
.
....

. c= commodore
. CO~/\PUTER

-
....

USER'S MANUAL STATEMENT
"This equipment generates and uses radio frequency energy and if not
installed and used properly, that is, in strict accordance with the
manufacturer's instructions, may cause interference to radio and
television reception. It has been type tested and found to comply with
the limits for a ClassBcomputing device in accordance with the
specifications in Subpart J of Part 15 of FCCrules, which are designed
to provide reasonable protection against such interference in a
residential installation. However, there is no guarantee that
interference will not occur in a particular installation. If this equipment
does cause interference to radio or television reception, which can be
determined by turning the equipment off and on, the user is
encouraged to try to correct the interference by one or more of the
following measures:

reorient the receiving antenna

relocate the computer with respect to the receiver

move the computer away from the receiver

plug the computer into a different outlet so that computer and
receiver are on different branch circuits.

"If "necessary,the user should consult the dealer or an experienced
radio/television technician for additional suggestions. The user may
find the following booklet prepared by the Federal Communications
Commission helpful: 'How to Identify and Resolve Radio-TV
Interference Problems.' This booklet is available from the U.S.
Government Printing Office, Washington, D.C.20402, Stock No,
004-000-00345-4," .

-

-

,

FIRSTEDITION

SECOND PRINTlNG-1982

Copyright @ 1982 by Commodore Business Machines, Inc.
All rights reserved.

This manual is copyrighted and contains proprietary information. No part of this publica-

tion may be reproduced, stored in a retrieval system, or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording or otherwise, without the prior
written permission of COMMODORE BUSINESS MACHINES, Inc.

ii

TABLE OF CONTENTS

INTRODUCTION .. vii

1. SETUP . 1

. Unpacking and Connecting the Commodore 64 2

. Installation 3

. Optional Connections. 6

. Operation 8

. ColorAdjustment 11

2. GETIING STARTED.. .. 13

. Keyboard 14

. Backto Normal 17

. Loadingand SavingPrograms.. .. 18

. PRINTand Calculations. .. 22

. Precedence .. 27

. Combining Things. .. 28

3. BEGINNING BASIC PROGRAMMING 31

. The NextStep. .. 32

GOTO .. 33

. Editing Tips .. 34

. Variables .. 34

. IF . . . THEN. .. 37

. FOR . . . NEXT loops 39

4. ADVANCEDBASiC 41
. Introduction 42
. SimpleAnimation. .. 43

Nested Loops 44. INPUT 45
. GET 47
. RandomNumbersand Other Functions.. 48

. Guessing Game 50

. YourRoll 52

iii

. Random Graphics. .
CHR$ and ASC Functions

5. ADVANCEDCOLORAND GRAPHIC COMMANDS ..
. Color and Graphics
. PRINTingColors....................................
· Color CHR$ Codes.
. PEEKsand POKEs .

r.- Screen Graphics .
. Screen Memory Map .
. Color Memory Map
. More BouncingBalls

6. SPRITE GRAPHICS .

. Introductionto Sprites

. Sprite Creation .

. Additional Noteson Sprites.. .

. BinaryArithmetic...................................

7. CREATINGSOUND..
. Using Sound if You're Not a

Computer Programmer
. Structure of a Sound Program
. Sample Sound Program. .
. Making Music on Your Commodore 64
. Important Sound Settings
. Playing a Song on the Commodore 64
. CreatingSoundEffects..............................
. Sample Sound Effects To Try

8. ADVANCEDDATAHANDLING......................
. READ and DATA. .

. Averages. .

. Subscripted Variables
One-DimensionalArrays
Averages Revisited. .

. DIMENSiON..

. Simulated Dice Roll With Arrays. .

. T~o-Dimensional Arrays. .

iv

"

"
"""-/

-

53

53

55
56

56

58
60
62
62

64

65

67

68

69

75
76

79

80

80

80

81
83
88

89
90

91
92
94

95

96

97
98

99

100

APPENDICES. .. 105

Introduction .. 106

A: COMMODORE 64 ACCESSORIESAND SOFTWARE 107
B: ADVANCEDCASSETTEOPERATION 110
C: COMMODORE 64 BASIC .. 112

D: ABBREVIATIONSFOR BASIC KEYWORDS. 130
E: SCREEN DISPLAYCODES .. 132
F: ASCIIand CHR$ CODES. .. 135

G: SCREENAND COLOR MEMORY MAPS. 138
H: DERIVING MATHEMATICALFUNCTIONS 140
I: PINOUTS FOR INPUT/OUTPUTDEViCES 141
J: PROGRAMSTO TRY.. .. 144

K: CONVERTING STANDARDBASIC PROGRAMS TO
COMMODORE 64 BASIC .. 148

L: ERROR MESSAGES 150
M: MUSIC NOTE VALUES .. 152

N: BIBLIOGRAPHy 156
0: SPRITEREGISTERMAP. .. 159

P: COMMODORE 64 SOUND CONTROL SETTINGS 162

INDEX .. 165

v

production, the COMMODORE64 allows you to connect your audio out-
put to almost any high-quality amplification system.

While we're on the subject of connecting the COMMODORE 64 to

other pieces of equipment. . . your system can be expanded by adding
accessories, known as peripherals, as your computing needs grow.
Some of your options include items like a DATASSETTE*recorder or as
many as 5, VIC 1541 disk drive storage units for the programs you make
and/or play. If you already have a VIC 1540 disk drive your dealer can
update it for use with the COMMODORE64. You can add a VIC dot
matrix printer to give you printed copies of your programs, letters, in-
voices, etc. . . If you want to connect up with larger computers and their
massive data bases then just plug in a VICMODEM cartridge, and get
the services of hundreds of specialists and a variety of information net-
works through your home or business telephone. Finally if you're one of
those people interested in the wide variety of applications software
available in CP/M**, the COMMODORE64 can be fitted with a plug-in
Z-SO microprocessor.

Just as important as all the available hardware is the fact that this
USER'S GUIDE will help you develop your understanding of computers.
It won't tell you everything there is to know about computers, but it will
refer you to a wide variety of publications for more detailed information
about the topics presented. Commodore wants you to really enjoy your
new COMMODORE64. And to have fun, remember: programming is
not the kind of thing you can learn in a day. Be patient with yourself as
you go through the USER'S GUIDE. But before you start, take a few
minutes to fill out and mail in the owner/registration card that came with
your computer. It will ensure that your COMMODORE64 is properly
registered with Commodore Headquarters and that you receive the most
up-to-date information regarding future enhancements for your ma-
chine. Welcome to a whole new world of fun!!

NOTE:

Many programs are under development while this manual is being
produced. Please check with your local Commodore dealer and with
Commodore User's Magazines and Clubs, which will keep you up to
date on the wealth of applications programs being written for the
Commodore 64, worldwide.

.DATASSETTE.is a registered trademark of Commodore Business Machines, Inc.

.. CP/M is a registered trademark of Digital Research Inc. Specifications subject to
change.

viii

INTRODUCTION

Congratulations, on your purchase of one of the best computers in the
world. You are now the proud owner of the COMMODORE64. Com-

modore is known as The Friendly Computer company, and part of
being friendly is giving you easy to read, easy to use and easy to
understand instruction manuals. The COMMODORE64 USER'SGUIDE is

designed to give you all the information you need to properly set up your
equipment, get acquainted with operating the COMMODORE64, and
give you a simple, fun start at learning to make your own programs.

For those of you who don't want to bother learning how to program,
we've put all the information you need to use Commodore programs or
other prepackaged programs and/or game cartridges (third party
software) right up front. This means you don't have to hunt through the
entire book to get started.

Now let's look at some of the exciting features that are just waiting for

you inside your COMMODORE 64. First, when it comes to graphics
you've got the most advanced picture maker in the microcomputer in-
dustry. We call it SPRITEGRAPHICS, and it allows you to design your
own pictures in 4 different colors, just like the ones you see on arcade
type video games. Not only that, the SPRITEEDITORlet's you animate as
many as 8 different picture levels at one time. The SPRITEEDITORwill
soon be available as a software program that you can load directly into
your COMMODORE64. You can move your creations anywhere on the
screen, even pass one image in front of or behind another. Your COM-
MODORE64 even provides automatic collision detection which instructs
the computer to take the action you want when the sprites hit each
other.

Next, the COMMODORE64 has built-in music and sound effects that
rival many well known music synthesizers. This part of your computer
gives you 3 independent voices, each with a full 9 octave "piano-type"
range. In addition you get 4 different waveforms (sawtooth, triangle,
variable pulse, and noise), a programmable ADSR (attack, decay, sus-
tain, release) envelope generator and a programmable high, low, and
bandpass filter for the voices, and variable resonance and volume con-
trols. If you want your music to play back with professional sound re-

vii

UNPACKING AND CONNECTING THE
COMMODORE 64

The following step-by-step instructions show you how to connect the
Commodore 64 to your television set, sound system, or monitor and
make sure everything is working properly.

Before attaching anything to the computer, check the contents of the
Commodore 64 container. Besides this manual, you should find the fol-
lowing items:

1. Commodore 64

2. Power supply (black box with an AC plug and supply cord)
3. Video cable

4. TV Switchbox (small silver box with short antenna leads).

If any items are missing check back with your dealer immediately for
a replacement.

First, let's take a look at the arrangement of the various connections
on the computer and how each functions.

SIDE PANEL CONNECTIONS

1. Power Socket. The free end of the cable from the power supply is
attached here to supply power to the Commodore 64.

2. Power Switch. Turns on power to the Commodore 64.

3. Game Ports. Each game connector can accept a joystick or game
controller paddle, while the lightpen can only be plugged into the
game port closest to the front of your computer.

REAR CONNECTIONS

4. Cartridge Slot. The rectangular slot to the left accepts program or
game cartridges.

5. Channel Selector. Use this switch to select which TV channel the

computer's picture will be displayed on.
6. TV Connector. This connector supplies both the picture and sound to

your television set.
7. Audio & Video Output. This connector supplies direct audio, which

can be connected to a high quality sound system, and a "compos-
ite" video signal, which can be fed into a television ."monitor."

8. Serial Port. You can attach a printer or single disk drive directly to
the Commodore 64 through this connector.

2

GAME POWER POWER

PORTS SWITCH SOCKET

<-Ch. 3 Ch. 4->

CARTRIDGE CHANNEL TV AUDIONIDEO SERIAL CASSETTE USER
SLOT SELECTOR CONNECTOR CONNECTOR PORT INTERFACE PORT

9. Cassette Interface. A DATASSETTErecorder can be attached to the

computer so you can save information entered for use at a later
time.

10. User Port. Various interface cartridges can be attached to the user
port, such as the VICMODEM, or RS 232 communication cartridge.

INSTALLATION

CONNECTIONS TO YOUR TV

Connect the computer to your TV as shown on page 4.

1. Attach one end of the TV cable to the phono type TV signal jack at
the rear of the Commodore 64. Just push it in. Either end of the
cable can be used.

2. Connect the other end of the cable to the antenna switchbox. Just
push it in.

3

TV

SWITCH BOX

TO r Q
TV SIGNAL TO 300 OHM

JACK ANTENNAINPUT

POWER
SUPPLY

3. If you have a VHF antenna, disconnect it from your TV set..
4. Connect your VHF antenna cable to the screw terminals labeled "an-

tenna input" on the switchbox. If your antenna cable is the round
75-ohm coax type, use a 75-ohm to 300-ohm adapter (not supplied)
to attach your antenna cable to the switchbox.

5. Connect the twin lead output cable of the antenna switchbox to the
VHF antenna terminals of your TV set. If your set is one of the newer
types with a round 75-ohm VHF connector, 'you will need a 300-ohm
to 75-ohm converter (not supplied) to connect the switchbox to the
75-ohm VHF antenna input on the set.

6. Set the TV's VHF tuner to the channel number indicated on the com-
puter's channel selector switch (channel 3 move the switch to the left,
channel 4 move the switch to the right). If a strong local TVsignal is
present on one of these channels, select the other channel to avoid

possible interference.
8. Plug the power supply cable into the power socket on the side of the

Commodore 64. Just push it in. It is "keyed" to allow insertion in only
one direction, so you can't connect the power cord the wrong way.
The power supply converts household current into the form the com-
puter uses.

4

75 OHM TO

300 OHM

ADAPTER 1

YOUR 75 OHM

COAX VHF ANTENNA----

The Commodore 64 is now correctly connected. No additional con-
nections are required to use the computer with your TV. The antenna
switchbox will connect the computer to the TV when the slide switch is in

the "computer" position. When the switch is in the "TV" position your set
will operate normally.

5

TO tTV SIGNAL

JACK

BACK OF YOUR TV

OPTIONAL CONNECTIONS

Since the Commodore 64 furnishes a channel of high fidelity sound,
you may wish to play it through a quality amplifier to realize the best
sound possible. In addition, the Commodore 64 also provides a stan-
dard "composite" video signal, which can be fed into a television
monitor.

These options are made possible by the audio/video output jack on

the rear panel of the Commodore 64. The easiest way to gain access to
these signals is by using a standard S-Pin DIN audio cable (not
supplied). This cable connects directly to the audio/video connector on
the computer. Two of the four pins on the opposite end of the cable
contain the audio and video signals. Optionally, you can construct your
own cable, using the pinouts shown in Appendix I as a guide.

6

Normally, the BLACK connector of the DIN cable supplies the AUDIO

signal. This plug may be connected to the AUXILIARY input of an am-
plifier, or the AUDIO IN connector of a monitor or other video system,
such as a video cassette recorder (VCR).

The WHITE or RED connector usually supplies the direct VIDEO signal.
This plug is connected to the VIDEO IN connector of the monitor or video
input section of some other video system, such as a VCR.

Depending on the manufacturer of your DIN cable, the color coding
of the plugs may be different. Use the pinouts shown in Appendix I to
match up the proper plugs if you don't get an audio or video signal

using the suggested connections.

AUDJONIDEO

OUTPUT~--
..

TO AUXILIARY

INPUTOR

TUNERINPUT ~O VIDEOIN* 4

TV MONITOR

AUDIO SYSTEM

If you purchased peripheral equipment, such as a VIC 1541 disk drive

or a VIC 1515 printer, you may wish to connect it at this time. Refer to
the user's manuals supplied with any additional equipment for the

proper procedure for connecting it to the computer.

7

A completed system might look like this.

>=~ ..
OPERATION

USINGTHE COMMODORE 64

1. Turnon the computer using the rocker switch on the right-side panel
when you're looking at the computer from the front.

2. After a few moments the following will be displayed on the TV
screen:

8

-- --- .

3. If your TV has a manual fine tuning knob, adjust the TV until you get
a clear picture.

4. You may also want to adjust the color and tint controls on the TV for
the best display. You can use the color adjustment procedure de-
scribed later to get everything setup properly. When you first get a
picture, the screen should appear mostly dark blue, with a light
blue border and letters.

If you don't get the expected results, recheck the cables and connec-
tions. The accompanying chart will help you isolate any problem.

TROUBLESHOOTINGCHART

Remedy

Make sure power
switch is in "On"

position

Check power socket
for loose or dis-

connected power
coble.

Check connection

with wall outlet

Take system to
authorized dealer

for replacement of
fuse

Check other

channel for

picture (3 or 4)

Computer hooks up to
VHF antenna terminals

Check TV output

cable connection

Set computer for
some channel as TV

(3 or 4)

I Symptom

Cause

Indicator light Computer not
not "On" "On"

Power cable

not plugged
in

Power supply

not plugged
in

Bad fuse in

computer

TV on wrong
channel

Incorrect

hookup

Video coble

not plugged
in

Computer set

for wrong
channel

9

TIP: The COMMODORE 64 was designed to be used by everyone.

But we at Commodore recognize that computer users may, occasionally, run into

difficulties. To help answer your questions and give you some fun programming
ideas, Commodore has created several publications to help you. You might also find

that it's a good idea to join a Commodore Users Club to help you meet some other
COMMODORE 64 owners who can help you gain knowledge and experience.

CURSOR

The flashing square under READYis called the cursor and indicates
where what you type on the keyboard will be displayed" on the screen.
As you type, the cursor will move ahead one space, as the original
cursor position is replaced with the character you typed. Try typing on
the keyboard and watch as characters you type are displayed on the TV
screen.

10

Symptom Cause Remedy

Random pattern Cartridge not Reinsert

on TV with properly cartridge after
cartridge in inserted turning off power
place

Picture without Poorly tuned Retune TV

color TV

Picture with Bad color Adjust color!
poor color adjustment hue/brightness

on TV controls on TV

Sound with TV volume up Adjust volume of
excess high TV

background
noise

Picture OK, TV volume too Adjust volume of
but no sound low TV

Aux. output Connect sound

not properly jack to aux. input
connected on amplifier and

select aux. input

COLOR ADJUSTMENT

There is a simple way to get a pattern of colors on the TV so you can
easily adjust the set. Even though you may not be familiar with the

operation of the computer right now, just follow along, and you'll see

how easy it is to use the Commodore 64.

First, look on the left side of the keyboard and locate the key marked

1iIII.This stands for ConTRoL and is used, in conjunction with other
keys, to instruct the computer to do a specific task.

To use a control function, you hold down the amikey while depress-

ing a second key.
Try this: hold the amikey while also depressing thellkey. Then re-

lease both keys. Nothing obvious should have happened, but if you
touch any key now, the screen will show the character displayed in re-
verse type, rather than normal type-like the opening message or any-
thing you typed earlier.

Hold down the L'I:Hlli8:H:1. What happens? If you did the above pro-

cedure correctly, you should see a light blue bar move across the screen

11

and then move down to the next line as long as the 1-"l:I~tll::8:J,':1is de-
pressed.

Now, hold _while depressing any of the other number keys. Each

of them has a color marked on the front. Anything displayed from this

point will be in that color. For example, hold_ and theDkey and
release both. Now hold the 1-"l:I~tll::8:J,':I.

Watch the display. The bar is now in yellow! In a like manner you can

change the bar to any of the other colors indicated on the number keys
by holding _and the appropriate key.

Change the bar to a few more different colors and then adjust the
color and tint controls on your TV so the display matches the colors you
selected.

The display should appear something like this:

At this point everything is properly adjusted and working correctly.
The following chapters will introduce you to the BASIC language. How-
ever, you can immediately start using some of the many prewritten ap-
plications and games available for the Commodore 64 without knowing
anything about computer programming.

Each of these packages contains detailed information about how to
use the program. It is suggested, though, that you read through the first
few chapters of this manual to become more familiar with the basic
operation of your new system.

12

KEYBOARD

Now that you've got everything set up and adjusted, please take a
few moments to familiarize yourself with the keyboard which is your
most important means of communication with the Commodore 64.

You will find the keyboard similar to a standard typewriter keyboard
found in most areas. There are, however, a number of new keys which
control specialized functions. What follows is a brief description of the
various keys and how they function. The detailed operation of each key
will be covered in later sections.

Ii --

The .~j:llll~jl. key signals the computer to look at the information that
you typed and enters that information into memory.

The" key works like that on a standard typewriter. Many keys

are capable of displaying two letters or symbols and two graphic char-

acters. In the "upper/lower case" mode the _ key gives you .stan-
dard upper case characters. In the "upper case/graphic" mode the_ key will display the graphic character on the right hand side of
the front part of the key.

In the case of special YELLOWfunction keys, the .. key will give
you the function marked on the front of the key.

14

EDITING

No one is perfect, and the Commodore 64 takes that into account. A
number of editing keys let you correct typing mistakes and move infor-
mation around on the screen.

There are two keys marked Em'(CuRSoR), one with up and down
arrows 11.00:i"I:.~I,the other with left and right arrows r301:~:EI . You can

use these keys to move the cursor up and down or left and right. In the
unshifted mode, the,Em keys will let you move the cursor down and to
the right. Using the EmIiI key and ail keys allows the cursor to be
moved either up or to the left. The cursor keys have a special repeat
feature that keeps the cursor mQving until you release the key.

If you hit the .I/I I'A.I~. key, the cursor will move back a space, eras-

ing (DELeting) the previous character you typed. If you're in the middle
of a line, the character to the left is deleted and the characters to the

right automC?tically move together to cI.ose up the space.

A 'EDDed .1/h"I'A'I~. ,allows you to INSerT information on a line. For
example, if you noticed a typing mistake in the beginning of a line-

perhaps you left out part of a name-you could use the r301:io'l:EI:key to

move back to the error and then hit .1/h'1I'A'I~. to insert a space. Then

just Itype in the missing letter.

'IOI.:'A:lI],'positions the cursor at the "HOME" position of the screen,
which is:the' upper left-hand corner. A shifted IOI.:'A:I''''''''will clear the
screen and place the cursor in the home position.

.W"'..lmI8 operates as the name implies. It restores the computer to the
normal state it was in before you changed things with a program or
some command. A lot more will be said on this in later chapters.

15

FUNCTION KEYS

The four function keys on the right side of the keyboard can be "pro_
grammed" to handle a variety of functions. They can be defined in
many ways to handle repetitive tasks.

Thell3key, which stands for ConTRol, allows you to set colors, and

perform other specialized functions. You hold the I13key down while
depressing another designated key to get a control function. You had an

opportunity to try the _key when you changed text colors to create
different color bars during the setup procedure.

Normally, depressing the 1:lIIlrj,'tIlI:llkey will stop the execution of a
BASIC program. It signals the computer to STOP doing something. Using

16

the 1:lIIlrl.'tlllli key in the shifted mode will allow you to automatically

load a program from tape.

[I COMMODORE KEY

The Commodore key ~ performs a number of functions. First, it
allows you to move between the text and graphic display modes.

When the computer is first turned on, it is in the Upper Case/Graphic
mode, that is, everything you type is in upper case letters. As was men-
tioned, using the IDIIiI key in this mode will display the graphic on the
right side of the keys.

If you hold down the ~ key and EmI key, the display will change

to upper and lower case. Now, if you hold down the ~ key and any
other key with a graphic symbol, the graphic shown on the left side of
the key will be displayed.

To get back into the upper case/graphic mode hold down the ~ key
and IDIIiI key again.

The second function of the ~ key is to allow you access to a second
set of eight text colors. By holding down the ~ key and any of the
number keys, any text now typed will be in the alternate color available
from the key you depressed. Chapter 5 lists the text colors available
from each key.

BACK TO NORMAL

Now that you've had a chance to look over the keyboard, let's explore
some of the Commodore 64's many capabilities.

If you still have the color bars on the screen from adjusting your TV
set, hold IDIIiI and 11:I1:'Jllm,l... The screen should clear and the cursor
will be positioned in the "home" spot (upper left-hand corner of the
screen).

Now, simultaneously hold ~ and the. key. This sets the text color
back to light blue. There is one more step needed to get everything back

to normal. Hold ami and EJ(Zero not Oh I). This sets the display mode

back to normal. If you remember, we turned REVERSEtype on with the

EmI. to create the color bars (the color bars were actually reversed
spaces). If we were in the normal text mode during the color test, the
cursor would have moved, but just left blank spaces.

17

TIP:

Now that you've done things the hard way, there is a simple way to reset the

machine to the normal display. First press the IiI!IIIiD key and then press

the IiIiI!IiII key. Ii1!EI!II must always be held down in order to use the
EmI key function.

This will clear the screen and return everything to normal. If there is a program in
the computer, it will be left untouched. This is a good sequence to remember, espe-
cially if you do a lot of programming.

If you wish to reset the machine as if it were turned off and then switched on

again, type, SYS64759 and press EmID.. Be careful using this command! It will

wipe out any program or information that is currently in the computer.

LOADING AND SAVING PROGRAMS

One of the most important features of the Commodore 64 is the ability
to save and load programs to and from cassette tape or disk.

This capability allows you to save the programs you write for use at a
later time, or purchase prewritten programs to use with the Commodore
64.

Make sure that either the disk drive or datasette unit is attached
properly.

LOADING PREPACKAGED PROGRAMS

For those of you interested in using only prepackaged programs

available on cartridges, cassette, or disk here's all you have to do:

1. CARTRIDGES: The Commodore 64 computer has a line of programs
and games on cartridge. The programs offer a wide variety of business
and personal applications and the games are just like real arcade
games-not imitations. To load these games, first turn on your TV set.
Next turn OFF your Commodore 64. YOU MUST TURN OFF YOUR COM-
MODORE 64 BEFOREINSERTING OR REMOVING CARTRIDGESOR YOU
MAY DAMAGE THE CARTRIDGE AND/OR YOUR COMMODORE 641

Third insert the cartridge. Now turn your Commodore 64 on. Finally type
the appropriate STARTkey as is listed on the instruction sheet that comes
with each game.

