parameter whose type must
be either REAL or INTEGER. If the parameter value is
positive, the function returns a new random number value. If
the parameter value is negative, the function returns a
random value after changing the seed value. In either case,
the value is type REAL.

32

ZOOM Pascal 64 from ABACUS Software

The functions GETKKY and INKEY allow ZOOM Pascal 64 program
to obtain the value of a keystroke on the system console.
Both functions require no parameters and return a value of
type CHAR. The function GETKEY returns a value of CHR(O), if
no key is pressed. The function INKEY waits until a key is
pressed.
In addition to the functions mentioned above, ZOOM Pascal 64
supplies two non-standard procedures. They are EXIT and CLOSE.
The EXIT procedure may be used to exit from a procedure or
function. The EXIT procedure requires a single parameter
which is the identifier of the procedure or function in
whose body the EXIT is located. To exit from the main body
of the program, use the identifier MAIN. For examples of the
use of the EXIT procedure, please refer to the modules
PMODVAL, PRANDCR AND PRANDUPD which are on the distribution
diskette.

The CLOSE procedure may be used to close a file opened via a
RESET or REWRITE procedure. The CLOSE procedure requires a
single parameter which is the identifier of the file to be
closed. Use of this procedure is not required, since the run
time package closes all opened files when a ZOOM Pascal 64
machine language program ends. However, it must be used if
you intend to access files on different diskettes inserted
in the same disk drive during a course of a run.

33

ZOOM Pascal 64 from ABACUS Software

3.6 STRING FUNCTIONS

ZOOM Pascal 64 includes all of the string functions supplied by
UCSD Pascal. Additionally, ZOOM Pascal 64 has the following
differences:

* the string procedure INSERT is not implemented.
* two string functions available in Commodore BASIC

are implemented: LEFTSTR and RIGHTSTR.
* the COPY function has been given an alias of

MIDSTR.
Here’s a description of the STRING functions:

1. CONCAT(stringl,string2,...,stringn) - this function re­
turns a string that is the combination of two or more
string expressions into a single string. If any
expression in the listof expressions are of type CHAR, an
automatic conversion to type STRING takes place.

2. COPY(stringl,integerl,integer2)
or

MIDSTR(stringl,integerl,integer2) - this function returns
a string containing the characters of the stringl
beginning with the integerl-th position for a length of
integer2 characters. It is equivalent to the MIDI
function in BASIC.
e.g. COPY(’THIS IS A STRING',6,5) returns 'IS A'

3. DELETE(stringl,integerl,integer2) - this funcion returns
a string containing the characters of stringl without the
characters beginning with the integerl-th position fcr a
length of integer2 characters.
e.g. DELETE('THIS IS A STRING',6,5) returns 'THIS STRING'

4. LBFTSTR(stringl,integer 1) - this function returns a
string containing the leftmost integerl characters of
stringl. It is equivalent to the BASIC function LEFT$.
e.g. LEFTSTR('THIS IS A STRING',4) returns 'THIS'

5. LENGTH(stringl) - this function returns the an integer
which is the length of stringl. This function is
equivalent to the BASIC function LEN.
e.g. LENGTH('THIS IS A STRING') returns integer value 16

6. P0S(stringl,string2) - this function returns an integer
representing the position of stringl within string2. If
stringl occurs several times within string2, POS returns
only the first occurance. If stringl does not occur

34

ZOOM Pascal 64 from ABACUS Software

within string2, POS return a zero value. The POS function
accepts an expressionof type CHAR as stringl, but not as
string2.
e.g. POS('A *,* THIS IS A STRING') returns integer value 9

7. RIGHTSTR(stringl,integer1) - this function returns a
string containing the rightmost integerl-st characters of
stringl. It is equivalent to the BASIC function RIGHT$.
e.g. RIGHTSTR('THIS IS A STRING',6) returns 'STRING'

35

ZOOM Pascal 64 from ABACUS Software

3.7 INPUT AND OUTPUT PROCEDURES

ZOOM Pascal provides six of the standard Pascal input and
output procedures. They are:

♦ READ
♦ READLN
♦ RESET
* REWRITE
* WRITE
* WRITELN

The procedures READ and READLN allow the user to read data
from the keyoard, a cassette file or a disk file, into a
variable or a list of variables.
The procedures WRITE and WRITELN allow the user to write an
expression or a list of expressions to the screen, a
cassette file or a disk file.
The procedures RESET and REWRITE prepare the keyboard,
screen, cassette file or disk file for data transfer.

If the first parameter of a READLN procedure is not a
variable of type TEXT, then the cursor is positioned to a
new line after filling the last variable in the parameter
list. Otherwise, the READLN procedure is the same as the
READ procedure. This means that the READLN procedure does
not skip to the beginning of the next line when reading from
a file.
Here's a sample program that gives you some examples of the
READ procedure.

VAR CHVAR: CHAR;
INTVAR: INTEGER;
REALVAR: REAL;

BEGIN
READ(CHVAR);
READ(INTVAR);
READ(REALVAR);
READ(INTVAR$);

(* EXAMPLE 1 *)
(* EXAMPLE 2 *)
(* EXAMPLE 3 *)
(♦ EXAMPLE 4 *)

END.
Example 1 causes a single character to be read from the
keyboard and stored in the variable called CHVAR.
Examples 2, 3, and 4 causes a combination of character input
and data conversion. The number of characters read depends
on the declared type of the variable being read into. For
INTEGER and REAL variables, characters are read until a
stopping character is encountered.

36

ZOOM Pascal 64 from ABACUS Software

For INTEGER variables, a stopping character is any character
other than the digits 0 through 9.
For REAL variables, a stopping character is any character
other than the digits 0 through 9, the decimal point for the
letter E.
For hexadecimal input (EXAMPLE 4), exactly four charcters
are read.

This method of input is quite different from the way BASIC
operatres. In BASIC, entering the string '39X' in response
to a request for numeric input results in ?REDO FROM START.
In ZOOM Pascal, entering the string f39Xf in response to a
request for numeric input does not result in an error
message. A display of the variable read into shows a vlaue
of 39.

The following program gives some examples of the WRITE
procedure:

CONST CHCONST = rA ’;
STRCONST = fXYZ ? ,
INTCONST = 13;
REALCONST = 2.3t>4BEGIN

WRITE(CHCONST);
WRITE(INTCONST-2),STRCONST);
WRITE(1=1,REALCONST);
WRITECINTCONST$)END.

The output of this program is:

A11XYZTRUE 23000 000D
If all the WRITEs were changed to WRITELN, then the output
is:

A
UXYZ
TRUE 23000
000D

37

ZOOM Pascal 64 from ABACUS Software

If the first parameter of a READ, READLN, WRITE or WRITELN
procedure is a variable of type TEXT, then the input/output
operation involves a file instead of the keyboard or screen.
Before attempting a READ(LN) or WRITE(LN) from or to a file,
rather than the keyboard or screen, you must use a RESET or
REWRITE procedure to establish a data path for that file.
The RESET procedure is used for input files and the REWRITE
procedure is used for output files.
The first parameter of either a RESET or REWRITE procedure
must be a variable identifier of type TEXT.
The second parameter is the external file name and may be
either a string literal, a string constand or a string
variable. The following program fragments show three
different methods for opening the same disk file on drive 1
for input:

CONST CONSTNAME = 'lrABC';
VAR INFILE: TEXT;

VARNAME: STRING!16];

RESET(INFILE,,l:ABCr);

RESET(INFILE,CONSTNAME);

VARNAME := rl:ABC';
RESET(INFILE, VARNAME) ;

A more complete discussion of external file access is
covered in the following section.