2. CASSETTES:US?your DATASSETTErecorder and the ordinary audio cas-

18

settes that came as part of your prepackaged program. Make sure
the tape is completely rewound to the beginning of the first side.
Then, just type lOAD. The computer will answer with PRESS PLAYON
TAPE, so you respond by pressing play on your datasette machine. At
this point the computer screen will go blank until the program is
found. The computer will say FOUND (PROGRAM NAME) on the

screen. Now you press down on the [I KEY. This will actually
load the program into the computer. If you want to stop the loading
simply press the .:Ullr~"II'I:Ikey.

3. DISK:Using your disk drive, carefully insert the preprogrammed disk
so that the label on the disk is facing up and is closest to you. look
for a little notch on the disk (it might be covered with a little piece of
tape). If you're inserting the disk properly the notch will be on the left
side. Once the disk is inside close the protective gate by pushing down
on the lever. Now type lOAD "PROGRAM NAME", 8 and hit the
.:~:lIII:U. key. The disk will make noise and your screen will say:

When the READYcomes on and the. is on, just type RUN, and
your prepackaged software is ready to use.

LOADING PROGRAMS FROM TAPE

loading a program back from tape or disk is just as simple. For tape,
rewind the tape back to the beginning and type:

LOAD "Pf;:OGRAfo1 t.jAt'1E"

If you don't remember the program name, just type lOAD and the
first program on the tape will be loaded into memory.

After you press ..:~:lIII:~I- the computer will respond with:

19

PRESS PLAY ON TAPE

After you depress the play key, the screen will blank, turning the
border color of the screen as the computer searches for the program.

When the program is found, the screen will display:

FOUND PROGRAM NAME

To actually LOADthe program, depress the [I key. To abandon the
LOADing procedure, hit .:ml'~"tI8I:.J1.If you hit the Commodore key, the
screen will again turn the border color while the program is LOADed.
After the LOADing procedure is completed, the screen will return to the
normal state and the READYprompt will reappear.

LOADING PROGRAMS FROM DISK

Loading a program from disk follows the same format. Type:

LOAD "PROGRAM NAME",8

The 8 is the code for the disk, so you're just letting the computer know
that you want the program loaded from the disk.

After you hit .:~IIIII~I. the disk will start whirring and the display
shows:

20

NOTE:

When you load a new program into the computer's memory, any in-
structions that were in the computer previously will be erased. Make
sure you save a program you're working on before loading a new one.
Once a program has been loaded, you can RUN it, LIST it, or make

changes and re-save the new version.

SAVING PROGRAMS ON TAPE

After entering a program, if you wish to save it on tape, type:

:::;A'.iE "PF.:OOF.:AN t.jAt'1E"

"PROGRAM NAME" can be up to 16 characters long. After you hit
.:I:lIII:j/. the computer will respond with:

PRESS PLAY AND F.:ECOF.:O ON TAPE

Press both the record and play keys on the datasette. The screen will
blank, turning the color of the border.

After the program is saved on tape, the READYprompt will reappear,
indicating that you can start working on another program, or just turn
off the computer for a while.

SAVING PROGRAMS ON DISK

Saving a program on disk is even simpler. Type:

:::;A E "PPOGF.:At'1 t.jAt'1E"., ::::

21

The 8 is the code for the disk, so you're just letting the computer know
you want the program saved to disk.

After you press 8:j:llll:j/8 the disk will start to turn and the computer
will respond with:

PRINT AND CALCULATIONS

Now that you've gotten through a couple of the more difficult opera-
tions you need in order to keep the programs you like, lets start making
some programs for you to save.

Try typing the following exactly as shown:

If you make a typing mistake, use the .1/1.'1f'.t'I~.key to erase the char-
acter immediately to the left of the cursor. You can delete as many
characters as necessary.

let's see what went on in the example above. First, you instructed
(commanded) the computer to PRINT whatever was inside the quote
marks. By hitting 8:j:llll:j/8 you told the computer to do what you in-
structed and COMMODORE 64 was printed on the screen.

When you use the PRINTstatement in this form, whatever is enclosed
in quotes is printed exactly as you typed it.

If the computer responded with:

?SYNTAX ERROR

ask yourself if you made a mistake in typing, or forgot the quote marks.

22

The computer is precise and expects instructions to be given in a specific
form.

But don't get worried; just remember to enter things as we present
them in the examples and you'll get along great with the Commo-
dore 64.

Remember, you can't hurt the computer by typing on it, and the best
way to learn BASIC is to try different things and see what happens.

PRINTis one of the most useful and powerful commands in the BASIC
language. With it, you can display just about anything you wish, includ-
ing graphics and results of computations.

For example, try the following. Clear the screen by holding down the

Emil key and [11.:''':lt!l'''' key and type (be sure to use the '1' key for
one, not a letter 'I'):

What you've discovered is that the Commodore 64 is a calculator i.nits
basic form. The result of "24" was calculated and printed automatically.
In fact, you can also perform subtraction, multiplication, division, ex-
ponentiation, and advanced math functions such as calculating square
roots, etc. And you're not limited to a single calculation on a line, but
more on that later.

Note that in the above form, PRINT behaved differently from the first
example. In this case, a value or result of a calculation is printed, rather than
the exact message you entered because the quote marks were omitted.

ADDITION

The plus sign (+ rsignals addition: we instructed the computer to print
the result of 12 added to 12. Other arithmetic operations take a similar
form to addition. Remember to always hit .:~"III:~I. after typing PRINT
and the calculation.

23

SUBTRACTION

To subtract, use the conventional minus (-) sign. Type:

MULTIPLICATION

If you wanted to multiply 12 times 12, use the asterisk (*) to represent
multiplication. You would type:

DIVISION

Division uses the familiar "I". For example, to divide 144 by 12, type:

24

EXPONENTIATION

In a like fashion, you can easily raise a number to a power (this is the
same as multiplying a number by itself a specified number of times).
The 'j' (Up arrow) signifies exponentiation.

PRINT 12 t 5
2488:32

This is the same as typing:

PRINT 12 .. 12 .. 12 .. 12 .. 12
248:3:32

TIP:

BASIC has a number of shortcut ways of doing things. One such way is abbreviat-

ing BASIC commands (or keywords). A ? can be used in place of PRINT,for exam-
ple. As we go on you'll be presented with many commands; Appendix D shows the
abbreviations for each and what will be displayed on the screen when you type the
abbreviated form.

The last example brings up another important point: many calcula-
tions may be performed on the same line, and they can be of mixed

types.
You could calculate this problem:

25

Up to this point we've just used small numbers and simple examples.
However, the .Commodore 64 is capable of more complex calculations.

You could, for example, add a number of large figures together. Try
this, but don't use any commas, or you'll get an error:

..

? 123.45 + 345.78 + 7895.687
8364.917

That looks fine, but now try this:

? 12123123.45 + :345.78 + 7895.687
121:~:1:364. 9

If you took the time to add this up by hand, you would get a different
result.

What's going on here? Even though the computer has a lot of power,
there's a limit to the numbers it can handle. The Commodore 64 can

work with numbers containing 10 digits. However when a number is
printed, only nine digits are displayed.

So in our example, the result was "rounded" to fit in the proper
range. The Commodore 64 rounds up when the next digit is five or more;
it rounds down when the next digit is four or less.

Numbers between 0.01 and 999,999,999 are printed using standard
notation. Numbers outside this range are printed using scientific nota-
tion.

Scientific notation is just a process of expressing a very large or small
number as a power of 1o.

If you type:

? 123000000000000000
1.23E+17

26

This is the same as 1.23 * loi17 and is used just to keep things tidy.
There is a limit to the numbers the computer can handle, even in

scientific notation. These limits are:

Largest::t: 1.70141183E+38

Smallest (different from zero): :t 2.93873588-39

PRECEDENCE

If you tried to perform some mixed calculations different from the
examples we showed earlier, you might not have gotten the results that
you expected. The reason is that the computer performs calculations in a
certain order.

In this calculation:

20 + 8 / 2

you can't tell whether the answer should be 24 or 14 until you know in
which order to perform the calculations. If you add 20 to 8 divided by 2
(or 4), then the result is 24. But, if you add 20 plus 8 and then divide by
2 the answer is 14. Try the example and see what result you get.

The reason you got 24 is because the Commodore 64 performs calcu-
lations left to right according to the following:

First: - minus sign indicating negative numbers
Second: i expon~ntiation, left to right
Third: */ multiplication and divisions, left to right
Fourth: + - addition and subtraction, left to right

Follow along according to the order of precedence, and you will see
that in the above example the division was performed first and then the
addition to get a result of 24.

Make up some problems of your own and see if you can follow along
and predict the results according to the rules set down above.

There's also an easy way to alter the precedence process by using
parentheses to set off which operations you want performed first.

For example, if you want to divide 35 by 5-plus-2 you type:

? ::::5 ("' 5 + 2
9

27

you will get 35 divided by 5 with 2 added to the answer, which is not
what you intended at all. To get what you really wanted, try this:

? 35 / (5 + 2)
~. ,

What happens now is that the computer evaluates what is contained
in the parentheses flrst. If there are parentheses within parentheses, the
innermost parentheses are evaluated flrst.

Where there are a number of parentheses on a line, such as:

? (i2 + 9) . (6 + 1)
147

the computer evaluates them left to right. Here 21 would be multiplied
by 7 for the result of 147.

COMBINING THINGS

Even though we've spent a lot of time in areas that might not seem
very important, the details presented here will make more sense once
you start to program, and will prove invaluable.

To give you an idea how things flt in place, consider the following:
how could you combine the two types of print statements we've exam-
ined so far to print something more meaningful on the screen?

We know that by enclosing something within quote marks prints that
information on the screen exactly as it was entered, and by using math
operators, calculations can be performed. So why not combine the two
types of PRINT statements like this:

SEMICOLON MEANS NO SPACE.

? 115 :+: 9 :;::; II:: 5 :« 9

5 ;t :3 = 45

28

Even though this might seem a bit redundant, what we've done is
simply use both types of print statements together. The first part prints
"5 * 9 =" exactly as it was typed. The second part does the actual work
and prints the result, with the semicolon separating the message part of
the statement from the actual calculation.

You can separate the parts of a mixed print statement with punctua-
tion for various formats. Try a comma in place of the semicolon and see
what happens.

For the curious, the semicolon causes the next part of the statement to
be printed immediately after the previous part, without any spaces. The
comma does something different. Even though it is an acceptable
separator, it spaces things out more. If you type:

the numbers will be printed across the screen and down on to the next
line.

The Commodore 64's display is organized into 4 areas of 10 columns
each. The comma tabs each result into the next available area. Since

we asked for more information to be printed than would fit on one line,
(we tried to fit five 10-column areas on one line) the last item was moved
down to the next line.

The basic difference between the comma and semicolon in formatting
PRINT statements can be used to our advantage when creating more
complex displays: it will allow us to create some sophisticated results
very easily.

29

Up to now we've performed some simple operations by entering a
single line of instructions into the computer. Once .:j:aIlI~U. was de-

pressed, the operation that we specified was performed immediately.
This is called the IMMEDIATE or CALCULATORmode.

But to accomplish anything significant, we must be able to have the

computer operate with more than a single line statement. A number of

statements combined together is called a PROGRAM and allows you to
use the full power of the Commodore 64.

To see how easy it is to write your first Commodore 64 program, try
this:

Clear the screen by holding the _ key, and then depressing the
ItJ.~fj:[.],',I:I key.

Type NEW and press .~j:alll=!/.. (This just clears out any numbers that
might have been left in the computer from your experimenting.)
Now type the following exactly as shown (Remember to hit .:j:alll~j/.
after each line)

f
1121 ?"CONNODORE 64" I
2121 GOTO 1121.

Now, type RUN and hit .~j:alll:j/.-watch what happens. Your screen
will come alive with COMMODORE 64. After you've finished watching
the display, hit .~m/'I.'t(ll:l to stop the program.

A number of important concepts were introduced in this short pro-
gram that are the basis for all programming.

Notice that here we preceded each statement with a number. This
LINEnumber tells the computer in what order to work with each state-
ment. These numbers are also a reference point, in case the program
needs to get back to a particular line. line numbers can be any whole
number (integer) value between 0-63,999.

1~ PRINT "COMMODORE 64"

r L STATEMENT
LINE NUMBER

32

I

It is good programming practice to number lines in increments of
10-in case you need to insert some statements later on.

Besides PRINT, our program also used another BASIC command,
GOTO. This instructs the computer to go directly to a particular line and
perform it, then continue from that point.

[
HI' PRINT "COMMODORE 64"

2" GOTO 1"

In our example, the program prints the message in line 10, goes to
the next line (20), which instructs it to go back to line 10 and print the
message over again. Then the cycle repeats. Since we didn't give the
computer a way out of this loop, the program will cycle endlessly, until
we physically stop it with the .:ml' u.UI key.

Once you've stopped the program, type: LIST. Your program will be
displayed, intact, because it's still in the computer's memory. Notice,
too, that the computer converted the? into PRINTfor you. The program
can now be changed, saved, or run again.

Another important difference between typing something in the im-
mediate mode and writing a program is that once you execute and
clear the screen of an immediate statement, it's lost. However, you can
always get a program back by just typing LIST.

By the way, when it comes to abbreviations don't forget that the
computer may run out of space on a line if you use too many.

33

EDITING TIPS

If you make a mistake on a line, yoju have a number of editing
options.

1. You can retype a line anytime, and the computer will automatically
substitute the new line for the old one.

2. An unwanted line can be erased by simply typing the line number
and .II.IIIII~. .

3. You can also easily edit an existing line, using the cursor keys and
editing keys.

Suppose you made a typing mistake in a line of the example. To
correct it without retyping the entire line, try this:

Type LIST, then using the .. and 11..m."I'.~1keys together move the
cursor up until it is positioned on the line that needs to be changed.

Now, use the cursor-right key to move the cursor to the character yo'u
want to change, typing the change over the old character. Now hit
.~I:lIII:I~. and the corrected line will replace the old one.

If you need more space on the line, position the cursor where the
space is needed and hit IDIIiI and .1~1o"t1J.4I'I~.at the same time and a
space will open up. Now just type in the additional information and hit

.:I:lIIIII~. .Likewise,you can delete unwanted characters by placing the
cursor to the right of the unwanted character and hitting the .1~Io"tIJ.4I'I~.
key.

To verify that changes were entered, type LIST again, and the cor-
rected program will be displayed! And lines don't have to be entered in
numerical order. The computer will automatically place them in the
proper sequence.

Try editing our sample program on page 33 by changing line 10 and
adding a comma to the end of the line. Then RUN the program again.

~ DON'T FORGETTO MOVETHE

CURSOR PAST LINE 20 BEFORE

YOU RUN THE PROGRAM.

HII PRINT "COMMODORE",

VARIABLES

Variables are some of the most used features of any programming
language, because variables can represent much more information in
the computer. Understanding how variables operate will make comput-
ing easier and allow us to accomplish feats that would not be possible
otherwise.

34

COMMODORE
COMMODORE
COMMODOR
COMMODORE
COMMODORE
COMMODORE
COMMODORE
COMMODORE
COMMODORE
COMMODORE
COMMODORE
COMMODORE
COMMODORE
BREAK IN 10
READY
.

COMMODORE
COMMODORE
COMMODORE
COMMODORE
COMMODORE
COMMODORE
~M~O~E
COMMODORE
COMMODORE
COMMODORE
COMMODORE
COMMODORE
COMMODORE

COMMODORE
COMMODORE
COMMODORE
COMMODORE
COMMODORE
COMMODORE
COMMODORE
COMMODORE
COMMODORE
COMMODORE
COMMODORE
COMMODORE
COMMODORE

I

COMMODORE
COMM06oRE
COMM06oRE
COMM06oRE
COMMODORE
COMMODORE
COMMODORE

COM~J~ORE
COMMODORE
COMMO~ORE
COMMODORE
COMMOBORE
COMMOIDORE

Imagine a number of boxes within the computer that can each hold a
number or a string of text characters. Each of these boxes is to be
labeled with a name that we choose. That name is called a variable

and represents the information in the respective box.
For example, if we say:

113X% = 15
20 X = 23.5
313X$ = "THESUMOF X%+X = "

The computer might represent the variables like this:

X% 15

X 23.5

X$ THE SUM OF X% +X

A variable name represents the box, or memory location, where the
current value of the variable is stored. As you can see, we can assign
either an integer number, floating point number, or a text string to a
variable.

The % symbol following a variable name indicates the variable will
represent an integer number. The following are valid integer variable
names:

35

A%

X%

Al%
NM%

The '$' following the variable name indicates the variable will repre-
sent a text string. The following are examples of string variables:

A$

X$

MI$

Floating point variables follow the same format, with the type indi-
cator:

Al
X

Y
MI

In assigning a name to a variable there are a few things to keep in
mind. First, a variable name can have one or two characters. The first

character must be an alphabetic character from A to Z; the second

character can be either alphabetic or numeric (in the range 0 to 9). A

third character can be included to indicate the type of variable (integer
or text string), % or $.

You can use variable names having more than two alphabetic

characters, but only the first two are recognized by the computer. So
PA and PARTNO are the same and would refer to the same variable
box.

The last rule for variable names is simple: they can't contain any
BASIC keywords (reserved words) such as GOTO, RUN, etc. Refer back
to Appendix D for a complete list of BASIC reserved words.

To see how variables can be put to work, type in the complete pro-
gram that we introduced earlier and RUN it. Remember to hit .:j:lIlI:U.

after each line in the program.

36

If you did everything as shown, you should get the following result
printed on the screen.

We've put together all the tricks learned so far to format the display
as you see it and print the sum of the two variables.

In lines 10 and 20 we assigned an integer value to X% and assigned a
floating point value to X. This puts the number associated with the vari-
able in its box. In line 30, we assigned a text string to X$. Line 40
combines the two types of PRINTstatements to print a message and the
actual value of X% and X. Line 50 prints the text string assigned to X$
and the sum of X% and X.

Note that even though X is used as part of each variable name, the
identifiers % and $ make X%, X, and X$ unique, thus representing
three distinct variables.

But variables are much more powerful. If you change their value, the
new value replaces the original value in the same box. This allows you
to write a statement like:

X=X+l

This would never be accepted in normal algebra, but is one of the
most used concepts in programming. It means: take the current value of
X, add one to it and place the new sum into the box representing X.

IF . . . THEN

Armed with the ability to easily update the value of variables, we can
now try a program such as:

37

What we've done is introduce two new BASIC commands, and pro-
vided some control over our runaway little print program introduced at
the start of this chapter.

IF . . . THEN adds some logic to the program. It says IF a condition
holds true THEN do something. IF the condition no longer holds true,
THEN do the next line in the program.

A number of conditions can be set up in using an IF . . . THEN state-
ment:

SYMBOL
<
>
=

<>
>=
< =

The use of anyone of these
powerful.

1" CT= "

[
2" ?"COMMODORE64"
30' CT = CT + 1
4" IF CT < 5 THEN2"

1
5" END

MEANING
Less Than
Greater Than
Equal To
Not Equal To
Greater Than or Equal To
Less Than or Equal To
conditions is simple, yet surprisingly

38

In the sample program, we've set up a "loop" that has some con-
straints placed on it by saying: IF a value is less than some number
THEN do something.

Line 10 sets CT (CounT) equal to O. Line 20 prints our message. Line 30
adds one to the variable CT. This line counts how many times we do the
loop. Each time the loop is executed, CT goes up by one.

Line 40 is our control line. If CT is less than 5, meaning we've exe-
cuted the loop less than 5 times, the program goes back to line 20 and
prints again. When CT becomes equal to 5-indicating 5 COMMODORE
64's were printed-the program goes to line 50, which signals to END
the program.

Try the program and see what we mean. By changing the CT limit in
line 40 you can have any number of lines printed.

IF . . . THEN has a multitude of other uses, which we'll see in future
examples.

FOR . . . NEXT LOOPS

There is a simpler, and preferred way to accomplish what we did in
the previous example by using a FOR . . . NEXT loop. Consider the
following:

As you can see, the program has become much smaller and more
direct.

CT starts at 1 in line 10. Then, line 20 does some printing. In Line 30

39

CT is incremented by 1. The NEXT statement in line 30 automatically
sends the program back to line 10 where the FOR part of the FOR. . .
NEXTstatement is located. This process will continue until CT reaches the
limit you entered.

The variable used in a FOR . . . NEXT loop can be incremented by
smaller amounts than 1, if needed.

Try this:

If you enter and run this program, you'll see the numbers from 1 to
10, by .5, printed across the display.

All we're doing here is printing the values that NB assumes as it goes
through the loop.

You can even specify whether the variable is increasing or decreas-
ing. Substitute the following for line 10:

10 FOR NB = 10 to 1 STEP-.5

and watch the opposite occur, as NB goes from 10 to 1 in descending
order.

40

INTRODUCTION

The next few chapters have been written for people who have be-
come relatively familiar with the BASIC programming language and the
concepts necessary to write more advanced programs.

For those of you who are just starting to learn how to program, you
may find some of the information a bit too technical to understand
completely. But take heart. . . because for these two fun chapters,
SPRITEGRAPHICS and CREATINGSOUND, we've set up some simple
examples that are written for the new user. The examples will give you
a good idea of how to use the sophisticated sound and graphics
capabilities available on your COMMODORE 64.

If you decide that you want to learn more about writing programs in
BASIC, we've put a bibliography (Appendix N) in the back of this man-
ual.

If you are already familiar with BASIC programming, these chapters
will help you get started with advanced BASIC programming techniqu-
es. More detailed information can be found in the COMMODORE64
PROGRAMMER'SREFERENCEMANUAL,available through your local
Commodore dealer.

42

SIMPLE ANIMATION

Let's exercise some of the Commodore 64's graphic capabilities by
putting together what we've seen so far, together with a few new con-
cepts. If you're ambitious, type in the following program and see what
happens. You will notice that within the print statements we can also
include cursor controls and screen commands. When you see something

like {CRSRLEFT} in a program listing, hold the Emil key and hit the
CRSRLEFT/RIGHTkey. The screen will show the graphic representation
of a cursor left (two vertical reversed bars). In the same way, pressing

EmIlI and 11I.:',t:lm",.shows as a reversed heart.

NEW
: INDICATES NEW

COMMAND10 REM BOUNCING BALL
20 PR I NT ,,{ CLR,,'HOME}"
25 FOR X = 1 TO 10 :~PRINT
30 FOR BL = 1 TO 40
40 PRINT"l8 {CRSR LEFT} II::REM (8 is a. SHIFT-Q)
50 FOR TM~ TO 5
60 NEXT TM
70 NEXT BL
75 REM MOVE SQ' RIGHT TO LEFT
80 FOR BL - 40 TO 1 STEP -1
510 PRINT" {CRSR LEFT} {CRSR LEFT} 8 {CRSR LEFT} It;

100 FOR TM = 1 TO 5
110 NEXT TM
120 NEXT BL
130 GOTO 20

THESE SPACES

ARE INTENTIONAL

TIP:

All words in this text will be completed on one line. However, os long as you don't

hit ED!II your 64 will automatically move to the next line even in the middle of a

word.

The program will display a bouncing ball moving from left to right,

and back again, across the screen.

If we look at the program closely, (shown on page 44) you can see

how this feat was accomplished.

. line 10 is a REMark that just tells what the program does; ithas no

43

10
20

G

25
30
40

C~:
70
75

~
80
90

r-100
LI10
120
130

REM BOUNCING BALL
!PRINT "{CLR/HOME}I

FOR X = 1 TO 10 : PRINT "{CRSR/OOWN}":NEXT
FOR BL = 1 TO 40
PRINT" 8{CRSR LEFT}";:REM <8 is a SHIFT-Q)
FOR TM = 1 TO :5

NEXT TM
NEXT BL
REM MOVE BALL RIGHT TO LEFT
FOR BL = 40 TO 1 STEP -1

PRINT" {CRSR LEFT} {CRSR LEFT}. {CRSR LEFT} ";
FOR Tt'l= 1 TO 5
NEXT TM
NEXT BL
GOTO 20

effect on the program itself. line 20 clears the screen of any informa-

tion.

line 25 PRINTs 10 cursor-down commands. This just positions the ball

in the middle of the screen. If line 25 was eliminated the ball would

move across the top line of the screen.

line 30 sets up a loop for moving the ball the 40 columns from the left

to right.

line 40 does a lot of work. Itfirst prints a space to erase the previous

ball positions,then itprintsthe ball,and finallyitperforms a cursor-left

to get everything ready to erase the current ball position again.

The loop set up in lines 50 and 60 slows the ball down a bit by delay-

ing the program. Without it,the ball would move too fast to see. -;

line 70 completes the loop that prints balls on the screen, set up in

line 30. Each time the loop is executed, the ball moves another space to

the right.As you notice from the illustration,we have set up a loop

within a loop.