38

ZOOM Pascal 64 from ABACUS Software

3.8 EXTERNAL FILE ACCESS

Normally, a READ or READLN procedure reads from the keyboard
and a WRITE or WRITELN procedure writes to the screen.
However, input or output may be directed to an external file
if the first parameter of a READ, READLN, WRITE or WRITELN
is a variable defined as being of type TEXT. First you must
establish a data path using RESET or REWRITE.
The first parameter of a RESET or REWRITE procedure must be
a variable of type TEXT. This parameter is followed by a
variable number of parameters.
If the second parameter is an expression of type STRING,
then ZOOM Pascal considers it to be the file name. The
filename must be the last parameter. This two parameter
format (TEXT-type variable followed by STRING-type variable)
is referred to as the automatic format and can only be used
with sequential files on cassette or diskette. If a diskette
file is indicated, device 8 is used.
If the second parameter is not an expression of type STRING,
then it must be an expression of type INTEGER. ZOOM Pascal
64 uses this value as the IEEE device number. This second
parameter must be followed by a third parameter, also an
expression of type INTEGER and represents the IEEE secondary
address. The fourth parameter must be an expression of type
STRING but may be omitted if a file name is not appropriate
to the IEEE device being used. This three or four parameter
format is referred to as the manual format.
The automatic format is so designated because it uses the
command channel to check for a successful file open if the
file name prefix indicates a disk file. It also adds a
’,S,R’ or ?,S,W' suffix to the file name if the file name
prefix indicates a disk file. For those who wish to read or
write ’PGM’ files, then a ',Pf suffix is allowable in the
file name and causes the ',S,R' or 'jS jW* suffix normally
appended, to change to ?,P,R' or ’,P,W'.
The manual format does not add these suffixes. It does not
adjust the file name; it does not check for a successful
file open. If the device being used (e.g. drive number)
requires special characters in the file name, you must
provide them. Any special command channel programming must
be explicitly coded.
A READ or READLN can only be executed for a file opened with
RESET. A WRITE or WRITELN can only be executed for a file
opened with REWRITE. Therefore a random access file or
command channel requiring both reading and writing must be
accessed via two file definitions.

39

ZOOM Pascal 64 from ABACUS Software

The distribution diskette contains sample programs on how to
use files.
The source program PCCEXMP shows you how to read from and
write to the disk command channel in order to scratch a file
on a diskette.
The source program PLSTCBMD shows you how to access the
directory of a diskette as a file.
The source program PRANDCR shows you how to create a random
file on a diskette.
The source program PRANDDPD shows you how to perform a
simple random file update on a diskette.
You may list these program or compile them and execute tlem.

40

ZOOM Pascal 64 from ABACUS Software

3.9 OUTPUT FIELD WIDTHS

The WRITE and WRITELN procedures allow the use of field
width specifications. A field width specification consists
of a colon followed by an integer expression. The field
width specification may be used with any data type.
Integer expressions may have a $ suffix to indicate that
output in hexadecimal is desired. The standard width for
hexadecimal output is four character positions. By using a
$:2 specification, the field is a hexadecimal value two
positions wide instead of four.
An example of a valid statement are:

WRITE(1:2,1.1:4,'?':2,'ABC1:4,TRUE:5,16$:2);
The output of the above statement is:

1 1.1 ? ABC TRUE10
J 3T 5 2T JT

position 1...5...10...15...20
Padding spaces are added to the left of the output field,
but only if the size of the output field is less than the
width specification.
If the width specifications were omitted from the above
example, the statement would be:

WRITE(1,1.1,'?• ,f ABC',TRUE,16$);

The output is then:
11•1?ABCTRUE0010
3T jr jr j *

position 1...5...10...15...20

41

ZOOM Pascal 64 from ABACUS Software

3.10 ERROR MESSAGES

Most of the error messages displayed by the compiler are
self-explanatory.
There is one message which is not. This message is END TEXT POUND.
This message appears if there is no space or carriage return
character following the last END. which terminates the
Pascal program. This is acutally an eroneous error message.
This message also appears if you have an odd number of
apostrophes in your source file or if you have a (* with out
a matching *). Sometimes the only way to locate this problem
is to direct the output of the compiler to the printer. If
the P-code numbers get stuck on one value, then the problem
is in the area of the last incrtement in the P-code number.

42

ZOOM Pascal 64 from ABACUS Software

3.11 FILE NAME SYNTAX

If a null file name is entered, the system defaults to the
cassette drive. If opening an input file, the first file
found becomes the file read. If opening an output file, the
fill is written without a name.
A unit designator is part of the filename when opening
either a cassette input file, a cassette ouput file or a
disk output file. A unit designator consists of a single
character followed by a colon. For a disk file, the single
character is either 0: or 1:; for a cassete file, the
u'single character is a T:.
If a unit designator does not preceed the file name when
opening an input file, the system assumes that a disk drive
is to be used and searches the directoreis of both drives.

43

ZOOM Pascal 64 from ABACUS Software

4.1 APPENDIX A - RESERVED WORDS

STANDARD PASCAL
AND END NIL
ARRAY FILE* * NOT
BEGIN FOR OF
CASE FUNCTION OR
CONST GOTO* PACKED
DIV IF PROCEDURE
DO IN* PROGRAM
DOWNTO LABEL* RECORD*
ELSE MOD REPEAT

ZOOM Pascal 64
CALL MEM SHL

* not implemented in ZOOM Pascal 64

SET*
THEN
TO
TYPE
UNTIL
VAR
WHILE
WITH*

SHR

44

ZOOM Pascal 64 from ABACUS Software

4.2 APPENDIX B - PREDEFINED IDENTIFIERS

STANDARD PASCAL
CONSTANTS:

FALSE TRUE MAXINT
TYPES:

BOOLEAN INTEGER REAL TEXT
FUNCTIONS:

ABS EOLN* PRED succ
ARCTAN EXP ROUND* TRUNC
CHR LN SIN
COS ODD SQR
EOF* ORD SQRT

PROCEDURES:
GET* PAGE* READLN UNPACK*
NEW* PUT* RESET WRITE
PACK* READ REWRITE WRITELN

FILES:
INPUT* OUTPUT*

* not implemented
ZOOM Pascal 64

in ZOOM Pascal 64

TYPE:
STRING

FUNCTIONS:
ANDB GETKEY MIDSTR RIGHTSTR
CONCAT INKEY NOTB RND
COPY LEFTSTR ORB
DELETE LENGTH POS

PROCEDURES:
CLOSE EXIT

45

ZOOM Pascal 64 from ABACUS Software

4.3 APPENDIX C BIBLIOGRAPHY

Bowles, Kenneth L., MICROCOMPUTER PROBLEM SOLVING USING
PASCAL, SpringerVerlag, New York 1977.
Conway, R., Gries, D., and Zimmerman, E., A PRIMER ON
PASCAL, Winthrop Publishers, Cambridge, MA, 1976.
Grogono, Peter, PROGRAMMING IN PASCAL, AddisonWesley, 1978.
Kieburtz, Richard, STRUCTURED PROGRAMMING AND PROBLEM
SOLVING WITH PASCAL, PrenticeHa11, Englewood Cliffs, NJ,
1978.
Jensen, Kathleen and Wirth, Niclaus, PASCAL USER MANUAL AND
REPORT, SpringerVerlag, New York, 1974.
Welsh, Jim and Elder, John, INTRODUCTION TO PASCAL,
PrenticeHal1, Englewood Cliffs, NJ, 1979.
Wirth, Niklaus, SYSTEMATIC PROGRAMMING: AN INTRODUCTION,
PrenticeHall, Englewood Cliffs, NJ, 1973.
Wirth, Niklaus, ALGORITHMS + DATA STRUCTURES = PROGRAMS,
PrenticeHall, Englewood Cliffs, NJ, 1976.

46

ABACUS SOFTWARE products are distributed in the U.K. by ADAMSOFT.

SCREEN GRAPHICS-64
TINY BASIC COMPILER
BUDGETEER
TINY FORTH CHARTPAK-64
CRIBBAGE
ZOOM PASCAL CHECKBOOK MANAGER-64

SYNTHY-64
ULTRABASIC-64
QUICKCHART
SPRITE AIDSUPER DISK UTILITY
POOLSKIER-64
GRAPHICS DESIGNER-64

Available from your local dealer or direct from ADAMSOFT, 18
Norwich Avenue, Rochdale, Lancs. 0L11 5JZ.
All products can be supplied on disk. Yo can exchange cassette
for disk by sending 2.50 together with the cassette to the above
address. ADAMSOFT will replace any cassette or disk which fails
to load or run correctly within 12 months of purchase.

you CAN COUNT ONUSmifiiinmnmn
ne

P.O. Box 7211. Grand Rapids. Ml 49510 616/241-5510

This was brought to you

from the archives of

http://retro-commodore.eu

http://www.retro-commodore.eu