This isperfectly acceptable. The only time you get in trouble iswhen

the loops cross over each other. It'shelpful inwriting programs to check

yourself as illustrated here to make sure the logic of a loop is correct.

To see what would happen ifyou cross a loop, reverse the statements

in lines 60 and 70. You will get an error because the computer gets

confused and cannot figure out what's going on.

lines 80 through 120 just reverse the steps in the firstpart of the

program, and move the ball from right to left. line 90 is slightly differ-

ent from line 40 because the ball is moving in the opposite direction (we

have to erase the ball to the right and move to the left).

44

And when that's all done the program goes back to line 20 to start the

whole "p_~~cess over again. Pretty neatl To stop the program hold
down .:I~"'I8I:I:IIand hit 1:lIllrjI8J:I.

For a variation on the program, edit line 40 to read:

40 PRINT "1"; ~
TO MAKE THE to HOLD THE SHIFT

KEY DOWN AND HIT THE lETTER "Q."

Run the program and see what happens now. Because we left out the
cursor control, each ball remains on the screen until erased by the ball
-moving right to left in the second part of the program.

INPUT

Up to now, everything within a program has been set before it is run.
Once the program was started, nothing could be changed. INPUT
allows us to pass new information to a program as it is running and
have that new information acted upon.

To get an idea of how INPUTworks, type NEW_:I:lIII:U_and enter this
short program:

What happens when you run this program is simple. A question mark
will appear, indicating that the computer is waiting for you to type
something. Enter any character, or group of characters, from the
keyboard and hit _:1:1111:11_.The computer will then respond with "YOU
TYPED :" followed by the information you entered.

This may seem very elementary, but imagine what you can have the
computer do with any information you enter.

You can INPUT either numeric or string variables, and even have the
INPUTstatement prompt the user with a message. The format of INPUTis:

INPUT "PROMPT MESSAGE";VARIABLE

~ PROMPT MUST IE 38 CHAaACTERS OR LUS.

45

Or, just:

INPUT VARIABLE

NOTE: To get out of this program hold down the .:~IJ/r~"tIOI:.Iand
.:1:1-'1101:1:8 keys.

The following program is not only useful, but demonstrates a lot of

what has been presented so far, including the new input statement.

1 REN TEI1PERATUF.:E C:OHVERSI Ot~ PF~O(;F.:AI1
5 P": ItH "{ GU-: HOI1E}"
10 PRIt~T "COt~VEF.:TFRON FAHRENHEIT OF.: CELSIUS

(F/G)": nlPUT A$
20 IF A$ = "~" THEt~ 20
3(1 IF A$ = "F" THEN 10(1
413 IF A$ <:? "C" THEt.4 10
513 INPUT "ENTEF.: DEGF:EES .cEL~:;I US : ": C
613 F = (C~9)/5+32
713 PRINT C.:" DEO. GELSI U::; = "; F.:" DEO.

FAHF.:Et~HEIT"
8~j PI': It-IT
913 (;OTO 113
HKI IHPUT "EtHEl': DEGREES FAHRENHEIT: ": F
1113 C = (F-32)~5/9
1213 PI': I NT F.:" DEG. FAHF.:Et-4HEI T = "; C.:" DEG.

CELSII-'S"
1:313 PI': I NT
1413 (;OTO 113

If you enter and run this program, you'll see INPUT in action.
Line lOuses the input statement to not only gather information, but

also print our prompt. Also notice that we can ask for either a number or
string (by using a numeric or string variable).

Lines 20, 30, and 40 do some checks on what is typed in. In line 20, if
nothing is entered (just .:~:lIII:~/. is hit), then the program goes back to
line 10 and requests the input again. In line 30, if F is typed, you know
the user wants to convert a temperature in degrees Fahrenheit to Cel-

sius, so the program branches to the part that does that conversion.
Line 40 does one more check. We know there are only two valid

choices the user can enter. To get to line 40, the user must have typed
some character other than F. Now, a check is made to see if that char-
acter is a C; if not, the program requests input again.

This may seem like a lot of detail, but it is good programming prac-

46

tice. A user not familiar with the program can become very frustrated if
it does something strange because a mistake was made entering infor-
mation.

Once we determine what type of conversion to perform, the program
does the calculation and prints out the temperature entered and the
converted temperature.

The calculation is just straight math, using the established formula for
temperature conversion. After the calculation is finished and answer
printed, the program loops back and starts over.

After running, the screen might look like this:

I

CONVERT FROM FAHRENHEIT OR CELSIUS (F/C): ?F I
ENTER DEGREES FAHRENHEIT: 32
32 DEG. FAHRENHEIT = 0 DEG. CELSIUS

CONVERT FROM FAHRENHEIT OR CELSIUS (F/C):

After running the program, make sure to save it on disk or tape. This
program, as well as others presented throughout the manual, can form
the base of your program library.

GET

GET allows you to input one character at a time from the keyboard

without hitting ,,:1:1111:1/..This really speeds entering data in many appli-
cations. Whatever key is hit is assigned to the variable you specify with
GET.

The following routine illustrates how GET works:

NEW

1 PRINT "{CLR/HOME}"
113 GET A$: IF A$ = "1" THEN 113
213 PRINT A$:
313 GOTO 113

47

If you RUNthe program, the screen will clear and each time you hit a
key, line 20 will print it on the display, and then GETanother character.
It is important to note that the character entered will not be displayed
unless you specifically PRINT it to the screen, as we've done here.

The second statement on line 10 is also important. GET continually
works, even if no key is pressed (unlike INPUTthat waits for a response),
so the second part of this line continually checks the keyboard until a key
is hit.

See what happens if the second part of line 10 is eliminated.
To stop this program you can hit the 1:IIJlrl-"lIII:.JIand .:1;'"1111:18keys.
The first part of the temperature conversion program could easily be

rewritten to use GET. LOAD the temperature conversion program, and
modify lines 10, 20 and 40 as shown:

112.1 PRINT "CONVERT FROM FAHRENHEIT OR CELSIUS
(F,IC)"

212.1 GET A$: IF A$ = "I.,THEN 212.1

412.1 IF A$ C> "C" THEN 212.1

This modification will make the program operate smoother, as nothing
will happen unless the user types in one of the desired responses to
select the type of conversion.

Once this change is made, make sure you save the new version of the
program.

RANDOM NUMBERS AND OTHER FUNCTIONS

The Commodore 64 contains a number of functions that are used to

perform special operations. Functions could be thought of as built-in
programs included in BASIC. But rather than typing in a number of
statements each time you need to perform a specialized calculation, you
just type the command for the desired function and the computer does
the rest.

Many times when designing a game or educational program, you
need to generate a random number, to simulate the throw of dice, for
example. You could certainly write a program that would generate these
numbers, but an easier way to call upon the RaNDom number function.

To see what RND actually does, try this short program:

48

NEW

10 FOR X
20 PRINT
30 NEXT

= 1 TO 10(IFYOU LEAVE OUT THE COMMA YOUR LIST

RND(1),-\ OF NUMBERSWILLAPPEAR
AS 1 COLUMN

After running the program, you will see a display like this:

Your numbers don't match? Well, if they did we would all be in
trouble, as they should be completely random!

Try running the program a few more times to verify that the results are
always different. Even if the numbers don't follow any pattern, you
should start to notice that some things remain the same every time the
program is run.

First, the results are always between 0 and 1, but .never equal to 0 or
1. This will certainly never do if we want to simulate the random toss of
dice, since we're looking for numbers between 1 and 6.

The other important feature to look for is that we are dealing with real
numbers (with decimal places). This could also be a problem since
whole (integer) numbers are often needed.

There are a number of simple ways to produce numbers from the
RND function in the range desired.

Replace line 20 with the following and run the program again:

49

That cured the problem of not having results larger than 1, but we still
have the decimal part of the result to deal with. Now, another function
can be called upon.

The INTeger function converts real numbers into integer values.
Once more, replace line 20 with the following and run the program to

see the effect of the change:

That took care of a lot, getting us closer to our original goal of
generating random numbers between 1 and 6. If you examine closely
what we generated this last time, you'll find that the results range from
o to 5, only.

As a last step, add a one to the statement, as follows:

2" PRINT INT(6*RND(1»+l,

Now, we have achieved the desired results.

In general, you fan place a number, variable, or any BASIC expres-
sion within the parentheses of the INT function. Depending on the range
desired, you just multiply the upper limit by the RND function. For

example, to generate random numbers between 1 and 25, you could
type:

2" PRINT INT(2S*RND(1»+ 1

The general formula for generatind a set of random numbers in a
certain range is:

NUMBER=INT(LOWER LIMIT +(UPPER-LOWER+ 1)*RND(1»

GUESSING GAME

Since we've gone to some lengths to understand random numbers,
why not put this information to use? The following game not only iIIus-

50

trates a good use of random numbers, but also introduces some addi-
tional programming theory.

In running this program, a random number, NM, will be generated.

NEW

1 REM NUMBER GUESSING GAME
2 PRINT "{CLR,IHOME}"
5 INPUT "ENTER UPPER LI t'!IT FOR GUESS "; LI
10 NM = INT<LI*RND<I»+1
15 CN = 0
20 PRINT "I'VE GOT THE NUMBER.":PRINT
30 INPUT "WHAT'S YOUR GUESS"; GU
35 CN = CN + 1
40 IF GU ::> NM THEN PRINT "MY NUMBER IS

LOWER": PRINT: GOTO 30
50 IF GU < Nt'! THEN PR I NT "t'!Y NUt'!BER IS

HIGHER": PRIN1. : GOTO 30
60 PR I NT "GREAT! YOU GOT MY NUMBER"
65 PRINT "IN ONLY "; CN ;"GUESSES.":PRINT
70 PRINT "DO YOU WANT TO TRY ANOTHER <Y,IN)";
80 GET AN$: IF AN$="" THEN 80
90 IF AN$ = "Y" THEN 2
100 IF AN$ <::> "N" THEN 70
110 END

You can specify how large the number will be at the start of the pro-
gram. Then, it's up to you to guess what the number is.

A sample run follows along with an explanation.

51

IF/THEN statements compare your guess to the number generated.
Depending on your guess, the program tells you whether your guess was
higher or lower than the random number generated.

From the formula given for determining random number range, see if
you can add a few lines to the program that allow the user to also
specify the lower range of numbers generated.

Each time you make a guess, CN is incremented by 1 to keep track of
the number of guesses. In using the program, see if you can use good
reasoning to guess a number in the least number of tries.

When you get the right answer, the program prints out the "GREAT!
YOU GOT MY NUMBER"message, along with the number of tries it took.
You can then start the process over again. Remember, the program
generates a new random number each time.

PROGRAMMING TIPS:

In lines 40 and 50, a colon is used to separate multiple statements on a single line.

This not only saves typing, but in long programs will conserve memory space.
Also notice in the IF/THEN statements on the same two lines, we instructed the

computer to PRINT something, rather than immediately branching to some other point

in the program.
The last point illustrates the reason behind using line numbers in increments of 10:

After the program was written, we decided to add the count part. By just adding

those new lines at the end of the program, numbered to fall between the proper
existing lines, the program was easily modified.

YOUR ROLL

The following program simulates the throw of two dice. You can enjoy
it as it stands, or use it as part of a larger game.

5 PR I NT "Care 1;0 1;ry your luc.k?"
10 PRINT "RED DICE = ";INT(6*RND(I»+1
20 PRINT "WHITE DICE = "; INH6*RND(1))+1
30 PRINT "HIT SPACE BAR FOR ANOTHER ROLL":PRINT
40 GET A$: IF A$ = "" THEN 40
50 IF A$ = CHR$(32) THEN 10

Care to try your luck?
From what you've learned about random numbers and BASIC, see if

you can follow what is going on.

52

RANDOM GRAPHICS

As a final note on random numbers, and as an introduction to design-
ing graphics, take a moment to enter and run this neat little program:

10 pr;;:ItH "{ CLF.: 'HOt'1E} "
20 PRINT CHR$(205.5 + RNO(l»;
40 CiOTO 20

As you may have expected, line 20 is the key here. Another function,
CHR$ (Character String), gives you a character, based on a standard
code number from 0 to 255. Every character the Commodore 64 can
print is encoded this way (see Appendix F).

To quickly find out the code for any character, just type:

PRINT ASC("X")

where X is the character you're checking (this can be any printable
character, including graphics). The response is the code for the char-
acter you typed. As you probably figured out, "ASC" is another function,
which returns the standard "ASCII" code for the character you typed.

You can now print that character by typing:

PRINT CHR$(X)

If you try typing:

PRINT CHR$ (2~5); CHR$(2~6)

you will see the two right side graphic characters on the M and N keys.
These are the two characters that the program is using for the maze.

By using the formula 205.5 + RND(l) the computer will pick a random
number between 205.5 and 206.5. There is a fifty-fifty chance of the
number being above or below 206. CHR$ ignores any fractional values,
so half the time the character with code 205 is printed and the remain-
ing time code 206 is displayed.

If you'd like to experiment with this program, try changing 205.5 by
adding or subtracting a couple tenths from it. This will give either char-

acter a greater chance of being selected.

53

COLORAND GRAPHICS

Up to now we've explored some of the sophisticated computing
capabilities of the Commodore 64. But one of its most fascinating fea-
tures is an outstanding ability to produce color and graphics.

You've seen a quick example of graphics in the "bouncing ball" and
"maze" programs. But these only touched on the power you command.
A number of new concepts will be introduced in this section to explain
graphic and color programming and show how you can create your own
games and advanced animation.

Because we've concentrated on the computing capabilities of the ma-
chine, all the displays we've generated so far were a single color (light
blue text on a dark blue background, with a light blue border).

In this chapter we'll see how to add color to programs and control all
those strange graphic symbols on the keyboard.

PRINTING COLORS

As you discovered if you tried the color alignment test in Chapter 1,

you can change text colors by simply holding the" key and one of
the color keys. This works fine in the immediate mode, but what hap-
pens if you want to incorporate color changes in your programs?

When we showed the "bouncing ball" program, you saw how
keyboard commands, like cursor movement, could be incorporated
within PRINT statements. In a like way, you can also add text color
changes to your programs.

You have a full range of 16 text colors to work with. Using the ami
key and a number key, the following colors are available:

1234567

Black White Red Cyan Purple Green Blue

8
Yellow

If you hold down the ~ key along with the appropriate number
key, these additional eight colors can be used:

2

Orange Brown

3
Lt.

Red

4

Gray

5 6

Gray 2 Lt.
Green

7
Lt.

Blue

8

Gray 3

TYPE NEW, and experiment with the following. Hold down the"
key and at the same time hit the a key. Next, hit the II key without

56

holdingdownthe_key. Now,whileagain depressingthe Emlkey
at the same time hit the II key. Release the_key and hit thellkey.
Move through the numbers, alternating with the letters, and type out the
word RAINBOW as follows:

10 PRINT"jRjAjI tjBjOjW"

_allIlIlIlIlD
RUN
RAINBOW

Just as cursor controls show as graphic characters within the quote
marks of print statements, color controls are also represented as graphic
characters.

In the previous example, when you held down EmI and typed II a

"£" was displayed.IIDID displayed a "-". Each color control will
display its unique graphic code when used in this way. The table shows
the graphic representations of each printable color control.

Even though the PRINT statement may look a bit strange on the
screen, when you RUN the program, only the text will be displayed. And
it will automatically change colors according to the color controls you
placed in the print statement.

Try a few examples of your own, mixing any number of colors within a
single PRINT statement. Remember, too, you can use the second set of
text colors by using the Commodore key and the number keys.

TIP:

You will notice after running a program with color or mode (reverse) changes, that the

"READY" prompt and any additional text you type is the same as the last color or

mode change. To get back to the normal display, remember to depress:

~ and Em

57

KEYBOARD COLOR DISPLAY KEYBOARD COLOR DISPLAY_a BLACK . a ORANGE n..
EmIli WHITE iii II BROWN II
EmIli RED f!I II LT.RED__CYAN [la GRAY1

&1111 PURPLE . [III GRAY2

&1111 GREEN D II LT. GREEN II
IIDID BLUE = D LT. BLUE 0
&liD YELLOW iii D GRAY 3

....

COLOR CHR$ CODES

Take a brief look at Appendix F, then turn back to this section.
You may have noticed in looking over the list of CHR$ codes in

Appendix F that each color (as well as most other keyboard controls,

such as cursor movement) has a unique code. These codes can be

printed directly to obtain the same results as typing liB and the
appropriate key within the PRINT statement.

For examp.le, try this:

The text should now be green. In many cases, using the CHR$ func-

tion will be much easier, especially if you want to experiment with

changing colors. The following program is a different way to get a rain-
bow of colors. Since there are a number of lines that are similar (40-

110) use the editing keys to save a lot of typing. See the notes after the

listing to refresh your memory on the editing procedures.

HEW

1 REI'1 AUTOl'1ATI C COLOR BARS
S PI':I HT CHF.:$(147) : REI'1 CHR$(147) = CLR/HOt1E
10 PI':I ~n CHR$ (18::0.: " " .:: REN REVERSE BAR
20 CL = IHT(8~RHD(1»+1
30 ON CL GOTO 40.Se~6e~70,80,ge,100~110
40 PRINT CHR$(S);: OOTO 10 J

50 F'F.:HIT CHF.:$(28) .:: GOTel 1£1
613 PRINT CHF.:$(38);: OOTO 113
70 PRINT CHR$(31);: GOTO 113
813 PRINT CHR$(144) : OOTO 113
90 PRINT CHR$(156) : GOTO 113
1130 PRINT CHR$(158 ;: OOTO 113
1113 PRINT CHR$(159 ;: GOTO 10

58

Type lines 5 through 40 normally. Your display should look like this:

1 REM AUTOMATIC COLOR BARS
5 PRINT CHR$(147) : REM CHP$(147)= ClR/HOME
10 PR I NT CHR$ (1 :=:):" " .::F:Et'1 RE',/ER:=:E BAF::=:

20 CL = INT(8*RNO(1»+1
30 ON CL GOTO 40.50.60.70.80.90.100.110
40 PRINT CHR$(5);: GOTO 10
.

EDITING NOTES

Use the CRSR-UP key to position the cursor on line 40. Then type 5
over the 4 of 40. Next, use the CRSR-RIGHT key to move over to the 5 in

the CHR$ parentheses. Hit_ .1/"''tIf'''I~.to open up a space and type
'28'. Now just hit .:1:11111:1/_with the cursor anywhere on the line.

The display should now look like this:

Don't worry. line 40 is still there. LISTthe program and see. Using the
same procedure, continue to modify the last line with a new line number
and CHR$ code until all the remaining lines have been entered. See, we

told you the editing keys would come in handy. As a final check, list the
entire program to make sure all the lines were entered properly before
you RUN it.

Here is a short explanation of what's going on.
You've probably figured out most of the color bar program by now

except for some strange new statement in line 30. But let's quickly see

59

what the whole program actually does. line 5 prints the CHR$ code for
CLR/HOME.

line 10 turns reverse type on and prints 5 spaces, which turn out to be

a bar, since they're reversed. The first time through the program the bar
will be light blue, the normal text color.

line 20 uses our workhorse, the random function to select a random
color between 1 and 8.

line 30 contains a variation of the IF . . . THEN statement which is

called ON . . . GOTO. ON . . . GOTO allows the program to choose
from a list of line numbers to go to. If the variable (in this case CL) has a
value of 1, the first line number is the one chosen (here 40). If the value

is 2, the second number in the list is used, etc.

lines 40-110 just convert our random key colors to the appropriate
CHR$ code for that color and return the program to line 10 to PRINT a

section of the bar in that color. Then the whole process starts over
again.

See if you can figure out how to produce 16 random numbers, ex-

pand ON . . . GOTO to handle them, and add the remaining CHR$
codes to display the remaining 8 colors.

PEEKSAN D POKES

No, we're not talking about jabbing the computer, but we will be able
to "look around" inside the machine and "stick" things in there.

Just as variables could be thought of as a representation of "boxes"

within the machine where you placed your information, you can also

think of some specially defined "boxes" within the computer that repre-
sent specific memory locations. ____

The Commodore 64 looks at these memory locations to see what the

screen's background and border color should be, what characters are to
be displayed on the screen-and where-and a host of other tasks.

By placing, "POKEing," a different value into the proper memory lo-
cation, we can change colors, define and move objects, and even
create music.

These memory locations could be represented like this:

BORDER
COLOR

BACKGROUND
COLOR

60

On page 60 we showed just four locations, two of which control the

screen and background colors. Try typing this:

POKE 53281,7 .:I:llmll.

The background color of the screen will change to yellow because we

placed the value 7'-for yellow-in the location that controls the

background color of the screen.

Try POKEing different values into the background color location, and
see what results you get. You can POKE any value between 0 and 255,

but only 0 through 15 will work.
The actual values to POKE for each color are:

Can you think of a way to display the various background and border
combinations? The following may be of some help:

Two simple loops were set up to POKE various values to change the

background and border colors. The DELAY loop in line 50 just slows

things down a bit.

61

0 BLACK 8 ORANGE

1 WHITE 9 BROWN

2 RED 10 Light RED
3 CYAN 11 GRAY 1

4 PURPLE 12 GRAY 2

5 GREEN 13 Light GREEN
6 BLUE 14 Light BLUE
7 YELLOW 15 . GRAY 3

For the curious, try:

? PEEK (53280) AND 15

You should get a value of 15. This is the last value BORDERwas given
and makes sense because both the background and border colors are
GRAY (value 15) after the program is run.

By entering AND 15 you eliminate all other values except 1-15, be-
cause of the way color codes are stored in the computer. Normally you
would expect to find the same value that was last POKEd in the location.

In general, PEEKlets us examine a specific location and see what value

is presently there. Can you think of a one line addition to the program
that will display the value of BACKand BORDERas the program runs?
How about this:

25 PRINT CHR$(147); "BORDER = ";PEEK (53280) AND 15, "BACK-
GROUND = If; PEEK(53281) AND 15

SCREEN GRAPHICS

In all the printing of information that you've done so far, the computer
normally handled information in a sequential fashion: one character is
printed after the next, starting from the current cursor position (except
where you asked for a new line, or used the ',' in PRINT formatting).

To PRINT data in a particular spot you can start from a known place
on the screen and PRINTthe proper number of cursor controls to format
the display. But this takes program steps and is time consuming.

But just as there are certain spots in the Commodore 64's memory to
control color, there are also locations that you can use to directly control
each location on the screen.

SCREEN MEMORY MAP

Since the computer's screen is capable of holding 1000 characters (40
columns by 25 lines) there are 1000 memory locations set aside to han-
dle what is placed on the screen. The layout of the screen could be

thought of as a grid, with each square representing a memory location.
And since each location in memory can contain a number from 0 to

255, there are 256 possible values for each memory location. These

values represent the different characters the Commodore 64 can display
(see Appendix E). By POKEing the value for a character in the appro-

62

priate screen memory location, that character will be displayed in the
proper position.

10
COLUMN

20 30 39

1063

1024-
1064
1104
1144
1184
1224
1264
1304
1344
1384
1424
1464
1504
1544
1584
1624
1664
1704
1744
1784
1824
1864
1904
1944
1984

...
10 ~

20

24

Screen memory in the Commodore 64 normally begins at memory
location 1024, and ends at location 2023. Location 1024 is the upper left
corner of the screen. Location 1025 is the position of the next character
to the right of that, and so on down the row. Location 1063 is the
right-most position of the first row. The next location following the last
character on a row is the first character on the next row down.

Now, let's say that you're controlling a ball bouncing on the screen.
The ball is in the middle of the screen, column 20, row 12. The formula
for calculation of the memory location on the screen is:

I
POINT = 1"24 + X + 4"*Y_

COWMN

ROW

where X is the column and Y is the row.

Therefore, the memory location of the ball is:

1"24 + 2" + 48" or 1524
\

C:OWMN

ROW (408 12)

63

Clear the screen with Emil and 11I.:f.ml]{d:land type:

POKE 1524,81
POKE 55796,1

1 t
COLOR

LOCATION

COLOR MEMORY MAP

A ball appears in the middle of the screen! You have placed a char-
acter directly into screen memory without using the PRINT statement.
The ball that appeared was white. However there is a way to change
the color of an object on the screen by altering another range of mem-
ory. Type:

r- -- LOCATION
POKE 55796,2 __COLOR

The bali's color changes to red. For every spot on the Commodore 64's

screen there are two memory locations, one for the character code, and

the other for the color code. The color memory map begins at location

55296 (top left-hand corner), and continues on for 1000 locations. The

55296-
55336
55376
55416
55456
55496
55536
55576
55616
55656
55696
55736
55776
55816
55856
55896
55936
55976
56016
56056
56096
56136
56176
56216
56256

10
COLUMN

20 30

..
10 ~

20

24

64

same color codes, from 0-15, that we used to change border and
background colors can be used here to directly change character colors.

The formula we used for calculating screen memory locations can be
modified to give the locations to POKE color codes. The new formula is:

COLOR PRINT= 55296 + X + 40*Y

MORE BOUNCING BALLS

Here's a revised bouncing ball program that prints directly on the
screen with POKEs, rather than using cursor controls within PRINT state-
ments. As you will see after running the program, it is much more flexi-
ble than the earlier program, and will lead up to programming much
more sophisticated animation.

NEW

10 PRINT ..{CLR HOME}..
20 POKE 53280,7 : POKE 53281,13
30 X = 1 : Y = 1

40 OX = 1 : OY = 1
50 POKE 1024 + X +
60 FOR T = 1 TO 10
70 POKE 1024 + X +
80 X = X + OX
90 IF X < = 0 OR X :>= 39 THEN OX = -OX
100 Y = Y + OY
110 IF Y < = 0 OR Y :>= 24 THEN OY = -OY

120 GOTO 50

40i1EY,81

: NEXT
40i1EY,32

Line 10 clears the screen, and line 20 sets the background to light
green with a yellow border.

The X and Y variables in line 30 keep track of the current row and
column position of the ball. The DX and DY variables in line 40 are the
horizontal and vertical direction of the bali's movement. When a + 1 is

added to the X value, the ball is moved to the right; when -1 is added,
the ball moves to the left. A + 1 added to Y moves the ball down a row;

a -) added to Y moves the ball up a row.
Line 50 puts the ball on the screen at the current cursor position. Line

60 is the familiar delay loop, leaving the ball on the screen just long
enough to see it.

Line 70 erases the ball by putting a space (code 32) where the ball
was on the screen.

6S

Line 80 adds the direction factor to X. Line90 tests to see if the ball
has reached one of the side walls, reversing the direction if there's a
bounce. Lines 100 and 110 do the same thing for the top and bottom
walls.

Line 120 sends the program back to display and moves the ball
again.

By changing the code in line 50 from 81 to another character code,
you can change the ball to any other character. If you change DX or DY
to 0 the ball will bounce straight instead of diagonally.

We can also add a little more intelligence. So far the only thing you
checked for is the X and Y values getting out of bounds for the screen.
Add the following lines to the program.

~; ~~~ELl~2~ ~OI~~(RND(1)*1000), 166~E~ COO!C)27 NEXTL
85 IF PEEK(1024 + X + 40*¥) = 166 THEN DX = -OX:

GOTO 80
105 IF PEEK(1024 + X + 40*¥) = 166 THEN O¥ = -O¥:

GOTO 100

lines 21 to.27 put 10 blocks on the screen in random positions. lines
85 and 105 check (PEEK) to see if the ball is about to bounce into a
block, and changes the bali's direction if so.

66

INTRODUCTION TO SPRITES

In previous chapters dealing with graphics, we saw that graphic
symbols could be used in PRINTstatements to create animation and add
chartlike appearances to our displays.

A way was also shown to POKE character codes in specific screen
memory locations. This would then place the appropriate characters di-
rectly on the screen in the right spot.

Creating animation in both these cases requires a lot of work because
objects must be created from existing graphic symbols. Moving the ob-
ject requires a number of program statements to keep track of the ob-
ject and move it to a new spot. And, because of the limitation of using
graphic symbols, the shape and resolution of the object might not be as
good as required.

Using sprites in animated sequences eliminates a lot of these prob-
lems. A sprite is a high-resolution programmable object that can be
made into just about any shape-through BASIC commands. The object
can be easily moved around the screen by simply telling the computer
the position the sprite should be moved to. The computer takes care of
the rest.

And sprites have much more power than just that. Their color can be
changed; you can tell if one object collides with another; they can be
made to go in front and behind another; and they can be easily ex-
panded in size, just for starters.

The penalty for all this is minimal. However, using sprites requires
knowing some more details about how the Commodore 64 operates and
how numbers are handled within the computer. It's not as difficult as it
sounds, though. Just follow the examples and you'll be making your own
sprites do amazing things in no time.

SPRITE CREATION
Sprites are controlled by a separate picture-maker in the Commodore

64. This picture maker handles the video display. It does all the hard
work of creating and" keeping track of characters and graphics, creating
colors, and moving around.

This display circuit has 46 different "ON/OFF" locations which act like
internal memory locations. Each of these locations breaks down into a
series of 8 blocks. And each block can either be "on" or "off". We'll get
into more detail about this later. By POKEing the appropriate decimal
value in the proper memory location you can control the formation and
movement of your sprite creations.

68

In addition to accessing many of the picture making locations we will
also be using some of the Commodore 64's main memory to store infor-
mation (data) that defines the sprites. Finally, eight memory locations
directly after the screen memory will be used to tell the computer exactly
which memory area each sprite will get its data from.

As we go through some examples, the process will be very
straightforward, and you'll get the hang of it.

So let's get on with creating some sprite graphics. A sprite object is 24
dots wide by 21 dots long. Up to eight sprites can be controlled at a
time. Sprites are displayed in a special independent 320 dot wide by
200 dot high area. However, you can use your sprite with any mode,
high-resolution, low-resolution, text etc.

Say you want to create a balloon and have it float around the sky.
The balloon could be designed as in the 24 by 21 grid on page 70.

The next step is to convert the graphic design into data the computer
can use. Get a piece of notebook or graph paper and set up a sample
grid that is 21 spaces down and 24 spaces across. Across the top write
128,64,32,16,8,4,2,1, three times (as shown) for each of the 24
squares. Number down the left side of the grid 1-21 for each row. Write
the word DATA at the end of each row. Now fill in the grid with any
design or use the balloon that we have. It's easiest to outline the shape
first and then go back and fill in the grid.

Now if you think of all the squares you filled in as "on" then substitute
a 1 for each filled square. For the one's that aren't filled in, they're "off"
so put a zero.

Starting on the first row, you need to convert the dots into three sepa-
rate pieces of data the computer can read. Each set of 8 squares is
equal to one piece of data called a byte in our balloon. Working from
the left, the first 8 squares are blank, or 0, so the value for that series of
numbers is O.

The middle series, looks like this (again a 1 indicates a dot, 0 is a
space):

127

The third series on the first row also contains blanks, so it, too, equals

zero. Thus, the data for the first line is:

DATA0, 127, 0

69

~--

1
2
3
4
5
6
7
8
9

~10
""11

12
i3
14
15
16
17
18
19
20
21

SERIES I SERIES I SERIES
1 ! 2 I 3

128 32 8 2 128 32 8 2 128 32 8 2
64 16 4 1i 64 16 4 11 64 16 4 1

10 15
COLUMN

20 24

Series 1:

The series. that make up row two are calculated like this:

=
Series 2:

255

Series 3:

192

For row 2, the data would be:

DATA 1,255,192

In the same way, the three series that make up each remaining row
would be converted into their decimal value. Take the time to do the

remainder of the conversion in this example.
Now that you have the data for your object, how can it be put to use?

Type in the following program and see what happens.

70

1 REM UP, UP, AND AWAY!
5 PRINT n{CLR/HOME}n
10 '1=53248 : REM START OF DISPLAY CHIP
11 POKE '1+21,4 : REM ENABLE SPRITE 2
12 POKE 2042,13 : REM SPRITE 2 DATA FROM 13TH BLK
20 FOR N = 0 TO 62: READ Q : POKE 832+N,Q: NEXT
30 FOR X = 0 TO 200 ~ GETSITSINfO.fROMDATA"
40 POKE V+4,X: REM UPDATE X COORDINATES
50 POKE V+5,X: REM UPDATE Y COORDINATES
60 NEXT X

70 GOTO ~ INfO. READ IN fROM Q"200 DATA 0,127,0,1,255,192,3,255,224,3,231,224
210 DATA 7,217,240,7,223,240,7,217,240,3,231,224
220 DATA 3,255,224,3,255,224,2,255,160,1,127,64
230 DATA 1,62,64,0,156,128,0,156,128,0,73,0,0,73,0
240 DATA 0,62,0,0,62,0,0,62,0,0,28,0
'fOR MORE DETAil ON READ & DATA SEE CHAPTER 8.

If you typed everything correctly, your balloon is smoothly flying
across the sky (page 72).

In order to understand what happened, first you need to know what
picture making locations control the functions you need. These locations,
called registers,could be illustrated in this manner:

Register(s) Description

o
1
2 - lS

16
21
29
23
39 - 46

X coordinate of sprite 0
Y coordinate of sprite 0
Paired like 0 and 1 for sprites 1-7
Most Significant Bit-X Coordinate
Sprite appear: 1=appear O=disappear
Expand sprite in "X" Direction
Expand sprite in "Y" Direction
Sprite 0 - 7 color

In addition to this information you need to know from which 64 byte
section sprites will get their data (1 byte is not used).

This data is handled by 8 locations directly after screen memory:

Now let's outline the exact procedure to get things moving and finally
write a program.

71

ACTUAL SCREEN PHOTO

There are only a few things necessary to actually create and move an
object.

1. Make the proper sprite(s) appear on the screen by POKEing into lo-
cation 21 a 1 for the bit which turns on the sprite.

2. Set sprite pointer (locations 2040-7) to where sprite data should be
read from.

3. POKE actual data into memory.
4. Through a loop, update X and Y coordinates to move sprite around.
5. You can, optionally, expand the object, change colors, or perform a

variety of special functions. Using location 29 to expand your sprite in
the "X" direction and location 23 in the "Y" direction.

There are only a few items in the program that might not be familiar
from the discussion so far.

In line 10;
V=53248

sets V to the starting memory location of the video chip. In this way we
just increase V by the memory number to get the actual memory loca-
tion. The register numbers are the ones given on the sprite register map.

72

In line 11,
POKE V+21,4

makes sprite 2 appear by placing a 4 in what is called the s.prite enable
register (21) to turn on sprite 2. Think of it like this:

SPRITES

128 64 32 ~ Oe~imal values of
sprite number each

16 8 4 2 1
Sprite level Number

21 =4

7 4 3 2 o

Put 0-. For The SPRITE. You Wont

Each sprite level is represented in section 21 of the sprite memory and
4 happens to be sprite level 2. If you were using level 3 you would put a
1 in sprite 3 which has a value of 8. In fact if you used both sprites 2
and 3 you would put a 1 in both 4 and 8. You would then add the
numbers together just like you did with the DATAon your graph paper.
So, turning on sprites 2 and 3 would be represented as V+21, 12.

In line 12;

POKE 2042,13

instructs the computer to get the data for sprite 2 (location 2042) from
the 13th area of memory. You know from making your sprite that it
takes up 63 sections of memory. You may not have realized it, but those
numbers you put across the top of your grid equal what is known as 3
bytes of the computer. In other words each collection of the following
numbers, 128,64,32,16,8,4,2,1 equals 1 byte of computer memory.
Therefore with the 21 rows of your grid times .the 3 bytes of each row,
each sprite takes up 63 bytes of memory. - 1WHOLESPRITE

I
20 FOR N =0 to 62: READci:POKE 832+N,Q: NEXT

This line handles the actual sprite creation. The 63 bytes of data that
represent the sprite you created are READ in through the loop and
POKEd into the 13th block of memory. This starts at location 832.

30 FORX = 0 TO 200
40 POKE V+4~SPRITE 2'sXCOORDI~ATn

50 POKE V+~SPR~ls y COORD~A:!D
If you remember from school the X coordinate represents an objects

horizontal movement across the screen and the Y coordinate represents
the sprite's vertical movement across the screen. Therefore as the values

73

of X change in line 30 from a to 200 (one number at a time) the sprite
moves across the screen DOWN and TO THE RIGHT one space for each
number. The numbers are READ by the computer fast enough to make
the movement appear to be continuous, instead of 1 step at a time. If
you need more details take a look at the register map in Appendix O.

When you get into moving multiple objects, it would be impossible for
one memory section to update the locations of all eight objects. There-
fore each sprite has its own set of 2 memory sections to make it move on
the screen.

Line 70 starts the cycle over again, after one pass on the screen. The
remainder of the program is the data for the balloon. Sure looks differ-
ent on the screen, doesn't it?

Now, try adding the following line:

2S POKE V+23,4 : POKE V+29,4: REM EXPAND

and RUN the program again. The balloon has expanded to twice the
original size! What we did was simple. By POKEing 4 (again to indicate
sprite 2) into memory sections 23 and 29, sprite 2 was expanded in the
X and Y direction.

It's important to note that the sprite will start in the upper left-hand
corner of the object. When expanding an object in either direction, the
starting point remains the same.
For some added excitement, make the following changes:

11 POKE V+21,12
12 POKE 2042,13 : POKE 2043,13
30 FOR X = 1 to 190

4S POKE V+6,X
SS POKE V+7,190-X

A second sprite (number 3) has been turned on by POKEing 12 into the
memory location that makes the sprite appear (V+21). The 12 turns
sprites 3 and 2 on (00001100 = 12).

The added lines 45 and 55 move sprite 3 around by POKEing values
into sprite 3's X and Y coordinate locations (V+6 and V+7).

Want to fill the sky with even more action? Try making these addi-
tions:

11 POKE V+21,28
12 POKE 2042,13:POKE 2043,13:POKE 2044,13
2S POKE V+23,12: POKE V+29,12
48 POKE V+8,X

58 POKE V+9,100

28 IS REALLY ((SPRITE 2) + 8

(SPRITE 3) + 16 (SPRITE 4)

74

In line 11 this time, another sprite (4) was made to appear by POKE-
ing 28 into the appropriate "on" location of the sprite memory section.
Now sprites 2-4 are on (00011100 = 28).

Line 12 indicates that sprite 4 will get its data from the same
memory area (13th 63 section area) as the other sprites by POKEing
2044,13.

In line 25, sprites 2 and 3 are expanded by POKEing 12 (Sprites 2
and 3 on) into the X and Y direction expanded memory locations (V+23
and V+29).

Line 48 moves sprite 3 along the X axis. Line 58 positions sprite 3
halfway down the screen, at location 100. Because this value does not
change, like it did before with X=O to 200, sprite 3 just moves horizon-
tally.

ADDITIONAL NOTES ON SPRITES

Now that you've experimented with sprites, a few more words are in
order. First, you can change a sprite's color to any of the standard 16
color codes (0-15) that were used to change character color. These can
be found in Chapter 5 or in appendix G.

For example, to change sprite 1 to light green, type: POKE
V+40,13 (be sure to set V=53248).

You may have no~iced in using the example sprite programs that
the object never moved to the right-hand edge of the screen. This was
because the screen is 320 dots wide and the X direction register can
only hold a value up to 255. How then can you get an object to move
across the entire screen?

There is a location on the memory map that has not been men-
tioned yet. Location 16 (of the map) controls something called the most
significant bit (MSB) of the sprite's X direction location. In effect, this
allows you to move the sprite to a horizontal spot between 256 and 320.

The MSB of X register works like this: after the sprite has been
moved to X location 255, place a value into memory location 16 repre-
senting the sprite you want to move. For example, to get 2 to move to
horizontal locations 256-320, POKEthe value for sprite 2 which is (4) into
memory location 16:

POKE V+16,4.

Now start from 0 again in the usual X direction register for sprite 2
(which is in location 4 of the map). Since you are only moving another 64
spaces, X locations would only range between 0 and 63 this time.

75

This whole concept is best illustrated with a version of the original
sprite 1 program:

le V= 53.21,18': POKE +21,4 : POKE 2e42,13
2e FOR N = €I TO 62 : READ Q : POKE 832+N,Q
25 POKE V+5, lee
3e FOR x = e TO 255
4e POKE V+4,X
5e NEXT
6e POKE V+16..4
7e FOR X = €I TO 63
8e POKE V+4.. X
ge NEXT
le0 POKE V+16,0
11e GOTO 30

NEXT

Line 60 sets the most significant bit for sprite 2. Line 70 starts moving

the standard X direction location, moving sprite 2 the rest of the way
across the screen.

Line 100 is important because it "turns off" the MSB so that the

sprite can start moving from the left edge of the screen again.
To define multiple sprites, you may need additional blocks for the

sprite data. You can use some of BASIC's RAM by moving BASIC. Before
typing or loading your program type:

POKE44,16:POKEI6*256,O:NEW

Now, you can use blocks 32 through 41 (locations 2048 through 4095) to
store sprite data.

BINARY ARITHMETIC

It is beyond the scope of this introductory manual to go into details of

how the computer handles numbers. We will, however, provide you with
a good base for understanding the process and get you started on
sophisticated animation.

But, before you get too involved we have to define a few terms:

BIT - This is the smallest amount of information a computer can store.

76

Think of a BITas a switch that is either "on" or "off". When a BITis
"on" it has a value of 1; when a BIT is "off" it has a value of O.

After BIT, the next level is BYTE.

BYTE- This is defined as a series of BITS. Since a BYTEis made up of
8 BITS, you can actually have a total of 256 different combinations

of BITS. In other words, you can have all BITS "off" so your BYTE
will look like this:

128
o

64
o

32
o

16
o

8
o

4
o

2
o

1
o

and its value will be O. All BIT~ "on" is:

128
1

64
1

32
1

16
1

8
1

4
1

2
1

which is 128+64+32+16+8+2+1=255.

The next step up is called a REGISTER.

REGISTER-Defined as a block of BYTESstrung together. But, in this
case each REGISTERis really only 1 BYTElong. A series of REGIS-
TERS makes up a REGISTERMAP. REGISTERMAPS are charts like
the one you looked at to make your BALLOONSPRITE. Each REGIS-
TERcontrols a different function, like turning on the SPRITEis really
called the ENABLEREGISTER.Making the SPRITE longer is the EX-
PANDX REGISTER,while making the SPRITEwider is the EXPANDY
REGISTER.Keep in mind that a REGISTERis a BYTEthat performs a
specific task.

Now let's move on to the rest of BINARYARITHMETIC.

BINARY TO DECIMAL CONVERSION

77

Decimal Value

128 64 32 16 8 4 2 1

0 0 0 0 0 0 0 1 2tO

0 0 0 0 0 0 1 0 2tl

0 0 0 0 0 1 0 0 2t2
0 0 0 0 1 0 0 0 2t3

0 0 0 1 0 0 0 0 2t4
0 0 1 0 0 0 0 0 2tS

0 1 0 0 0 0 0 0 2t6
1 0 0 0 0 0 0 0 2t7

",r------

Using combinations of all eight bits, you can obtain any decimal value
from 0 to 255. Do you start to see why when we POKEd character or
color values into memory locations the values had to be in the 0-255
range? Each memory location can hold a byte of information.

Any possible combination of eight O's and l's will convert to a
unique decimal value between 0-255. If all places contain a 1 then the
value of the byte equals 255. All zeros equal a byte value of zero;
"00000011" equals 3, and so on. This will be the basis for creating data
that represents sprites and manipulating them. As just one example, if
this byte grouping represented part of a sprite (0 is a space, 1 is a
colored area):

27

IT::]
128 +

2"

o
64 +

2'
1

16 +

2'
1
2 +

2"
1
1+ 255

Then we would POKE 255 into the appropriate memory location to

represent that part of the object.

TIP:

To save you the trouble of converting binary numbers into decimal values-we'll
need to do that a lot-the following program will do the work for you. It's a good
idea to enter and save the program for future use.

5 REM BINARY TO DECIMAL CONVERTER
10 INPUT ..ENTER 8-B IT B I NARY NUt'lBER :"; A$
12 IF LEN (A$) <> 8 THEN PRINT "8 BITS PLEASE :

GOTO 10
15 TL = 0 : C = 0
20 FOR X = 8 ~o 1 STEP -1 : C = C + 1

30 TL = TL + VAL(MID$(A$,C,1»*2+(X-1)
40 NEXT X
50 PR It-iT A$.:" BI NARY ";" = ".: TL;" DECI to1AL"
60 "GOTO 10

This program takes your binary number, which was entered as a string, and looks
at each character of the string, from left to right (the MID$ function). The variable C
indicates what character to work on as the program goes through the loop.

The VALfunction, in line 30, returns the actual value of the character. Since we

are dealing with numeric characters, the value is the same as the character. For
example, if the first character of A$ is , then the value would also be ,.

The final part of line 30 multiplies the value of the current character by the proper

power of 2. Since the first value is in the 2j7 place, in the example, TLwould first

equal , times 128 or '28. If the bit is 0 then the value for that place would also be
zero.

This process is repeated for all eight characters as TL keeps track of the runnIng
total decimal value of the binary number.

78

USING SOUND IF YOU'RE NOT A COMPUTER
"PROGRAMMER"

Most programmers use computer sound for two purposes: making
music and generating sound effects. Before getting into the "intricacies"
of programming sound, let's take a quick look at how a typical sound
program is structured . . . and give you a short sound program you can
experiment with.

STRUCTURE OF A SOUND PROGRAM

To begin with, there are five settings which you should know in order
to generate sound on your COMMODORE 64: VOLUME, ATTACK! DE-
CAY, SUSTAIN/RELEASE(ADSR), WAVEFORM CONTROL and HIGH
FREQUENCY/LOWFREQUENCY.The first three settings are usually set
ONCE at the beginning of your program. The high and low frequency
settings must be set for EACH NOTE you play. The waveform control
starts and stops each note.

SAMPLESOUND PROGRAM
Before you start you have to choose a VOICE. There are 3 voices.

Each voice requires different sound setting numbers for Waveform, etc.
You can play 1, 2 or 3 voices together but our sample uses only VOICE
NUMBER 1. Type in this program line by line . . . be sure to hit the
RETURNkey after each line:

First clear sound chip.

1. Set VOLUME at highest setting.
2. Set ATTACK/DECAY rates to
define how fast a note rises to and

falls from its peak volume level (0
to 255).
3. Set SUSTAIN/RELEASEto define

level to prolong note and rate to
release it.

4. Find the note/tone you want to

play in the TABLE OF MUSICAL
NOTES in Appendix M an~ enter
the HIGH-FREQUENCY and LOW-

FREQUENCY values for that note

(each note requires 2 POKEs).

5 FORL=54272T054296:

POKEL,O:NEXT
113 POKE54296,15

213 POKE54277,1913

313POKE 54278,248

40 POKE54273,17:POKE54272,37

80

5. S.tart WAVEFORMwith one of 50 POKE54276,17
4 standard settings (17, 33, 65
or 129)..
6. Enter a time loop to set the 60 FORT=1T0250:NEXT
DURATION of the note to be

played (a quarter note is approx.
"250" but may vary since a longer
program can affect the timing).
7. Turn off note. 70 POKE54276,16

To hear the note you just created, type the word RUN and then hit the

.:~;!III~U.key. To view the program type the word LISTand hit .:~;!III:U.,
To change it, retype the lines you want to alter.

MAKINGMUSICON YOURCOMMODORE64

You don't have to be a musician to make music on your COMMODORE
64! All you need to know are a few simple numbers which tell your
computer how loud to set the volume, which notes to play, how long to
play them, etc. But first. . . here's a program which gives you a quick
demonstration of the COMMODORE 64's incredible music!:capabilities,
using only ONE of your computer's 3 separate voices.

Type the word NEW and hit .:~;!III:U. to erase your previous pro-
gram, then enter this program, type the word RUN and hit the .:~;!nl:~I.
key.

5 REM MUSICAL SCALE t Titleof p'ogram.

7 FORL =542721054296: POKEL,~:NEXT

10 POKE 54296,15 (Se" volume at highe.t .e"ing (15).

20 POKE 54277 9 (Set. A"acklOecay
I Sustain/Release level (each note)

30 POKE 54276,17 (Determine. waveform (type of sound).

40 FORT=1T0300:NEXl(Duration (how long) each not. plays.

50 READA (Read. fitSt numbe, in line 110 DATA.

81

60 READ B (Read. .ecand numbe, In line 110 DATA.

70 IFB= -lTHENEND (,ENDSwhenI. REAo.-1 In line 900.

80 POKE 54273,A: POKE54272, B '(-POKE. 'he.fi... numbed,omDATAIn line 110(A= 17)

as HIGH FREQUENCY and second numb.r (8=37)

as LOW fREQUENCY. Next time program loops

around it READS A as 19 and B as 63, and so on,

and POKEsthese numbers into the HIGH and LOW

fREQUENCY locations. The number ~4273=HIGH

FREQUENCY fo, VOICE I and 54272=lOW FRE-

QUENCY fo, VOICE I.

85 POKE 54276, 17 (Sta" nole.

90 FORT=1T0250:NEXT:POKE54276,16 let It play then $lop note

95 FORT=lT050:NEXT(Time fo, ,.1.0...

100 GOT020 (.loop. back to ,e..' CONTROLoed play new note.

110 IDATA 17,37,19,63,21,154,22,227 Mu.lcal note valued'om no'e value chart In Appendix

120 DATA'25,177,28,214,32,94,34, 175 M. Each pal, of numbe.. ,ep,e.enls one note. Fa,

eJlomple. 17 and 37 represent "C" of the Ath DC-

toye, 19 and 63 repr.sent "0" and so on.

900 DATA-l,-l<, When program reaches -1 it turns oH HIGH/LOW

FREQUENCY se"ing' and ENOs as instructed in

line 70.

To change the sound to a "harpsichord," change Line 85 to read
POKE54276,33 and Line 90 to read FORT=1T0250:NEXT:POKE54276,32

and RUN the program again. (Tochange the line, hit the 1:1.111''''1111:.11key
to stop the program, type the word LIST and hit .:4;11I1111_,then retype
the program line you ""';'antto change; the new line will automatically
replace the old one). What we did here is change the "waveform" from
a "triangular" shaped sound wave to a "sawtooth" wave. Changing the
WAVEFORM can drastically change the sound produced by the COM-
MODORE 64 . . . but. . . waveform is only one of several settings you
can change to make different musical tones and sound effects! You can

also change the ATTACK/DECAYrate of each note. . . for example, to
change from a "harpsichord" sound to a more "banjo" sound try chang-
ing lines 20 and 30 to read:

20 POKE54277,3
30 POKE54278,0 <' Sets no sustoin for bonjo effect.

82

As you've just seen, you can make your COMMODORE 64 sound like
different musical instruments. Let's take a closer look at how each sound
setting works

IMPORTANT SOUND SETTINGS

1 VOLUME-To turn on the volume and set it to the highest level, type:
POKE54296,15. The volume setting ranges from 0 to 15 but you'll use 15
most of the time. To turn "off" the volume, type:

POKE 54296,0

You only have to set the volume ONCE at the beginning of your pro-
gram, since the same setting activates all three of the Commodore 64's
VOICES. (Changing the volume during a musical note or sound effect
can produce interesting results but is beyond the scope of this introduc-
tion.)

2. ADSR and WAVEFORM CONTROL SmlNG-You've already seen

how changing the waveform can change the sound effect from
"xylophone" to "harpsichord." Each VOICE has its own WAVEFORM
CONTROL SETTING which lets you deflne four different types of
waveforms: Triangle, Sawtooth, Pulse (Square) and Noise. The CON-
TROL also activates the COMMODORE 64's ADSR feature, but we'll
come back to this in a moment. A sample waveform start setting looks
like this:

POKE 54276,17

where the flrst number (54276) represents the control setting for VOICE 1

and the second number (17) represents the start for a triangular
waveform. The settings for each VOICE and WAVEFORM combination
are shown in the table below.

ADSR AND WAVEFORM CONTROL SETTINGS

CONTROL
REGISTER

Note Start/Stop Numbers
TRIANGLE SAWTOOTH PULSE NOISE

Although the control registers are different for each voice the
waveform settings are the same for each type of waveform. To see how

83

VOICE 1 54276 17/16 33/32 65/64 129/128

VOICE 2 54283 17/16 33/32 65/64 129/128

VOICE 3 54290 17/16 33/32 65/64 129/128

this works, look at lines 85 and 90 in the musical scale program. In this
program, immediately after setting the frequency in line 80, we set the
CONTROL SETTINGfor VOICE 1 in line 85 by POKEing 54276,17. This
turned on the CONTROL for VOICE 1 and set it to a TRIANGLE
WAVEFORM (17). In line 70 we POKE 54276,16, stopping the note. la-
ter, we changed the waveform start setting from 17 to 33 to create a
SAWTOOTH WAVEFORMand this gave the scale a "harpsichord" effect.
See how the CONTROL SETTINGand WAVEFORM interact? Setting the
waveform is similar to setting the volume, except each voice has its own
setting and instead of POKEing volume levels we're defining waveforms.
Next, we'll look at another aspect of sound. . . the ADSR feature.

3. AnACKIDECAY SEnING-As we mentioned before, the ADSR
CONTROL SETTINGnot only defines the waveform but it also activates
the ADSR, or AnACKIDECAY/SUSTAIN/RELEASEfeature of the COM-

MODORE 64. We'll begin by looking at the ATTACK/DECAYsetting. The
following chart shows the various ATTACKand DECAYlevels for each

voice. If you're not familiar with the concepts of sound attack and de-
cay, you might think of "attack" as the rate at which a note/sound arises
to its MAXIMUM VOLUME. The DECAY is the rate at which the note/
sound falls from its highest volume level back to the SUSTAIN level. The
following chart shows the ATTACK/DECAYsetting for each voice, and the
numbers for each attack and decay setting. Note that YOU MUST
COMBINE ATTACKAND DECAY SETTINGS BY ADDING THEM UP AND

ENTERINGTHE TOTAl. For example, you can set a HIGH ATTACKrate
and a LOW DECAY rate by adding the high attack number (64) to the
low decay number (1). The total (65) will tell the computer to set the high
attack rate and low decay rate. You can also increase the attack rates
by adding them together (128 + 64 + 32 + 16 = MAX. ATTACKRATE
of 240).

AnACKIDECAY RATESEnlNGS
ATTACK/DECAY HIGH MEDIUM LOW LOWEST HIGH MED. LOW LOWEST

SETTING ATTACK ATTACK ATTACK ATTACK DECAY DECAY DECAY DECAY

If you set an attack rate with no decay, the decay is automatically
zero, and vice-versa. For example, if you POKE 54277,64 you set a
medium attack rate with zero decay for VOICE 1. If you POKE 54277,66
you set a medium attack rate and a low decay rate (because 66=64+2
and sets BOTH settings). You can also add up several attack values, or
several decay values. For example, you can add a low attack (32) and a

84

VOICE 1 54277 128 64 32 16 8 4 2 1
VOICE 2 54284 128 64 32 16 8 4 2 1
VOICE 3 54291 128 64 32 16 8 4 2 1

medium attack (64) for a combined attack rate of 96, then add a
medium decay of 4 and. . . presto. . . POKE 54277,100.

At this point, a .sample program will better illustrate the effect. Type
the word NEW, hit .:~:lImu. and type in this program and RUN it:

5 FOR L=54272T054296:POKEL,0:NEXT ~
10 PRINT"HIT ANY KEY" ~

20 POKE54296, 15 ~

30 POKE54277,64 ~

40 POKES4273, 17:POKE54272,37~

60 GETK$:IFK$=""THEN60 ~

70 POKES4276,17:FORT=lT0200:NEXT~

S0 POKES4276, 16:FORT=lTOS0:NEXT ~

90 GOT020 ~

Duration the not. pia)".

Scr..n meuage.

Set AttocWDecay.

Poke on. note into VOICE 1.

Check the keyboard.

Set v.bveform comrol (triangle).

Turn off settings.

Loop back ond do it again.

Here, we're using VOICE 1 to create one note at a time . . . with a
MEDIUMATTACKRATEand ZERO DECAY.The key is Line 40. POKEing the
ATTACK/DECAYsetting with the number 64 activates a MEDIUM attack
rate. The result sounds like someone bouncing a ball in an oil drum.
Now for the fun part. Hit the I:Ullr"'III:I key to stop the program, then
type the word LISTand hit .:~IIIII:~I.. Now type this line and hit .:~IIIII:U.
(the new line 40 automatically replaces the old line 40):

40 POKE 54277,190

Type the word RUN and hit .:~IIIII~I. to see how it sounds. What we've
done here is combine several attack and decay settings. The settings
are: HIGH ATTACK(128) + LOW ATTACK(32) + LOWESTATTACK(16)
+ HIGH DECAY(8) + MEDIUMDECAY(4)+ LOWDECAY(2)= 190.

This effect sounds like a sound an oboe or other "reedy" instrument
might make. If you'd like to experiment, try changing the waveform and
attack/decay numbers in the musical scale example to see how an
"oboe" sounds. Thus . . . you can see that changing the attack/decay
rates can be used to create different types of sound effects.

4. SUSTAIN/RELEASE SEnING-Like Attack/Decay, the SUSTAIN!,
RELEASEsetting is activated by the ADSRiWAVEFORMControl. SUSTAINI
RELEASElets you "extend" (SUSTAIN)a portion of a particular sound, like

the "sustain pedal" on a piano or organ which lets you pr~long a note.
Any note or sound can be sustained at anyone of 16 levels. The
SUSTAIN!RELEASESetting may be used with a FOR. . . NEXT loop to

85

determine how long the note will be held at SUSTAIN volume before
being released. The following chart shows the numbers you have to
POKE to reach different SUSTAIN/RELEASE,rates.

SUSTAIN/RELEASE RATE SETTINGS
SUSTAIN!

CONTIIOL

HIGH

SUSTAIN

LOWEST

SUSTAIN

As an example, if you're using VOICE1, you can set a HIGH SUSTAIN
lEVELby typing: POKE 54278,128 or you could combine a HIGH SUSTAIN
lEVEl with a lOW RELEASERATEby adding 128 + 2 and then POKE
54278,130. Here's the same sample program we used in the ATTACK!
DECAY section above. . . with a SUSTAIN/RELEASEfeature added.
Notice the difference in sounds.

5 FORl=54272T.054296:POKEl,0:NEXT <;
10 POKE54296,15 .,
20 POKE54277,64 .,
30 POKE54278, 128.,
40 POKE54273, 17:POKE54272,37 .,
50 PRINT"HIT ANY KEY".,
60 GETK$:IFK$=" "THEN60 .,
70 POKE54276, 17:FORT=lT0200:NEXT .,
80 POKE54276,16:FORT=lT050:NEXT<;
90 GOT060 <;

Duration the note plays.

Set volume at highest level.

Set Attack/Decay.

Set Sustain/Release

POKE one note into VOICE 1.

.Scr..n message.

Check the keyboard.

Set v.bvefonn control (triangle).

Turn off settings.

loop back and do it agoin.

In line 30, we tell the computer to SUSTAINthe note at a HIGH SUS-
TAIN lEVEL(128 from chart above) . . . after which the tone is released
in line 80. You can vary the duration of a note by changing the "count"
in line 70. To see the effect of using the release function try changing
line 30 to POKE54278,89 (SUSTAIN = 80, RELEASE= 9),

5. CHOOSING VOICES AND SETTING HIGH/LOW FREQUE'NCY

SOUND VALUES-Each individual note on the Commodore 64 requires
TWO SEPARATEPOKE COMMANDS. . . one for HIGH FREQUENCYand
one for lOW FREQUENCY.The MUSICALNOTE VALUEtable in Appendix
M shows you the corresponding POKEs you need to play any note in the

86

Commodore 64's eight octave range. The HIGHand LOWFREQUENCY
POKE COMMANDS are different for each VOICE you use-this allows
you to program all 3 voices independently to create 3-voice music or
exotic sound effects.

The HIGH and LOW FREQUENCYPOKE COMMANDS for each voice
are shown in the chart below, which also contains the NOTE VALUESfor
the middle (fifth) octave.

VOICE NUMBER POKE SAMPLE MUSICAL NOTES-fiFTH OCTAVE

As you can see, there are 2 settings for each voice, a HIGH FRE-
QUENCY setting and a LOW FREQUENCYsetting. To playa musical note,
you must POKE a value into the HIGH FREQUENCYlocation and POKE
another value into the LOW FREQUENCYlocation. Using the settings in
our VOiCE/FREQUENCY/NOTEVALUEtabJe, here's the setting that plays
a C note from the 5th octave (VOICE1):

POKE 54273,34:POKE 54272,75.

The same note on VOICE2 would be:

POKE 542813,34:POKE 54279,75.

Used in a program, it looks like this:

5 FORL=54272T054296:POKEL,0:NEXT
10 V=54296:W=54276:A=54277: (--

S=54278:H =54273:L=54272
20 POKEV,15:POKEA,190:POKES,89 <;
30 POKEH,34:POKEL,75 -:
40 POKEW,33:FORT=1T0200:NEXl-:
50 POKEW,32 ~

Set numbers equal to letters.

POKE volume, waveform, attack/decay.

POKE hi/lo freq. notes

start note, let it play

stop note

87

!ER C C# D D# E f f# G G# A A# B C C#

VOICE1/HIGH 54273 34 36 38 40 43 45 48 51 54 57 61 64 68 72
VOICE1/l0W 54272 75 85 126 200 52 198 127 .97 111 172 126 188 149 169

VOICE2/HIGH 54280 34 36 38 40 43 45 48 51 54 57 61 64 68 72

VOICE2/l0W 54279 75 85 126 200 52 198 127 97 111 172 126 188 149 169

VOICE3/HIGH 54287 34 36 38 40 43 45 48 51 54 57 61 64 68 72

VOICE3/l0W 54286 75 85 126 200 52 198 127 97 111 172 126 188 149 169

PLAYING A SONG ON THECOMMODORE64

The following program can be used to compose or playa song (using
VOICEl). There are two important lessons in this program: First, note
how we abbreviate all the long control numbers in the first line of the
program. . . after that, we can use the letter W for "Waveform" instead
of the number 54276.

The second lesson concerns the way we use the DATA.This program
is set up to let you enter 3 numbers for each note: the HIGHFREQUENCY
NOTE VALUE,the LOW FREQUENCY NOTE VALUE,and the DURATION
THE NOTE WILLBE PLAYED.

For this song, we used a duration "count" of 125 for an eighth note,
250 for a quarter note, 375 for a dotted quarter note, 500 for a half
note and 1000 for a whole note. These number values can be increased

or decreased to match a particular tempo, or your own musical taste.
To see how a song gets entered, look at Line 100. We entered 34

and 75 as our HIGHand LOWFREQUENCYsettings to playa "C" note
(from the sample scale shown previously) and then the number 250 for a
quarter note. So the first note in our song is a quarter note C. The
second note is also a quarter note, this time the note is "E" . . . and so

on to the end of our tune. You can enter almost any song this way,
adding as many DATAstatement lines as you need. You can continue the
note and duration numbers from one line to the next but each line must

begin with the word DATA. DATA-l,-I,-1 should be the last line in your
program. This line "ends" the song.

Type the word NEWto erase your previous program and type in the
following program, then type RUN to hear the song.

MICHAELROW THE BOATASHORE-l MEASURE

2 FORL=54272T054296:POKEL,0:NEXT .

5 V=54296: W=5427 6:A=54277: HF=54273:LF =54272:5 =54278:
PH=54275:PL=54274

10 POKEV,15:POKEA,88:POKEPH,15:POKEPL,15:POKE5,89
20 READH:IFH= -HHENEND
30 READL
40 READD

60 POKEHF,F:POKELF,L:POKEW,65
80 FORT=lTOD:NEXT:POKEW,64
85 FORT=H050:NEXT

88

90 GOT010

100 DATA34,75,250,43,52,250,51 ,97,375,43,52, 125,51 ,97
105 DATA250,57,172,250
110 DATA51,97,500,0,0, 125,43,52,250,51 ,97,250,57, 172
115 DATA1000,51,97,500
120 DATA-1,-1,-1

CREATING SOUND EFFECTS

Unlike music, sound effects are more often tied to a specific pro-
gramming "action" such as the explosion made by an astro-fighter as it
crashes through a barrier in a space game. . . or the warning buzzer in
a business program that tells the user he's about to erase his disk by
mistake.

You have a wide range of options available if you want to create
different sound effects. Here are 10 programming ideas which might
help you get started experimenting with sound effects:

1. Change the volume while a note is playing, for example to create
an "echo" effect.

2. Vary between two notes rapidly to create a sound "tremor."
3. Waveform . . . try different settings for each voice.
4. Attack/Decay. . . to alter the rate a sound rises toward its "peak"

volume and rate it diminishes from that peak.
5. Sustain/Release. . . to change sustain to volume of a sound effect,

and rate it diminishes from that volume.
6. Multivoice effects . . . playing more than one vO,ice at the same

time, each voice independently controlled, or one voice playing
longer or shorter than another, or serving as an "echo" or response
to a first note.

7. Changing notes on the scale, or changing octaves, using the values
in the MUSICAL NOTE VALUEtable.

8. Use the Square Waveform and different Pulse Settings to create
different effects.

9. Use the Noise Waveform to generate "white noise" for accenting

tonal sound effects or creating explosions, gunshots or footsteps.
The same musical notes that create music can also be used with the

Noise Waveform to create different types of white noise.
1O. Combine several HIGH/LOW frequencies in rapid succession across

different octaves.
11. Filter . . . try the extra POKE setting in Appendix M.

89

SAMPLE SOUND EFFECTSTO TRY

The following programs may be added to almost any BASIC program.
They are included to give you some programming ideas and demon-
strate the Commodore 64's sound effect range.

Notice the programming shortcut we're using in line 10. We can
abbreviate those long cumbersome sound setting numbers by defining
them as easy-to-use letters (numeric variables). line 10 simply means
that these easy to remember LETTERScan be used instead of those long
numbers. Here, V = Volume, W=Waveform, A=Attack/Decay, H=High
Frequency (VOICE1), and L= Low Frequency (VOICEl). We then use these
letters instead of numbers in our program . . . making our program

shorter, typing faster, and the sound settings easier to remember and
spot.

DOLL CRYING

10 V=54296:W=54276:A=54277: H=54273:L=54272

20 POKEY,15:POKEW,65:POKEA, 15
30 FORX= 200T05STEP-2: POKEH,40: POKEL,X:NEXT
40 FORX= 150T05STEP-2:POKEH,40:POKEL,X:NEXT
50 POKEW,0

SHOOTINGSOUND. . . USINGVOICE1,NOISEWAVEFORM,FADING
VOLUME

10 V=54296:W=54276:A=54277:H =54273:L=54272

20 FORX= 15T00STEP-l:POKEV,X:POKEW, 129:POKEA,
15:POKEH,40:POKEL,200:NEXT

30 POKEW,0:POKEA,0

90

READ AND DATA

You've seen how to assign values to variables directly within the pro-
gram (A = 2), and how to assign different values while the program is
running-through the INPUT statement.

There are many times, though, when neither one of these ways will
quite fit the job you're trying to do, especially if it involves a lot of
information.

Try this short program:

In line 10, the computer READs one value from the DATAstatement
and assigns that value to X. Each time through the loop the next value in
the DATAstatement is read and that value assigned to X, and PRINTed.
A pointer in the computer itself keeps track of which value is to be used
next:

Pointer

~
40 DATA 1, 34, 10.5, 16, 234.56

When all the values have been used, and the computer executed the

loop again, looking for another value, the OUT OF DATAerror was dis-
played because there were no more values to READ.

92

It is important to follow the format of the DATAstatement precisely:

40 DATA1, 34, 10.5, 16, 234.56

i i
Comma separates

each item

No Comma

Data statements can contain integer numbers, real numbers (234.65),

or numbers expressed in scientific notation. But you can't READother
variables, or have arithmetic operations in DATAlines. This would be
incorrect:

40 DATAA, 23/56, 2*5

You can, however, use a string variable in a READstatement and then

place string information in the DATAline. The following is acceptable:

Notice that this time, the READ statement was placed inside a FOR

. . NEXT loop. This loop was then executed to match the number of
values in the data statement.

In many cases you will change the number of values in the DATA
statement each time the program is run. A way to avoid counting the
number of values and still avoid an OUT OF DATAERROR is to place a
"FLAG" as the last value in the DATAline. This would be a value that

your data would never equal, such as a negative number or a very
large or small number. When that value is READ the program will
branch to the next part.

There is a way to reuse the same DATAlater in the program by RE-

93

STOREing the data pointer to the beginning of the data list. Add line 50
to the previous program:

50 GOTO 10

You will still get the OUT OF DATA error because as the program
branches back to line 10 to reread the data, the data pointer indicates
all the data has been used. Now, add:

45 RESTORE

and RUN the program again. The data pointer has been RESTOREdand
the data can be READ continuously.

AVERAGES

The following program illustrates a practical use of READand DATA,
by reading in a set of numbers and calculating their average.

5 T = 0
1"-1 F~EAD
20 IF::"; = '-1
25 CT = CT +
::::0 T = T + >::
40 GOTO 10
5~~1PR r HT "THERE \>JEF.:E ".: CT.:" ' ALUE:::;
6~) PRItH "TOTAL = ".:T
70 PI': I tH "A'./EPfiCiE =".: T,,"CT
80 DATA 75, 80, 62, 91, 87, 93, 78, -1

CT

THEH 50: REM CHECK FOR FLAG
1
: REM UPDATE TOTAL

F.:EAD"

RUH
THERE WERE 7 VALUES READ
TOTAL = 566
AVERAGE = 80.8571429

Line 5 sets CT, the CounTer,and T, Total, equal to zero. Line 10 READs
a value and assigns the value to X. Line 20 checks to see if the value is
our flag (here a -1). If the value READis part of the valid DATA,CT is
incremented by 1 and X is added to the total.

When the flag is READ,the program branches to line 50 which PRINTs

94

the number of values read. Line 60 PRINTs the total, and line 70 divides
the total by the number of values to get the average.

By using a flag at the end of the DATA,you can place any number of
values in DATA statements-which may stretch over several lines-
without worrying about counting the number of values entered.

Another variation of the READ statement involves assigning informa-
tion from the same DATAline to different variables. This information can

even be a mixture of string data and numeric values. You can do all this
in the following program that will READ a name, some scores-say
bowling-and print the name, scores, and the average score:

t.jE!.j

1(1 F:EAD tU.A .f:.C
20 PP I t.n tJ$;...' :=: :::;COPE:=; !.jEPE: "; A.;" ".; B;" ".; C
':::0 PP nn "At.m THE A EPACiE I:::;: "; 0::A+E:+C":o ::::
40 PPINT: GOTO 10
50 DATA MIKE.. 190.. 185.. 165.. DICK.. 225.. 245. 190
60 DATA JOHN.. 155.. 185.. 205.. PAUL.. 160.. 179.. 187

F.; U t.J

t'1I f'::E":=; ::::COPE:::; !.jEF.:E: 190 1 ::::5 I8£iIiI
AND THE AVERAGE IS : 180

DICK" :::: SCOPE:::; !.jEF.:E: 225 245.:1m]
AND THE AVEPAGE IS : 220

In running the program, the DATAstatements were set up in the same
order that the READ statement expected the information: a name (a
string), then three values. In other words N$ the first time through gets
the DATA"MIKE", A in the READcorresponds to 190 in the data state-
ment, "B" to 185 and "c" to 165. The process is then repeated in that
order for the remainder of the information. (Dick and his scores, John
and his scores, and Paul and his scores.)

SUBSCRIPTED VARIABLES

In the past we've used only simple BASIC variables, such as A, A$,
and NU to represent values. These were a single letter followed by a

95

letter or single digit. In any of the programs that you would write, it is
doubtful that we would have a need for more variable names than
possible with all the combinations of letters or numbers available. But
you are limited in the way variables are used with programs.

Now let's introduce the concept of subscripted variables.

A(l)

IL Sub.cr;p.Variable

This would be said: A sub 1. A subscripted variable consists of a letter
followed by a subscript enclosed within parentheses. Please note the
difference between A, A1, and A(l). Each is unique. Only A(l) is a
subscripted variable.

Subscripted variables, like simple variables, name a memory location
within the computer. Think of subscripted variables as boxes to store
information, just like simple variables:

A(O)
A(l)
A(2)
A(3)
A(4)

If you wrote:

10 A(P) = 25: A(3) = 55 : A(4) = -45.3

Then memory would look like this:

A(O)
A(l)
A(2)
A(3)
A(4)

25

55

-45.3

This group of subscripted variables is also called an array. In this
case, a one-dimensional array. Later on, we'll introduce multidimen-
sional arrays.

Subscripts can also be more complex to include other variables, or
computations. The following are valid subscripted variables:

A(X) A(X+l) A(2+l) A(1*3)

The expressions within the parentheses are evaluated according to the
same rules for arithmetic operations outlined in Chapter 2.

96

Now that the ground rules are in place, how can subscripted vari-
ables be put to use? One way is to store a list of numbers entered with
INPUTor READstatements.

Let's use subscripted variables to do the averages a different way.

There might have been an easier way to accomplish what we did in
this program, but it illustrates how subscripted variables work. Line 10
asks for how many numbers will be entered. This variable, X, acts as
the counter for the loop within which values are entered and assigned to
the subscripted variable, B.

Each time through the INPUTloop, A is increased by 1 and so the next
value entered is assigned to the next element in the array A. For exam-
ple, the first time through the loop A = 1, so the first value entered
is assigned to B(l). The next time through, A = 2; the next value is
assigned to B(2), and so on until all the values have been entered.

But now a big difference comes into play. Once all the values have
been entered, they are stored in the array, ready to be put to work in a
variety of ways. Before, you kept a running total each time through the

97

INPUT or READ loop, but never could get back the individual pieces of
data without re-reading the information.

In lines 50 through 80, another loop has been designed to add up the
various elements of the array and then display the average. This sepa-

rate part of the program shows that all of the values are stored and can
be accessed as needed.

To prove that all of the individual values are actually stored separately
in an array, type the following immediately after running the previous
program:

FOR A = 1 TO 5 : ?B(A),: NEXT

125

158

167 189 167

The display will show your actual values as the contents of the array
are PRINTed.

DIMENSION

If you tried to enter more than 10 numbers in the previous example,

you got a DIMENSION ERROR. Arrays of up to eleven elements (sub-

scripts 0 to 10 for a one-dimensional array) may be used where needed,
just as simple variables can be used anywhere within a program. Arrays
of more than eleven elements need to be "declared" in a dimension
statement.

Add this line to the program:

5 DIM B(100)

This lets the computer know that you will have a maximum of 100

elements in the array.

The dimension statement may also be used with a variable, so the
following line could replace line 5 (don't forget to eliminate line 5):

15 DIM B(X)

This would dimension the array with the exact number of values that
will be entered.

Be careful, though. Once dimensioned, an array cannot be redimen-
sioned in another part of the program. Youcan, however, have multiple
arrays within the program and dimension them all on the same line, like
this:

10 DIM C(20}, D(50), E(4r3)

98

SIMULATED DICE ROLL WITH ARRAYS

As programs become more complex, using subscripted variables will
cut down on the number of statements needed, and make the program
simpler to write.

A single subscripted variable can be used, for example, to keep track
of the number of times a particular face turns up:

1 REM DICE SIMULATION : PRINT CHR$(147)
10 INPUT "HOW MANY ROLLS:";X
20 FOR L = 1 TO X
30 R = INT(6*RND(1»+!
40 F(R) = F(R) + 1
50 NEXT L
60 PRINT "FACE", "NUMBER OF TIMES"
70 FOR C = 1 TO 6 : PRINT C, F(C): NEXT

The array F, for FACE,will be used to keep track of how many times a
particular face turns up. For example, every time a 2is thrown, F(2) is
increased by one. By using the same element of the array to hold the
actual number on the face that is thrown, we've eliminated the need for
five other variables (one for each face) and numerous statements to
check and see what number is thrown.

Line 10 asks for how many rolls you want to simulate.
Line 20 establishes the loop to perform the random roll and increment

the proper element of the array by one each for each toss.
After all of the required tosses are completed, line 60 PRINTsthe

heading and line 70 PRINTs the number of times each face shows up.
A sample run might look like this:

Well, at least it wasn't loaded!
Just as a comparison, the following is one way of re-writing the same

program, but without using subscripted variables. Don't bother to type it
in, but do notice the additional statements necessary.

99

113 INPUT "HOW MANY ROLLS': II.:X
213 FOR L = 1 TO X
313 R = INT<6*RND(1»+1
413 IF R = 1 THEN F1 = F1
41 IF R = 2 THEN F2 = F2
42 IF R = 3 THEN F3 = F3
43 IF R = 4 THEN F4 = F4
44 IF R = 5 THEN F5 = F5
45 IF R = 6 THEN F6 = F6
613 PRINT "FACE", "NUMBER
713 PRINT 1, F1
71 PRINT 2, F2
72 PRINT 3, F3
73 PRINT 4, F4
74 PRINT 5, F5
75 PRINT 6, F6

+ 1 : NEXT
+ 1 : NEXT
+ 1 : NEXT
+ 1 : NEXT
+ 1 : NEXT
+ 1 : HEXT
OF TIMES"

The program has doubled in size from 8 to 16 lines. In larger pro-
grams the space savings from usirrg subscripted variables will be even
more dramatic. .

TWO-DIMENSIONAL ARRAYS

Earlier in this chapter you experimented with one-dimensional arrays.
This type of array was visualized as a group of consecutive boxes within

memory each holding an element of the array. What would you expect
a two-dimensional array to look like?

First, a two-dimensional array would be written like this:

A(4,6)

r t!scRIPTS
ARRAY NAME

and could be represented as a two-dimensional grid within memory:

~
1

2
3
4

The subscripts could be thought of as representing the row and col-
umn within the table where the particular element of the array is stored.

100

A(3,4) = 255

i L COLUMN
ROW

~
1
2
3

4

255

If we assigned the value 255 to A(3,4), then 255 could be thought of
as being placed in the 4th column of the 3rd row within the table.

Two-dimensional arrays behave according to the same rules that were

established for one-dimensional arrays:

They must be dimensioned:
Assignment of data:
Assign values to other variables:
PRINTvalues:

DIM A(20,20)

A(I, 1) = 255
AB = A(l,1)
PRINT A(I, 1)

If two-dimensional arrays work like their smaller counterparts, what
additional capabilities will the expanded arrays handle?

Try this: can you think of a way using a two-dimensional array to
tabulate the results of a questionnaire for your club that involved four
questions and had up to three responses for each question? The prob-
lem could be represented like this:

CLUB QUESTIONNAIRE

Ql: ARE YOU IN FAVOR OF RESOLUTION #1?

01-YES 02-NO 03-UNDECIDED

. . . and so on.

101

The array table for this problem could be represented like this:

YES
RESPONSES

NO UNDECIDED

QUESTION 1

QUESTION 2

QUESTION 3

QUESTION 4

The program to do the actual tabulation for the questionnaire might
look like that shown on page 103.

This program makes use of many of the programming techniques that
have been presented so far. Even if you don't have any need for the
actual program right now, see if you can follow how the program
works.

The heart of this program is a 4 by 3 two-dimensional array, A(4,3).
The total responses for each possible answer to each question are held
in the appropriate element of the array. For the sake of simplicity, we
don't use the first rows and column (A(O,O) to A(O,4». Remember,
though, that those elements are always present in any array you design.

In practice, if question one is answered YES, then A(I, 1) is in-
cremented by one-row 1 for question 1 and column 1 for a YES re-
sponse. The rest of the questions and answers follow the same pattern.
A NO response for question three would add one to element A(3,2), and
so on.

102

103

INTRODUCTION

Now that you've become more intimately involved with your Commo-
dore 64, we want you to know that our customer support does not stop
here. You may not know it, but Commodore has been in business for

over 23 years. In the 1970's we introduced the first self-contained per-
sonal computer (the PET). We have since become the leading computer
company in many countries of the world. Our ability to design and
manufacture our own computer chips allows us to bring you new and
better personal computers at prices way below what you'd expect for
this level of technical excellence.

Commodore is committed to supporting not only you, the end user,
but also the dealer you bought your computer from, magazines which
publish how-to articles showing you new applications or techniques,
and . . . importantly . . . software developers who produce programs

on cartridge, disk and tape for use with your computer. We encourage
you to establish or join a Commodore "user club" where you can learn
new techniques, exchange ideas and share discoveries. We publish two
separate magazines which contain programming tips, information on
new products and ideas for computer applications. (See Appendix N).

In North America, Commodore provides a "Commodore Information
Network" on the CompuServe Information Service . . . to access this

network, all you need is your Commodore 64 computer and our low cost
VICMODEMtelephone interface cartridge (or other compatible modem).

The following APPENDICEScontain charts, tables, and other informa-
tion which help you program your Commodore 64 faster and more

efficiently. They also include important information on the wide variety
of Commodore products you may be interested in, and a bibliography
listing of over 20 books and magazines which can help you develop your
programming skills and keep you current on the latest information con-
cerning your computer and peripherals.

106

APPENDIX A

COMMODORE 64 ACCESSORIES
AND SOFTWARE

ACCESSORIES

The Commodore 64 will support Commodore VIC20 storage devices
and accessories-DATASSETTE recorder, disk drive, modem, printer -
so your system can expand to keep pace with changing needs.

· Datasette Recorder-This low cost tape unit enables programs and
data t~ be stored on cassette tape, and played back at a later
time. The data sette can also be used to play pre-written programs.

· Disk-The single disk unit uses standard SIf4-inch floppy diskettes,
about the size of a 45 RPM record, to store programs and data.
Disks allow faster access to data and hold up to 170,000 char-
acters of information each. Disk units are "intelligent," meaning
they have their own microprocessor and memory. Disks require no
resources from the Commodore 64, such as using part of main
memory.

· Modem-A low-cost communication device,the VICMODEM allows

access to other computers over ordinary telephone lines. Users will
have access to the full resources of large data bases such as The
Source, CompuServe, and Dow Jones News Retrieval Service (North
America only).

· Printer-The VIC printer produces printed copies of programs,
data, or graphics. This 30 character per second dot-matrix printer
uses plain tractor feed paper and other inexpensive supplies. The
printer attaches directly to the Commodore 64 without any addi-
tional interfaces.

. Interface Cartridges-A number of specialized cartridges will be
available for the Commodore 64 to allow various standard devices

such as modems, printers, controllers, and instruments to be at-
tached to the system.

107

With a special IEEE-488 Cartridge, the Commodore 64 will support
the full range of CBM peripherals including disk units and printers.

Additionally, a Z80 cartridge will allow you to run CP/M* on the
Commodore 64, giving you access to the largest base of
microcomputer applications available.

SOFTWARE

Several categories of software will be offered for the Commodore 64,
providing you with a wide variety of personal, entertainment, and edu-
cational applications to choose from.

BUSINESS AIDS

. An Electronic Spreadsheet package will allow you to plan budgets,
and perform "what in" analysis. And with the optional graphic
program, meaningful graphs may be created from the spreadsheet
data.

. Financial planning, such as loan amortization, will be easily han-
dled with the Financial Planning Package.

. A number of Professional Time Management programs will help
manage appointments and work load.

. Easy-to-use Data Base programs will allow you to keep track of
information . . . mailing lists . . . phone lists . . . inventories . . .
and organize information in a useful form.

. Professional Word Processing programs will turn the Commodore 64
into a full-featured word processor. Typing and revising memos,
letters, and other text material become a breeze.

ENTERTAINMENT

. The highest quality games will be available on plug-in cartridges
for the Commodore 64, providing hours of enjoyment. These pro-
grams make use of the high resolution graphics and full sound
range possible with the Commodore 64.

. Your Commodore 64 allows you all the fun and excitement avail-
able on MAX games because these two machines have completely
compatible cartridges.

.CP/M is a registered trademark of Digital Research Inc.

108

EDUCATION

. The Commodore 64 is a tutor that never tires and always gives
personal attention. Besides access to much of the vast PET educa-
tional programs, additional educational languages that will be
available for the Commodore 64 include PILOT, LOGO and other
key advanced packages.

109

APPENDIX B

ADVANCED CASSETTE OPERATION

Besides saving copies of your programs on tape, the Commodore 64
can also store the values of variables and other items of data, in a

group called a FilE. This allows you to store even more information than

could be held in the computer's main memory at one time.

Statements used with data files are OPEN, CLOSE, PRINT#, INPUT#,

and GET#. The system variable ST (status) is used to check for tape
markers.

In writing data to tape, the same concepts are used as when display-
ing information on the computer's screen. But instead of PRINTing in-

formation on the screen, the information is PRINTed on tape using a
variation of the PRINT command-PRINT#.

The following program illustrates how this works:

10 PRINT "WRITE-TO-TAPE-PROGRAM"
20 OPEN 1,1,1,"DATA FILE"
30 PRINT "TYPE DATA TO BE STORED OR TYPE STOP"
50 PRINT
60 INPUT "DATA",A$
70 PRINT #1, A$
S0 IF A$ <:>"STOP" THEN 50
90 PRINT
100 PRINT "CLOSING FILE"
110 CLOSE 1

The first thing that you must do is OPEN a file (in this case DATA FilE).
Line 10 handles that.

The program prompts for the data you want to save on tape in line

60. Line 70 writes what you typed-held in A$-onto the tape. And the
process continues.

If you type STOP, line 110 CLOSES the file.

110

To retrieve the information, rewind the tape, and try this:

19 PRINT "READ-TAPE-PROGRAt1"
29 OPEN 1,1,9,"DATA FILE"
39 PRINT "FILE OPEN"
49 PRINT
59 INPUT#l, A$
69 PRINT A$
70 IF A$ = "STOP" THEN END
89 GOTO 49

Again, the file "DATA FILE"first must be OPENed. In line 50 the pro-
gram INPUTs A$ from tape and also PRINTs A$ on the screen. Then the
whole process is repeated until "STOP" is found, which ENDs the pro-
gram.

A variation of GET-GET#-can also be used to read the data back

from tape. Replace lines 50-80 in the program above with:

59 GET#l, A$
69 IF A$ = "" THEN END
79 PRINT A$, ASC(A$)
89 GOTO 59

111

APPENDIX C

COMMODORE 64 BASIC

This manual has given you an introduction to the BASIC language-
enough for you to get a feel for computer programming and some of

the vocabulary involved. This appendix gives a complete list of the rules
(SYNTAX) of Commodore 64 BASIC, along with concise descriptions.

Please experiment with these commands. Remember, you can't do any
permanent damage to the computer by just typing in programs, and the
best way to learn computing is by doing.

This appendix is divided into sections according to the different types
of operations in BASIC. These include:

1. Variables and Operators: describes the different type of variables,
legal variable names, and arithmetic and logical operators.

2. Commands: describes the commands used to work with programs,
edit, store, and erase them.

3. Statements: describes the BASIC program statements used in num-

bered lines of programs.
4. Functions: describes the string, numeric, and print functions.

VARIABLES

The Commodore 64 uses three types of variables in BASIC. These are

real numeric, integer numeric, and string (alphanumeric) variables.

Variable names may consist of a single letter, a letter followed by a
number, or two letters.

An integer variable is specified by using the percent (%) sign after the

variable name. String variables have the dollar sign ($) after their
name.

EXAMPLES

Real Variable Names: A, AS, BZ

Integer Variable Names: A%, AS%, BZ%

112

String Variable Names: A$, A5$, BZ$
Arrays are lists of variables with the same name, using extra numbers

to specify the element of the array. Arrays are defined using the DIM
statement, and may contain floating point, integer, or string variables.
The array variable name is followed by a set of parentheses () enclos-
ing the number of variables in the list.

A(7), BZ%(11), A$(50), PT(20,20)

NOTE: There are three variable names which are reserved for use by
the Commodore 64, and may not be defined by you. These variables
are: ST, TI, and TI$. ST is a status variable which relates to input/output
operations. The value of ST will change if there is a problem loading a
program from disk or tape.

TI and TI$ are variables which relate to the real-time clock built into
the Commodore 64. The variable TI is updated every 1/60th of a second.
It starts at 0 when the computer is turned on, and is reset only by chang-
ing the value of TI$.

TI$ is a string which is constantly updated by the system. The first two
characters contain the number of hours, the 3rd and 4th characters the
number of minutes, and the 5th and 6th characters are the number of
seconds. This variable can be given any numeric value, and will be
updated from that point.

TI$ = "101530"sets the clock to 10:15 and 30 seconds AM.

This clock is erased when the computer is turned off, and starts at
zero when the system is turned back on.

OPERATORS

The arithmetic operators include the following signs:

+ Addition
- Subtraction

* Multiplication
/ Division

i Raising to a power (exponentiation)

On a line containing more than one operator, there is a set order in
which operations always occur. If several operations are used together

113

on the same line, the computer assigns priorities as follows: First, ex-
ponentiation. Next, multiplication and division, and last, addition and
subtraction.

You can change the order of operations by enclosing within pa-
rentheses the calculation to be performed first. Operations enclosed in
parentheses will take place before other operations.

There are also operations for equalities and inequalities:

= Equal To
< less Than
> Greater Than
<= less Than or Equal To
>= Greater Than or Equal To
<> Not Equal To

Finally, there are three logical operators:

AND
OR
NOT

These are used most often to join multiple formulas in IF . . . THEN
statements. For example:

IF A = BAND C = D THEN 100 (Requires both parts to be true)

IF A = B OR C = D THEN 100 (Allows either part to be true)

COMMANDS

CONT (Continue)

This command is used to restart the execution of a program which has
been stopped by either using the STOP key, a STOP statement, or an
END statement within the program. The program will restart at the exact
place from where it left off.

CONT will not work if you have changed or added lines to the pro-

gram (or even just moved the cursor), or if the program halted due to an
error, or if you caused an error before trying to restart the program. In
these cases you will get a CAN'T CONTINUE ERROR.

114

LIST

The LISTcommand allows you to look at lines of a BASIC program in
memory. You can ask for the entire program to be displayed, or only
certain line numbers.

LIST

LIST 10-
LIST 10

LIST -10
LIST 10-20

LOAD

Shows entire program
Shows only from line 10 until end
Shows only line 10
Shows lines from beginning until 10
Shows line from lQ to 20, inclusive

This command is used to transfer a program from tape or disk into
memory so the program can be used. If you just type LOAD and hit
RETURN, the first program found on the cassette unit will be placed in
memory. The command may be followed by a program name enclosed
within quotes. The name may then be followed by a comma and a
number or numeric variable, which acts as a device number to indicate

where the program is coming from.
If no device number is given, the Commodore 64 assumes device # 1,

which is the cassette unit. The other device commonly used with the
LOAD command is the disk drive, which is device #8.

LOAD
LOAD "HELLO"

LOAD A$
LOAD " HELLO",8
LOAD "*",8

NEW

Reads in the next program on tape
Searches tape for program called

HELLO, and loads program, if found
Looks for program whose name is in the variable A$
Looks for program called HELLOon the disk drive
Looks for first program on disk

This command erases the entire program in memory, and also clears

out any variables that may have been used. Unless the program was
SAVEd, it is lost. BE CAREFULWHEN YOU USE THIS COMMAND.

The NEW command can also be used as a BASIC program statement.

When the program reaches this line, the program is erased. This is use-
ful if you want to leave everything neat when the program is done.

115

RUN

This command causes execution of a program, once the program is
loaded into memory. If there is no line number following RUN, the com-

puter will start with the lowest line number. If a line number is desig-
nated, the program will start executing from the specified line.

RUN
RUN 100

RUN X

SAVE

Starts program at lowest line number
Starts execution at line 100

UNDEFINED STATEMENT ERROR. You must

always specify an actual line number,

not a variable representation

This command will store the program currently in memory on cassette
or disk. If you ju;t type SAVEand RETURN,the program will be SAVEdon
cassette. The computer has no way of knowing if there is a program
already on that tape, so be careful with your tapes or you may erase a
valuable program.

If you type SAVEfollowed by a name in quotes or a string variable,
the computer will give the program that name, so it can be more easily
located and retrieved in the future. The name may also be followed by
a device number.

After the device number, there can be a comma and a second
number, either a or 1. If the second number is 1, the Commodore 64 will
put an END-OF-TAPE marker after your program. This signals the
computer not to look any further on the tape if you were to give an
additional LOADcommand. If you try to LOADa program and the com-
puter finds one of these markers, you will get a FILENOT FOUND ER-
ROR.

SAVE

SAVE "HELLO"

SAVE A$

SAVE "HELLO",8

SAVE "HELLO", 1, 1

-.

Stores program to tape without name
Stores on tape with name HELLO
Stores on tape with name in A$
Stores on disk with name HELLO

Stores on tape with name HELLO
and follows program with END-OF-

TAPEmarker

116

VERIFY

This command causes the computer to check the program on disk or

tape against the one in memory. This is proof that the program is actu-
ally SAVEd, in case the tape or disk is bad, or something went wrong
during the SAVE. VERIFY without anything after the command causes the

Commodore 64 to check the next program on tape, regardless of name,

against the program in memory.
VERIFY followed by a program name, or a string variable, will search

for that program and then check. Device numbers can also be included
with the verify command.

VERIFY

VERIFY "HELLO"

VERIFY "HELLO",8

Checks the next program on tape

Searches for HELLO, checks against memory
Searches for HELLO on disk, then checks

STATEMENTS

CLOSE

This command completes and closes any files used by OPEN state-
ments. The number following CLOSE is the file number to be closed.

CLOSE 2 Only file #2 is closed

CLR

This command will erase any variables in memory, but leaves the
program itself intact. This command is automatically executed when a

RUN command is given.

CMD

CMD sends the output which normally would go to the screen (i.e.,
PRINTstatements, LISTs, but not POKEs onto the screen) to another de-
vice instead. This could be a printer, or a data file on tape or disk. This
device or file must be OPENed first. The CMD command must be fol-

lowed by a number or numeric variable referring to the file.

117

OPEN 1,4
CMD 1
LIST

OPENs device #4, which is the printer
All normal output now goes to printer

The program listing now goes to
the printer, not the screen

To send output back to the screen, CLOSE the file with CLOSE1.

DATA

This statement is followed by a list of items to be used by READ

statements. Items may be numeric values or text strings, and items are

separated by commas. String items need not be inside quote marks

unless they contain space, colon, or comma. If two commas have noth-

ing between them, the value will be READ as a zero for a number, or an
empty string.

DATA 12, 14.5, "HELLO, MOM", 3.14, PARn

DEF FN

This command allows you to define a complex calculation as a func-
tion with a short name. In the case of a long formula that is used many
times within the program, this can save time and space.

The function name will be FN and any legal variable name (lor 2
characters long). First you must define the function using the statement
DEFfollowed by the function name. Followingthe name is a set of pa-
rentheses enclosing a numeric variable. Then follows the actual formula
that you want to define, with the variable in the proper spot. You can
then "call" the formula, substituting any number for the variable.

1~ DEF FNA(X) =
2~ PRINT FNA(7)

t

12*(34.75 - X/.3)

J 7;. ;n.orted who.e
X is in the formula

For this example, the result would be 137.

DIM

When you use more than 11 elements of an array, you must execute a
DIM statement for the array. Keep in mind that the whole array takes up

118

room in memory, so don't create an array much larger than you'll need.
To figure the number of variables created with DIM, multiply the total
number of elements in each dimension of the array.

10 DIM A$(40), B7(15), CC%(4,4,4)
t t t

41 ELEMENTS 16 ELEMENTS 125 ELEMENTS

You can dimension more than 'one array in a DIM statement. How-
ever, be careful not to dimension an array more than once.

END

When a program encounters an END statement, the program halts, as
if it ran out of lines. You may use CONT to restart the program.

FOR. . .TO. . .STEP

This statement works with the NEXTstatement to repeat a section of
the program a set number of times. The format is:

FOR (Var. Name)=(Start of Count) TO (End of Count) STEP(Count By)

The loop variable will be added to or subtracted from during the
program. Without any STEPspecified, STEPis assumed to be 1. The start
count and end count are the limits to the value of the loop variable.

10 FOR L = 1 TO 10 STEP .1
20 PRINT L
30 NEXT L

The end of the loop value may be followed by the word STEP and
another number or variable. In this case, the value following STEP is
added each time instead of 1. This allows you to count backwards, or
by fractions.

GET

The GET statement allows you to get data from the keyboard, one
character at a time. When GETis executed, the character that is typed is

assigned to the variable. If no character is typed, then a null (empty)
character is assigned.

..-
119

..-

GET is followed by a variable name, usually a string variable. If a
numeric variable was used and a nonnumeric key depressed, the pro-
gram would halt with an error message. The GET statement may be
placed into a loop, checking for any empty result. This loop will continue
until a key is hit.

1" GETA$: IFA$ ="" THEN1"

GET#

ThfW:ZEJ...#statement is used with a previously OPENed device or file,

to input one character at a time from that device or file.

GET #1 ,A$

This would input one character from a data file.

GOSUB

This statement is similar to GOTO, except the computer remembers
which program line it last executed before the GOSUB. When a line with
a RETURN statement is encountered, the program jumps back to the
statement immediately following the GOSUB. This is useful if there is a
routine in your program that occurs in several parts of the program.
Instead of typing the routine over and over, execute GOSUBs each time
the routine is needed.

2" GOSUB8""

GOTO OR GO TO

When astatement with the GOTO command is reached, the next line

to be executed will be the one with the line number following the word
GOTO.

IF. . .THEN

IF. . .THEN lets the computer analyze a situation and take two possi-
ble courses of action, depending on the outcome. If the expression is
true, the statement following THEN is executed. This may be any BASIC
statement.

If the expression is false, the program goes directly to the next line.
The expression being evaluated may be a variable or formula, in

which case it is considered true if nonzero, and false if zero. In most
cases, there is an expression involving relational operators (=, <, >,
<=, >=, <>, AND, OR, NOT).

120

10 IF X > 10 THEN END

INPUT

The INPUT statement allows the program to get data from the user,
assigning that data to a variable. The program will stop, print a ques-
tion mark (?) on the screen, and wait for the user to type in the answer
and hit RETURN.

INPUT is followed by a variable name, or a list of variable names,

separated by commas. A message may be placed within quote marks,
before the list of variable names to be INPUT. If more than one variable

is to be INPUT, they must be separated by commas when typed.

10 INPUT "PLEASE ENTER YOUR FIRST NAME ";A$

20 PRINT "ENTER YOUR CODE NUMBER"; : INPUT B

INPUT#

INPUT# is similar to INPUT, but takes data from a previously OPENed
file or device.

10 INPUT#l, A

LET

LET is hardly ever used in programs, since it is optional, but the
statement is the heart of all BASIC programs. The variable name which
is to be assigned the result of a calculation is on the left side of the
equal sign, and the formula on the right.

10LETA=5
20 LETD$ = "HELLO"

I
NEXT

NEXTis always used in conjunction with the FOR statement. When the
program reaches a NEXTstatement, it checks the FOR statement to see
if the limit of the loop has been reached. If the loop is not finished, the
loop variable is increased by the specified STEP value. If the loop is

:::- finished, execution proceeds with the statement following NEXT.

121

NEXTmay be followed by a variable name, or list of variable names,
separated by commas. If there are no names listed, the last loop started
is the one being completed. If variables are given, they are completed
in order from left to right.

10 FOR X = 1 TO 100: NEXT

ON

This command turns the GOTO and GOSUB commands into special
versions of the IF statement. ON is followed by a formula, which is
evaluated. If the result of the calculation is one, the first line on the list is
executed; if the result is 2, the second line is executed, and so on. If the
result is 0, negative, or larger than the list of numbers, the next line
executed will be the statement following the ON statement.

10 INPUT X

20 ON X GOTO 10,20,30,40,50

OPEN

The OPEN statement allows the Commodore 64 to access devices such
as the cassette recorder and disk for data, a printer, or even the screen.
OPEN is followed by a number (0-255), to which all following statements
will refer. There is usually a second number after the first, which is the
device number.

The device numbers are:

o Screen
1 Cassette
4 Printer
8 Disk

Following the device number may be a third number, separated
again by a comma, which is the secondary address. In the case of the

cassette, this is 0 for read, 1 for write, and 2 for write with end-of-tape
marker.

In the case of the disk, the number refers to the buffer, or channel,
number. In the printer, the secondary address controls features like ex-
panded printing. See the Commodore 64 Programmer's Reference Man-
ual for more details.

\,

122

10 OPEN 1,O
20 OPEN 2,1 ,0,"D"

OPENs the SCREEN as a device

OPENs the cassette for reading,
file to be searched for is D

OPENs the printer
OPENs the data channel on the disk

30 OPEN 3,4
40 OPEN 4,8,15

Also see: CLOSE, CMD, GET#, INPUT#, and PRINT#, system variable
ST, and Appendix B.

POKE

POKE is always followed by two numbers, or formulas. The first loca-

tion is a memory location; the second number is a decimal value from 0

to 255, which will be placed in the memory location, replacing any pre-

viously stored value.

10 POKE 53281,0

20 5=4096* 13
30 POKE 5+29,8

PRINT

The PRINT statement is the first one most people learn to use, bUJ
there are a number of variations to be aware of. PRINTcan be followed

by:

Text String with quotes
Variable names
Functions
Punctuation marks

Punctuation marks are used to help format the data on the screen.
The comma divides the screen into four columns, while the semicolon

suppresses all spacing. Either mark can be the last symbol on a line.
This results in the next thing PRINTed acting as if it were a continuation
of the same PRINT statement.

10 PRINT "HElLO"

20 PRINT "HElLO" ,A$
30 PRINT A+ B

123

4~ PRINT J;

6~ PRINT A,B,C,D

Also see: POS, SPC and TAB functions

PRINT#

There are a few differences between this statement and PRINT.

PRINT# is followed by a number, which refers to the device or data file
previously OPENed. This number is followed by a comma and a list to be

printed. The comma and semicolon have the same effect as they do in
PRINT. Please note that some devices may not work with TAB and spc.

1~~ PRINT#I,"DATA VALUES"; A%, Bl, C$

READ

READ is used to assign information from DATA statements to vari-

ables, so the information may be put to use. Care must be taken to
avoid READing strings where READ is expecting a number, which will
give a TYPE MISMATCH ERROR.

REM (Remark)

REMark is a note to whomever is reading a LIST of the program. It
may explain a section of the program, or give additional instructions.

REM statements in no way affect the operation of the program, except
to add to its length. REM may be followed by any text.

RESTORE

When executed in a program, the pointer to which an item in a DATA

statement will be READ next is reset to the first item in the list. This gives
you the ability to re-READ the information. RESTOREstands by itself on a
line.

RETURN

This statement is always used in conjunction with GOSUB. When the

program encounters a RETURN, it will go to the statement immediately
following the GOSUB command. If no GOSUB was previously issued, a
RETURN WITHOUT GOSUB ERROR will occur.

124

STOP

This statement will halt program execution. The message, BREAKIN
xxx will be displayed, where xxx is the line number containing STOP. The
program may be restarted by using the CONT command. STOP is nor-
mally used in debugging a program.

SYS

SYS is followed by a decimal number or numeric value in the range
0-65535. The program will then begin executing the machine language
program starting at that memory location. This is similar to the USR
function, but does not allow parameter passing.

WAIT

WAITis used to halt the program until the contents of a memory loca-
tion changes in a specific way. WAITis followed by a memory location
(X) and up to two variables. The format is:

WAIT X,Y,Z

The contents of the memory location are first exciusive-ORed with the
third number, if present, and then logically ANDed with the second
number. If the result is zero, the program goes back to that memory
location and checks again. When the result is nonzero, the program
continues with the next statement.

NUMERIC FUNCTIONS

ABS(X) (absolute value)

ABS returns the absolute value of the number, without its sign (+ or
-). The answer is always positive.

ATN(X) (arctangent)

Returns the angle, measured in radians, whose tangent is X.

125

COS(X) (cosine)

Returns the value of the cosine of X, where X is an angle measured in
radians.

EXP(X)

Returns the value of the mathematical constant e(2.71827183) raised

to the power of X.

FNxx(X)

Returns the value of the user-defined function xx created in a DEF
FNxx(X) statement.

INT(X)

Returns the truncated value of X, that is, with all the decimal places
to the right of the decimal point removed. The result will always be less
than, or equal to, X. Thus, any negative numbers with decimal places
will become the integer less than their current value.

LOG(X) (logarithm)

Will return the natural log of X. The natural log to the base e (see
EXP(X». To convert to log base 10, simply divide by LOG(10).

PEEK(X)

Used to find out contents of memory location X, in the range 0-65535,

giving a result from 0-255. PEEK is often used in conjunction with the
POKE statement.

RND(X) (random number)

RND(X) returns a random number in the range 0-1. The first random
number should be generated by the formula RND(-TI) to start things off
differently every time. After this, X should be a 1 or any positive
number. If X is zero, the result will be the same random number as the
last one.

126

A negative value for X will reseed the generator. The use of the same
negative number for X will result in the same sequence of "random"
numbers.

The formula for generating a number between X and Y is:

N = RND(l)*(Y-X)+X

where,
Y is the upper limit
X is the lower range of numbers desired.

SGN(X) (sign)

This function returns the sign (positive, negative, or zero) of X. The
result will be + 1 if positive, 0 if zero, and -1 if negative.

SIN(X) (sine)

SIN(X) is the trigonometric sine function. The result will be the sine of
X, where X is an angle in radians.

SQR(X) (square root)

This function will return the square root of X, where X is a positive
number or O. If X is negative, an IllEGAL QUANTITYERROR results.

TAN(X) (tangent)

The result will be the tangent of X, where X is an angle in radians.

USR(X)

When this function is used, the program jumps to a machine language
program whose starting point is contained in memory locations. The pa-
rameter X is passed to the machine language program, which will re-
turn another value back to the BASIC program. Refer to the Commodore
64 Programmer's Reference Manual for more details on this function
and machine language programming.

127

STRING FUNCTIONS

ASC(X$)

This function will return the ASCII code of the first character of X$.

CHR$(X)

This is the opposite of ASC, and returns a string character whose
ASCII code is X.

LEFT$(X$,X)

Returns a string containing the leftmost X characters of $X.

LEN(X$)

Returned will be the number of characters (including spaces and
other symbols) in the string X$.

MID$(X$,S,X)

This will return a string containing X characters starting from the Sth
character in X$.

RIGHT$(X$,X)

Returns the rightmost X characters in X$.

STR$(X)

This will return a string which is identical to the PRINTed version of X.

VAL(X$)

This function converts X$ into a number, and is essentially the inverse
operation from STR$. The string is examined from the leftmost character
to the right, for as many characters as are in recognizable number for-
mat.

128

10 X = VAL("123.456")
10 X = VAL("12A13B")
10 X = VAL("RIUfij17")
10 X = VAL("-1.23.45.67")

X = 123.456
X = 12
X = fij
X = -1.23

OTHER FUNCTIONS

FRE{X)

This function returns the number of unused bytes available in memory,
regardless of the value of X. Note that FRE(X)will read out n negative
numbers if the number of unused bytes is over 32K.

POS{X)

This function returns the number of the column (0-39) at which the
next PRINT statement will begin on the screen. X may have any value
and is not used.

SPC{X)

This is used in a PRINT statement to skip X spaces forward.

TAB{X)

TABis also used in a PRINTstatement; the next item to be PRINTed will
be in column X.

129

APPENDIX D

ABBREVIATIONS FOR
BASIC KEYWORDS

As a time-saver when typing in programs and commands, Commo-
dore 64 BASIC allows the user to abbreviate most keywords. The ab-
breviation for PRINT is a question mark. The abbreviations for other
words are made by typing the first one or two letters of the word, fol-
lowed by the SHIFTed next letter of the word. If the abbreviations are
used in a program line, the keyword will LISTin the full form.

Loolcslik. Loolcslik.
Com- Abbrevi- this on Com- Abbrevi- this on
mand ation screen mand ation screen

ABS A_B Am END E BIIiI N E0
AND A_N A0 EXP ElmiIx E

ASC A BIIiI S A FN NONE FN

ATN A_T A[J FOR F BIIiI 0 FO
CHR$ CIIIIIIH c[] FRE FBllDR F

CLOSE ClI1lDDO CLD GET GBIIDE GEj

CLR C 11IIII L cD GET# NONE GET#

CMD C BIIiI M cIS] GOSUB GO BID S GO

CONT C I1IDD 0 cD GOTO G BIIiI 0 GO

COS NONE COS IF NONE IF

DATA D BIIiIA D[!] INPUT NONE INPUT

DEF DEmlE DE! INPUT# I_N I 0
DIM D_I DfJ INT NONE INT

,
130

131

Looks like Looks like
Com- Abbrevi- this on Com- Abbrevi- this on
mand ation screen mand ation screen

LEFT$ LEIDIIII F LEbJ RIGHT$ R IIIIiI I R

LEN NONE LEN RND R BIIiI N RIZI

LET L18E LO RUN RBllDu RGj
LIST LEDIIiII L SAVE S Emil A S

LOAD LIDIIII 0 LO SGN S IIIIiI G SID

LOG NONE LOG SIN SBIIDI sl;]
MID$ MBIIDI MEJ SPC{ slIDiIp sO
NEW NONE NEW SQR S BID Q S.
NEXT NIDIIIIE NEj STATUSST ST

NOT N Emil 0 NO STEP ST" E STE]

ON NONE ON STOP S"T sID
OPEN o IIIIiI P 00 STR$ STIIIIiI R STQ

OR NONE OR SYS S IIIIiI Y s[]]

PEEK PIIIIiI E PEl TAB(T BID A T

POKE P BIIiI 0 pO TAN NONE TAN

POS NONE POS THEN TIDIIII H T[]

PRINT ? ? ITIME TI TI

PRINT# PImDR PbJ TIME$ TI$ TI$

READ RImDE REI USR ulmDs U

REM NONE REM VAL VIIIIiIA vI!!
RESTOREREBIIiI S RE VERIFY VBIIiIE vEJ
RETURNREEDIiIT RE[] WAIT WBIIiIA wI!!

APPENDIX E

SCREEN DISPLAY CODES

The following chart lists all of the characters built into the Commodore
64 character sets. It shows which numbers should be POKEd into screen
memory (locations 1024-2023) to get a desired character. Also shown is
which character corresponds to a number PEEKed from the screen.

Two character sets are available, but only one set at a time. This
means that you cannot have characters from one set on the screen at
the same time you have characters from the other set displayed. The

sets are switched by holding down the Emil and [I keys simul-
taneously.

From BASIC, POKE 53272,21 will switch to upper case mode and
POKE 53272,23 switches to lower case.

Any number on the chart may also be displayed in REVERSE.The
reverse character code may be obtained by adding 128 to the values
shown.

If you want to display a solid circle at location 1504, POKEthe code
for the circle (81) into location 1504: POKE 1504,81.

There is a corresponding memory location to control the color of each
character displayed on the screen (locations 55296-56295). To change
the color of the circle to yellow (color code 7) you would POKEthe corre-
sponding memory location (55776) with the character color: POKE
55776,7.

Refer to Appendix G for the complete screen and color memory
maps, along with color codes.

SCREEN CODES
SET1 SET2 POKE SET1 SET2 POKE SET1 SET2 POKE

@ 0 C c 3 F f 6

A a 1 D d 4 G 9 7

B b 2 E e 5 H h 8

132

SET1 SET2 POKE SET1 SET2 POKE SET1 SET2 POKE

I i 9 % 37 A 65

J j 10 & 38 [JJ B 66

K k 11 , 39 B C 67

L I 12 (40 EJ D 68

M m 13) 41 Ej E 69

N n 14 * 42 bJ F 70

0 0 15 + 43 D G 71

P P 16 I 44 OJ H 72

Q q 17 - 45 EJ I 73

R r 18 46 J 74

S s 19 / 47 EJ K 75

T t 20 0 48 0 L 76

U u 21 1 49 [SJ M 77

V v 22 2 50 0 N 78

W w 23 3 51 0 0 79

X x 24 4 52 0 P 80

Y Y 25 5 53 II Q 81

Z z 26 6 54 bJ R 82

[27 7 55 S 83

£ 28 8 56 D T 84

] 29 9 57 [lj U 85

t 30 58 V 86

+- 31 , 59 C W 87- 32 < 60 X 88

33 = 61 []] Y 89

34 I

> 62 [J] Z 90

35 ? 63 EE 91

$
36 I

B 64 IJ 92

133

134

SET 1 SETZ POKE SET 1 SET Z POKE SET 1 SETZ POKE

rn 93 IB 105 [] 117

ITB . 94 [] 106 [] 118
95 rn 107 LI 119- 96 108 120

IJ 97 [g 109 121

98 6J 110 0 0 122

0 99 CJ 111 123

0 100 ca 112 124

0 101 113 125

II 102 EI3 114 126

0 103 HJ 115 127

104 IJ 116

Codes from 128-255are reversed Images of codes 0-127.

APPENDIX F

ASCII AND CHR$ CODES

This appendix shows you what characters will appear if you PRINT

CHR$(X), for all possible values of X. It will also show the values ob-

tained by typing PRINT ASq"x"), where x is any character you can type.
This is useful in evaluating the character received in a GET statement,

converting upper/lower case, and printing character based commands

(like switch to upper/lower case) that could not be enclosed in quotes.

135

PRINTS CHR$ PRINTS CHR$ PRINTS CHR$ PRINTS CHR$

0 II 17 .. 34 3 51

1 .. 18 # 35 4 52

2 . 19 $ 36 5 53

3 . 20 % 37 6 54

4 21 & 38 7 55. 5 22 39 8 56

6 23 (40 9 57

7 24) 41 : 58

DISABlES..Cl8 25 * 42 59.

ENABLES"Cl9 26 + 43 C 60

10 27 , 44 = 61

11 - 28 - 45 :> 62
12 II 29 46 ? 63.. 13 . 30 / 47 @ 64

"14 . 31 0 48 A 65 i

15 III
32 I

1 49 B 66

16 , 33 2 50 C 67

136

PRINTS CHR$ PRINTS CHR$ PRINTS CHR$ PRINTS CHR$

D 68 97 ffD 126 B3 155
E 69 CD 98 C!II 127 . 156
F 70 E3 99 128 II 157
G 71 D 100 129 - 158
H 72 Ej 101 130 . 159
I 73 g 102 131 lID 160
J 74 0 103 132 IJ 161
K 75 OJ 104 f1 133 .. 162
L 76 EJ 105 f3 134 D 163
M 77 106 f5 135 0 164
N 78 107 f7 136 D 165
0 79 0 108 f2 137 11III 166

P 80 [SJ 109 f4 138 D 167
Q 81 0 110 f6 139 168
R 82 0 111 f8 140 169

S 83 0 112 __141 [] 170
T 84 . 1131llliJ142 rn 171
U 85 D 114 143 [Ij 172
V 86 115 . 144 [g 173

W 87 D 116 III 145 ElJ 174
X 88 Cd 117 .. 146 175
Y 89 118 II 147 ca 176
Z 90 C 119 II 148 177

[91 120 Cd 149 53 178
£ 92 OJ 121 150 8J 179

] 93 [I] 122 C 151 [] 180

r 94 B3 123 152 [] 181
- 95 IJ 124 OJ 153 [] 182

E3 96 rn 125 [I] 154 U 183

CODES
CODES
CODE

192-223
224-254
255

SAME AS
SAME AS
SAME AS

96-127
160-190
126

137

PRINTS CHRS PRINTS CHR$ PRINTS CHRS PRINTS CHRS

184 D 186 188 190
185 187 f!] 189 191

APPENDIX G

SCREEN AND COLOR MEMORY MAPS

The following charts list which memory locations control placing char-
acters on the screen, and the locations used to change individual char-
acter colors, as well as showing character color codes.

SCREENMEMORYMAP

1024-
1064
1104
1144
1184
1224
1264
1304
1344
1384
1424
1464
1504
1544
1584
1624
1664
1704
1744
1784
1824
1864
1904
1944
1984

10
COLUMN

20 30

'"
10 ~

20

24

138

The actual values to POKE into a color memory location to change a
character's color are:

For example, to change the color of a character located at the upper
left-hand corner of the screen to red, type: POKE 55296,2.

COLOR MEMORY MAP

10
COLUMN

20 30 39

55335
~

55296-
55336
55376
55416
55456
55496
55536
55576
55616
55656
55696
55736
55776
55816
55856
55896
55936
55976
56016
56056
56096
56136
56176
56216
56256

10 ~

20

24
t

56295

139

f/! BLACK 8 ORANGE

1 WHITE 9 BROWN

2 RED If/! Light RED
3 CYAN 11 GRAY 1

4 PURPLE 12 GRAY 2

5 GREEN 13 Light GREEN
6 BLUE 14 Light BLUE
7 YellOW 15 GRAY 3

APPENDIX H

DERIVING MATHEMATICAL FUNCTIONS

Functions that are not intrinsic to Commodore 64 BASIC may be calcu-
lated as follows:

'140

FUNCTION BASIC EQUIVALENT

SECANT SEC(X)= I/COS(X)
COSECANT CSC(X)= I/SIN(X)
COTANGENT COT(X)= I/TAN(X)
INVERSE SINE ARCSIN(X)=ATN(X/SQR(- X.X + 1»
INVERSE COSINE ARCCOS(X)= -ATN(X/SQR

(-X.X +1» +7T/2
INVERSE SECANT ARCSEC(X)=ATN(X/SQR(X.X - 1»
INVERSE COSECANT ARCCSC(X)=ATN(X/SQR(X.X -1»

+(SGN(X)-I.7T/2
INVERSE COTANGENT ARCOT(X)=ATN(X)+7T/2
HYPERBOLIC SINE SINH(X)= (EXP(X)- EXP(- X»/2
HYPERBOLIC COSINE COSH(X)= (EXP(X)+ EXP(- X»/2

HYPERBOLICTANGENT TAN H(X)= EXP(- X)/(EXP(x)+ EXP

(- X».2+ 1
HYPERBOLIC SECANT SECH(X)= 2/(EXP(X)+ EXP(- X»
HYPERBOLIC COSECANT CSCH(X)= 2/(EXP(X)- EXP(- X»
HYPERBOLIC COTANGENT COTH(X)= EXP(- X)/(EXP(X)

-EXP(-X».2+1
INVERSE HYPERBOLIC SINE ARCSINH(X)= LOG(X+ SQR(X. x + 1»
INVERSE HYPERBOLICCOSINE ARCCOSH(X)= LOG(X+SQR(X.X -1»
INVERSE HYPERBOLICTANGENT ARCTANH(X)= LOG« 1+ X)/(1- X»/2
INVERSE HYPERBOLICSECANT ARCSECH(X)= LOG«SQR

(-X.X+ 1)+ I/X)
INVERSE HYPERBOLICCOSECANT ARCCSCH(X)= LOG«SGN(X). SQR

(X.X+l/x)
INVERSE HYPERBOLICCOTAN- ARCCOTH(X)= lOG«X + 1)/(x-l »/2
GENT

APPENDIX I

PINOUTS FOR INPUT/OUTPUT DEVICES

This appendix is designed to show you what connections may be
made to the Commodore 64.

1) Game I/O

2) Cartridge Slot
3) Audio/Video

Control Port 1

Control Port 2

4) Serial I/O (Disk/Printer)

5) Modulator Output
6) Cassette

7) User Port

2
o

4
o

5
o

3
o

1
o

o
7

o
8

o
9

o
6

141

Pin Type Note
1 JOYAO
2 JOYAl
3 JOYA2

4 JOYA3
5 POT AY
6 BUTTON A'LP

7 +5V MAX. 50mA

8 GND

9 POT AX

Pin Type Note

1 JOYBO
2 JOYBI
3 JOYB2
4 JOYB3

5 POT BY

6 BUTTON B
7 +SV MAX. SOmA

8 GND

9 POT BX

Cartridge Expansion Slot

22 2120 1918171615 U 13 12 1110 9 8 7 8 5 4 3 2 1

IV XWVUTSRPNMLKJHFEOCBA

Audio/Video

IT
SerialI/O

142

Pin TVDe

12 BA
13 i5MA
14 D7

15 D6
16 DS
17 D4

18 D3
19 D2
20 D1
21 DO

22 GND

Pin Type

N A9

P A8

R A7

S A6

T AS

U A4
V A3

W A2

X Al

Y AO

Z GND

Type Note

LUMINANCE
GND
AUDIO OUT

VIDEO OUT
AUDIO IN

Pin Type

1 SERIALSRQIN
2 GND

3 SERIALATN IN/OUT
4 SERIALCLK IN/OUT

5 SERIAL DATA IN/OUT

6 RESET

Pin Type

1 GND

2 +SV

3 +SV
4 IRQ
S R/w

6 Dot Clock
7 I/O 1
8 GAME
9 EXROM

10 I/O 2
11 ROML

Pin . Type

A GND
B ROMH
C REsEr
D NMI
E S 02

F A1S
H A14

J A13
K A12
L All
M Al0

Cassette

User I/O

1 2 3 4 5 6 7 8 9 10 11 12

ABC D E F H J K L M N

143

123458
..---.

ABC D E F

Pin Type
A-I GND
B-2 +SV
C-3 CASSETTEMOTOR
D-4 CASSETTEREAD
E-S CASSETTEWRITE
F-6 CASSETTESENSE

Pin Type Note
I GND
2 +SV MAX. lOa mA
3 RESET
4 CNTI
S SPI
6 CNT2
7 SP2
8 PC2
9 SER. ATN IN

10 9 VAC MAX. lOa mA
11 9 VAC MAX. lOa mA
12 GND

Pin Type Note
A GND
B FLAG2
C PBO
D PBI
E PB2
F PB3
H PB4
J PBS
K PB6
l PB7
M PA2
N GND

APPENDIX J

PROGRAMS TO TRY

We've included a number of useful programs for you to try with your
Commodore 64. These programs will prove both entertaining and
useful.

-~.

-,

144

100
120
130
140
150
160
170
180
190
200
210
220
250
260
270
280
290
300
310
320
330
340
400
410
420
430
440
450
500
510
520
530
540
550
560
570

print"~jotto Jim butterfi~ld"
input"~want instructions"i;$:ifasc(;.)=78got0250
pr nt"~try to gu~ss the mystery 5-1etter word"
pr nt"~you must gu~ss only legal 5-1etter"
pr nt"words, too..."
pr nt"you will b~ told th~ number of matches"
pr nt"(or 'jots') of your guess."
pr nt"~hint: the trick is to vary slightly"
pr nt" from one guess to.the next, so that"
pr nt" If you guess 'batch' and get 2 jots"
pr nt" you might try 'botch' or 'chart'"
pr nt" for the next guess..."
data bxbsf,ipcc;,dbdif,esfbe,pggbm
data hpshf,ibudi,djwjm,kpmm;,lb;bl
data sbkbi,mfwfm,njnjd,boofy,qjqfs
data rvftu,sjwfs,qsftt,puufs,fwfou
data xfbwf,fyupm,nvti;,afcsb,gjaa;
data uijdl,esvol,gmppe,ujhfs,gblfs
data cppui,mzjoh,trvbu,hbvaf,pxjoh
data uisff,tjhiu,bymft,hsvnq,bsfob
data rvbsu,dsffq,cfmdi,qsftt,tqbsl
data sbebs,svsbm,tnfmm,gspxO,~Sjgu
n=50
dim n$(n),z(5),y(S)
for j=1ton:readn$(j):nextj
t=ti
t=t/1000:ift>=1thengot0440
;=rnd(-t)
g=0:n$=n$(rnd(1)*n+1)
print "~i have a five letter word:":ifr>Ogot0560
print "guess (with legal words)"
print "and i'll tell you how many"
print "'jots', or matching letters,"
print "you hav~ "
g=g+1:input "your word",z'
if len(;$)<>5thenprint"you must guess a
S-l~tt~r word!":gotoS60
v=O:h=O:m=O
forj=1t05
z=asc(mid$(z',j,1»:y=asc(mid$(n$,j,1»-1:lfy=64theny=90
if;(650rz>90thenprint"that's not a word!":got0560
ifz=650rz=690rz=730rz=790rz=850rz=89thenv=v+1
ifz=ythenm=m+1
z(j)=z:y(j)=y:nextJ
ifm=5got0800
ifv=00rv=5thenprint"come on..what kind of
a word is that?":got0560
for j=1t05:y=y(j)
for k=lt05:ify=z(k)thenh=h+l:z(k)=0:got0700
next k
next j
print"DDDDDDDDDDDDDDDDDDDD",H,"JOTS"
ifg(30got0560
print"i'd.better tell you.. word was '",
forj=1t05:~rintchr$(y(j»i:nextj
print"'":got0810
print"you got it in onlY"ig,"guesses."
input"~another word",z$
r=1:ifasc(;$)(>78gotoSOO

580
590
600
610
620
630
640
650
660

670
680
690
700
710
720
730
740
750
800
810
820

145

1 rem *** seQuence
2 relR
3 rem ***
I, rem ***
5 reM ***
6 rem ***
7 rem
50 dllR a$(26)

100 z$="abcdefghijklmnopqrstuvwxyz"
110 21$="12345678901234567890123456"
200 print"'~~enter length of string to be sequenced~"
220 Input "maximum length is 26 "~s%
230 if s%(1 or s%)26 then 200
240 s=s%
300 for i=1 to s
310 a$(i)=mid$(z$,i,l)
320 next i

400 rem randomize string
420 for 1=1 to s
430 k=int(rnd(I)*s+l)
440 t$=a$ (I)

450 a$(i)=a$(k)

460 a$(k)=U

470 next i

480 Qosub 950
595 t=O
600 rem reverse substring
605 t=t+l
610 input "how many to reverse ";r%
620 if r%=O goto 900
630 if r%)O and r%(=s goto 650
640 print "must be between 1 and "IS: go to 610
650 r=int(r%/2)
660 for i=1 to r
670 U=a$(i)
680 a$(i)=a$(r%-i+l)
690 a$(r%-i+l)=t$
700 next i

750 gosub 950
800 c=l: for i=2 to s
810 if a$(i»a$(i-l) goto 830
820 c=O
830 ne>:t i
840 if c=O go to 600
850 print "~you did it in "it;" tries"
900 rem check for another game
910 input "~want to play again ";y$
920 if left$(y$,I)="y" or y$="ok" or y$="I" goto 200
930 end
950 print

960 print left$(zl$,s)
970 for 1=1 to s: print a$(i)~:next
980 print "~"
990 return

from pet user group
software exchange
po box 371
montgomeryville, pa 18936

This program courtesy of Gene Deals

146

9(1

10C'
110
12')

1 :-::"~1
141)
15')

16')
1(1)

1:~0
19')
2(10
211)
22(1
23"~1

REM F'l At.m KE'T'E:OAF;D
PRINT"~ ~ g ~ I U ~ ~ I ~ n I ~ ~ "
PRINT" ~ M ~ I ~ ~ ~ i ~ M I ~ ~
PR HIT" ..1~ I!J I ~J i!JI it~ I i!JI I!J I I!II I!J "
PFUNT" ~ I I I I I I I I I I I I "
PRINT" ;:11)I~j IE IR IT I','IU 1110 IP II] I;+;I.t"

PRUIT":!j'-SPACE'-FOR SOLO OR POL','PHO~UC"
PRINT":!j'F1 ,F~'3._F5..F7'-OCTAVE SELECTIClt~"
PR I ~IT" :!j'-F2._ F 4._ F6._ F8'- 1..IA' EFClRt.1~..

PRHIT"HAt'IG ()N._SETTIt~G UP FREClUEI..jC','TABLE_ __"
S_13*41)96+1024:DIMF(26):OIMKC255)
FOR I ",\)TCI2:~ : POKE:;+ I. <) : t.jE;".:T .
Fl_7040:FORI_1T026:F(27-I)_F1;+;5.8+30:F1_F1/2~C1/12):NEXT
K$="1)2W3ER5T6Y7UI900P@-*£~"
FC'PI~l TOU::N(K$> : I.::(F'f;:;C(rHO:t(Kt._ I»)-1 :NE:,:T
PRItH":J
AT =1) : DE") : SU= 15 : PE-9 : :;:; '''':;1)* 16+RE : AV=AT;+;16+0E :
~N= 16 : 1.,=0 : 1'1=1 : OC=4 : H8=256 : Z=':'
FIJR I ",')T'J2 : PCtKES+5+ I *7.. AT;+;16+0E : PCIKES+6+ I;+;7._SU;+;16...RE
POKES+2+ 1;+;7._40CII)At.10255 : POI(ES+3+ 1;+;7,4000/256: t.jE:.<:T
POKES+24,15:REM+16+64:POKES+23.7
GETA$: IFA$=" "THEt.1301)
FR.F(K(ASI:::CA,'P)),..t'1 :T-'./;+;7 :CR-S+T+4: IFFR-ZTHEH50')
POI<:ES+6+T,Z :REI'1 FItHSH DEC.":3US
POKES+5+ T ._2 :REt'1 FItH:;H ATT REL
POKECR,8:POKECR,O:REM FIX ClFF
POKES+T..FR-H8;+;HITCFR/HB) :REI1 $ET LO
PClKES+l+T..FP,'HB:REt'1 :;ET HI
POKES+6+T,SV:REM SET OEC/SUS
POKES+5+ T._AV :REI'1 :;ET ATT /REL
PPKECR,WV+l:FORI_1T(51)*AT:NEXT
POKECR,WY:REM PUL$E
IFP-1THENV=V+1:IFY=3THENY=1)
t3IJTIJ3a.)I.)

I FA$=" iiii"THEt'U'1=1 : OC=4 : GOT03CII)
IFA$'-"!!!"THEHI'1=2 :IJC-~: : GOTO:3CII)
IFA$="I!I"THEt~~1=4 :OC-2 :130TO:::o)C,
IFA$="ill"THEt.H'1=::;. :OC=l :GOT03')')
IFA$="9"THEt~I.J-C' :.1' =16 : GOT'J:::O')
I FA$_" JG"THEHI.I- 1 : 1.1'.,1=32: GOTO:3')O
IFA$=":i!"THEt.n.I=2 :W =64 : GOT03.:II)
I FA:$:="11"THEt.U.J=:?': ~J1...1=128 : !31)T(I:3QO
IFA$=" "THEHP=1-P:GOT0309
I FA$ -":J" THE~j2'30

O(ITCI3(1(\

PRHIT"HIT A KE','"
13ETA,. :IFA'~=" "THE:H::;.1C,:I.IAIT FOR A I.:E','

PRHJTA$:RETUF:N

/

241)

.250

261.)
2713

3~30
31e
321)
:325
33&.)
341)
350
361.)
:365
3713
375
3813
4 ell)
501.)
51')

53')
540
'550
560
570
581)
59(1
61.3(1
:3(.1)
:::1(1
:32a.~

NOTES:
Line 100 uses (SHIFT CLR/HOME).
(CTRL 9),(CTRL]),(SHIFT B).
Line 150 uses (CRSR DOWN)
Line 240 uses (CRSR UP)
Line 500 uses (11)
Line 510 uses (13)
Line 520 uses (15)

Line 530 uses (17)
Line 540 uses (12)
Line 550 uses (14)
Line 560 uses (16)
Line 570 uses (18)
Line 590 uses (SHIFT CLR/HOME)

147

APPENDIX K

CONVERTING STANDARD
BASIC PROGRAMS TO
COMMODORE 64 BASIC

If. you have programs written in a BASIC other than Commodore
BASIC, some minor adjustments may be necessary before running them
on the Commodore-64. We've included some hints to make the conver-
sion easier.

String Dimensions
Delete all statements that are used to declare the length of strings. A

statement such as DIM A$(I,J), which dimensions a string array for J
elements of length I, should be converted to the Commodore BASIC
statement DIM A$(J).

Some BASICs use a comma or ampersand for string concatenation.
Each of these must be changed to a plus sign, which is the Commodore
BASIC operator for string concatenation.

In Commodore-64 BASIC, the MID$, RIGHT$, and LEFT$functions are
used to take substrings of strings. Forms such as A$(I) to access the Ith
character in A$, or A$(I,J) to take a substring of A$ from position I to J,
must be changed as follows:

Other BASIC

A$(I) = X$
A$(I,J) = X$

Commodore 64 BASIC

A$ = LEFT$(A$,I-1)+X$+MID$(A$,I+1)
A$ = LEFT$(A$,I-1)+ X$+MID$(A$,J+ 1)

Multiple Assignments
To set Band C equal to zero, some BASICs allow statements of the

form:

19) LET B=C=9)

148

Commodore 64 BASIC would interpret the second equal sign as a

logical operator and set B = -1 if C = O. Instead, convert this state-
ment to:

1!11C=0 : B=!II

Multiple Statements
Some BASICs use a backslash (\) to separate multiple statements on

a line. With Commodore 64 BASIC, separate all statements by a colon
(:).
MAT Functions

Programs using the MATfunctions available on some BASICsmust be
rewritten using FOR. . .NEXT loops to execute properly.

149

APPENDIX L

ERROR MESSAGES

This appendix contains a complete list of the error messages gener-

ated by the Commodore-64, with a description of causes.

BAD DATA String data was received from an open file, but the pro-
gram was expecting numeric data.
BAD SUBSCRIPT The program was trying to reference an element of
an array whose number is outside of the range specified in the DIM
statement.
CAN'T CONTINUE The CO NT command will not work, either because

the program was never RUN, there has been an error, or a line has
been edited. .

DEVICE NOT PRESENT The required I/O device was not available for
an OPEN, CLOSE, CMD, PRINT#, INPUT#, or GET#.
DIVISION BY ZERO Division by zero is a mathematical oddity and not
allowed.
EXTRA IGNORED Too many items of data were typed in response to

an INPUT statement. Only the first few items were accepted.
FILENOT FOUND If you were looking for a file on tape, and END-OF-
TAPEmarker was found. If you were looking on disk, no file with that
name exists.
FILENOT OPEN The file specified in a CLOSE, CMD, PRINT#, INPUT#,
or GET#, must first be OPENed.
FILEOPEN An attempt was made to open a file using the number of
an already open file.
FORMULA TOO COMPLEX The string expression being evaluated

should be split into at least two parts for the system to work with, or a
formula has too many parentheses.
ILLEGALDIRECT The INPUT statement can only be used within a pro-

gram, and not in)direct mode.
ILLEGALQUANTITY A number used as the argument of a function or
statement is out of the allowable range.

150

lOAD There is a problem with the program on tape.
NEXTWITHOUTFOR This is caused by either incorrectly nesting loops
or having a variable name in a NEXTstatement that doesn't correspond
with one in a FOR statement.

NOT INPUT FilE An attempt was made to INPUT or GET data from a
file which was specified to be for output only.
NOT OUTPUTFILE An attempt was made to PRINT data to a file which
was specified as input only.
OUT OF DATA A READ statement was executed but there is no data
left unREAD in a DATAstatement.
OUT OF MEMORY There is no more RAM available for program or

variables. This may also occur when too many FOR loops have been
nested, or when there are too many GOSUBs in effect.
OVERFLOW The result of a computation is larger than the largest
number allowed, which is 1.70141884E+38.
REDIM'DARRAY An array may only be DIMensioned once. If an array
variable is used before that array is DIM'd, an automatic DIM operation

is performed on that array setting the number of elements to ten, and
any subsequent DIMs will cause this error.
REDO FROM START Character data was typed in during an INPUT
statement when numeric data was expected. Just re-type the entry so
that it is correct, and the program will continue by itself.
RETURN WITHOUT GOSUB A RETURNstatement was encountered,
and no GOSUB command has been issued.
STRINGTOO lONG A string can contain up to 255 characters.
?SYNTAX ERROR A statement is unrecognizable by the Commodore
64. A missing or extra parenthesis, misspelled keywords, etc.
TYPEMISMATCH This error occurs when a number is used in place of a

string, or vice-versa.
UNDEF'D FUNCTION A user defiried function was referenced, but it
has never been defined using the DEF FN statement.
UNDEF'D STATEMENT An attempt was made to GOTO or GOSUBor
RUN a line number that doesn't exist.

VERIFY The program on tape or disk does not match the program cur-
rently in memory.

151

APPENDIX M

MUSIC NOTE VALUES

This appendix contains a complete list of Note#, actual note, and the

values to be POKEd into the HI FREQ and LOW FREQ registers of the
sound chip to produce the indicated note.

152

MUSICAL NOTE OSCILLATOR FREQ

NOTE OCTAVE DECIMAL HI LOW

0 C-O 268 1 12

1 C#-O 284 1 28

2 D-O I 301 1 45

3 D#-O 318 1 62

4 E-O 337 1 81

5 F-O 358 1 102

6 F#-O 379 1 123

7 G-O 401 1 145

8 G#-O 425 1 169

9 A-O 451 1 195

10 A#-O 477 1 221

11 B-O 506 1 250

16 C-1 536 2 24

17 C#-l 568 2 56

18 D-1 602 2 90

19 D#-l 637 2 125

20 E-1 675 2 163

21 F-1 716 2 204

22 F#-l 758 2 246

23 G-1 803 3 35

24 G#-l 851 3 83

25 A-1 902 3 134

26 A#-l 955 3 187

27 B-1 1012 3 244

32 C-2 1072 4 48

153

MUSICAL NOTE OSCILLATORFREQ

NOTE OCTAVE DECIMAL HI LOW

33 C#-2 1136 4 112
34 D-2 1204 4 180
35 D#-2 1275 4 251
36 E-2 1351 5 71
37 F-2 1432 5 152
38 F#-2 1517 5 237
39 G-2 1607 6 71

40 G#-2 1703 6 167
41 A-2 1804 7 12
42 A#-2 1911 7 119
43 B-2 2025 7 233
48 C-3 2145 8 97
49 C#-3 2273 8 225
50 D-3 2408 9 104

51 D#-3 2551 9 247

52 E-3 2703 10 143

53 F-3 2864 11 48
54 F#-3 3034 11 218

55 G-3 3215 12 143

56 G#-3 3406 13 78

57 A-3 3608 14 24

58 A#-3 3823 14 239

59 B-3 4050 15 210

64 C-4 4291 16 195

65 C#-4 4547 17 195
66 D-4 4817 18 209
67 D#-4 5103 19 239

68 E-4 5407 21 31

69 F-4 5728 22 96
70 F#-4 6069 23 181

71 G-4 6430 25 30
72 G#-4 6812 26 156

73 A-4 7217 28 49

74 A#-4 7647 29 223

75 B-4 8101 31 165
80 C-5 8583 33 135

81 C#-5 9094 35 134

154

MUSICAL NOTE OSCILLATOR FREQ

NOTE OCTAVE DECIMAL HI LOW

82 C-O 9634 37 162
83 C#-O 10207 39 223
84 D-O 10814 42 62
85 F-5 11457 44 193
86 F#-5 12139 47 107
87 G-5 12860 50 60
88 G#-5 13625 53 57
89 A-5 14435 56 99
90 A#-5 15294 59 190
91 6-5 16203 63 75
96 C-6 17167 67 15

97 C#-6 18188 71 12
98 D-6 19269 75 69
99 D#-6 20415 79 191

100 E-6 21629 84 125
101 F-6 22915 89 131
102 F#-6 24278 94 214
103 G-6 25721 100 121
104 G#-6 27251 106 115
105 A-6 28871 112 199

106 A#-6 30588 119 124

107 6-6 32407 126 151
112 C-7 34334 134 30

113 C#-7 36376 142 24

114 D-7 38539 150 139
115 D#-7 40830 159 126

116 E-7 43258 168 250

117 F-7 45830 179 6
118 F#-7 48556 189 172

119 G-7 51443 200 243

120 G#-7 54502 212 230

121 A-7 57743 225 143

122 A#-7 61176 238 248

123 6-7 64814 253 46

FILTER SETTINGS

155

Location Contents

54293 Low cutoff frequency (0-7)

54294 High cutoff frequency (0-255)

54295 Resonance (bits 4-7)
Filter voice 3 (bit 2)
Filter voice 2 (bit 1)
Filter voice 1 (bit 0)

54296 High pass (bit 6)
Bandpass (bit 5)
Low pass (bit 4)
Volume (bits 0- 3)

APPENDIX N

BIBLIOGRAPHY

Addison-Wesley

Compute

Cowboy Computing

Creative Computing

Dilithium Press

"BASIC and the Personal Computer", Dwyer
and Critchfield

"Compute's First Book of PET/CBM"

"Feed Me, I'm Your PET Computer", Carol Al-
exander

"looking Good with Your PET", Carol Alexan-
der

"Teacher's PET-Plans, Quizzes, and An-
swers"

"Getting Acquainted With Your VIC 20",
T. Hartnell

"BASIC Basic-English Dictionary for the PET",
lorry Noonan

"PET BASIC", Tom Rugg and Phil Feldman

Faulk Baker Associates "MOS Programming Manual", MOS Technol-
ogy

Hayden Book Co. "BASIC From the Ground Up", David E. Simon

"I Speak BASICto My PET", Aubrey Jones, Jr.

"Library of PETSubroutines", Nick Hampshire

"PET Graphics", Nick Hampshire

"BASIC Conversions Handbook, Apple, TRS-
80, and PET", David A. Brain, Phillip R.
Oviatt, Paul J. Paquin, and Chandler P. Stone

156

Howard W. Sams

,Little, Brown & Co.

McGraw-Hili

Osborne/ McGraw-Hili

P. C. Publications

"The Howard W. Sams Crash Course in Mi-

crocomputers", louis E. Frenzel, Jr.

"Mostly BASIC: Applications for Your PET",
Howard Berenbon

"PET Interfacing", James M. Downey and Ste-
ven M. Rogers

"VIC 20 Programmer's Reference Guide", A.
Finkel, P. Higginbottom, N. Harris, and M.
Tomczyk

"Computer Games for Businesses, Schools,
and Homes", J. Victor Nagigian, and William
S. Hodges

"The Computer Tutor: learning Activities for
Homes and Schools", Gary W. Orwig, Univer-
sity of Central Florida, and William S. Hodges

"Hands-On BASIC With a PET", Herbert D.
Peckman

"Home and Office Use of VisiCalc", D.
Castlewitz, and L. Chisauki

"PET/CBM Personal Computer Guide", Carroll
S. Donahue

"PET Fun and Games", R. Jeffries and G.
Fisher

"PET and the IEEE", A. Osborne and C.
Donahue

"Some Common BASIC Programs for the PET",
L. Poole, M. Borchers, and C. Donahue

"Osborne CP/M User Guide", Thom Hogan

"CBM Professional Computer Guide"

"The PET Personal Guide"

"The 8086 Book", Russell Rector and George

Alexy

"Beginning Self-Teaching Computer lessons"

157

Prentice-Hall "The PET Personal Computer for Beginners",

S. Dunn and V. Morgan

Reston Publishing Co. "PET and the IEEE488 Bus (GPIB}", Eugene
Fisher and C. W. Jensen

"PET BASIC-Training Your PET Computer",
Ramon Zamora, Wm. F. Carrie, and B.
Allbrecht

"PET Games and Recreation", M. Ogelsby, L.
Lindsey, and D. Kunkin

"PET BASIC", Richard Huskell

"VIC Games and Recreation"

Telmas Courseware

Ratings

Total Information Ser-
vices

"BASIC and the Personal Computer", T. A.
Dwyer, and M. Critchfield

"Understanding Your PET/CBM, Vol. 1, BASIC
Programming"

"Understanding Your VIC", David Schultz

Commodore Magazines provide you with the most up-to-date infor-
mation for your Commodore 64. Two of the most popular publications
that you should seriously consider subscribing to are:

COMMODORE-The Microcomputer Magazine is published bi-monthly
and is available by subscription ($15.00 per year, U.S., and $25.00 per
year, worldwide).

POWER/PLAY-The Home Computer Magazine is published quarterly
and is available by subscription ($10.00 per year, U.S., and $15.00 per
year worldwide).

158

APPENDIX 0

SPRITE REGISTER MAP

159

Register #
Dee Hex 087 086 085 084 083 082 081 080

0 0 SOX7 SOXO SPRITE 0 X

Component

1 1 SOY7 . SOYO SPRITE 0 Y
:

Component

2 2 S1X7 SIXO SPRITE I X

3 3 SIY7 SIYO SPRITE 1 Y

4 4 S2X7 S2XO SPRITE 2 X

5 5 'S2Y7 52 YO SPRITE2 Y

6 6 !S3X7 S3XO SPRITE 3 X

7 7 !s3Y7 S3YO SPRITE 3 Y

8 8 S4X7 S4XO SPRITE 4 X

9 9 S4Y7 S4YO SPRITE 4 Y

10 A S5X7 S5XO SPRITE 5 X

II B 5Y7 S5YO SPRITE 5 Y

12 C S6X7 S6XO SPRITE 6 X

13 D S6Y7 S6YO SPRITE 6 Y

14 E S7X7 S7XO SPRITE 7 X

Component

15 F 7Y7 S7YO SPRITE 7 Y

Component

16 10 7X8 S6X8 S5X8 S4X8 S3X8 S2X8 SIX8 SOX8 MSB of X

COORD.

17 11 RC8 ECM BMM BlNK RSEl YSCl2 Y5Cll YSClO Y SCROll
MODE

18 12 RC7 RC6 RC5 RC4 RC3 RC2 RCI RCO RASTER

19 13 PX7 lPXO LIGHT PEN X

20 14 PY7 lPYO LIGHT PEN Y

160

Register #
Dee Hex DB7 DB6 DBS DB4 DB3 DB2 DBI DBO

21 IS SE7 SEO SPRITE
ENABLE

(ON/OFF)

22 16 N.C. N.C. RST MCM CSEl XSCl2 XSClIXSClOX SCROll
MODE

23 17 SEXY7 SEXYOSPRITE
. EXPAND Y

24 18 VS13 VS12 VSlI VSIO CBI3 CBI2 CBII N.C. SCREEN

Character

Memory

25 19 IRQ N.C. N.C. N.C. lPIRQ ISSC ISBC RIRQ Interupt

Request's

26 IA N.C. N.C. N.C. N.C. MlPI MISSC MISBC MRIRQ Interupt

Request
MASKS

27 IB BSP7 BSPO Background-
Sprite

I PRIORITY

28 IC SCM7 SCMO MUlTICOlOR
SPRITE
SelECT

29 ID SEXX7 SEXXO SPRITE

EXPAND X

30 IE SSC7 SSCO Sprite-Sprite
COLLISION

31 IF SBC7 SBCO Sprite-
Background
COLLISION

COLOR CODES DEC HEX COLOR

lEGEND:
ONLY COLORS 0-7 MAY BE USED IN MUlTICOlOR CHARACTERMODE

161

32 20 0 0 BLACK EXT 1 EXTERIORCOl

33 21 1 1 WHITE BKGDO

34 22 2 2 RED BKGDI

35 23 3 3 CYAN BKGD2

36 24 4 4 PURPLE BKGD3

37 25 5 5 GREEN SMC 0 SPRITE
MUlTiCOlOR 0

38 26 6 6 BLUE SMC 1 1

39 27 7 7 YellOW SOCOl SPRITE0 COLOR

40 28 8 8 ORANGE SICOl 1

41 29 9 9 BROWN S2COl 2

42 2A 10 A l T RED S3COl 3

43 2B 11 B GRAY 1 S4COl 4

44 2C 12 C GRAY 2 S5COl 5

45 2D 13 D LT GREEN S6COl 6

46 2E 14 E IT BLUE S7COl 7

15 F GRAY 3

APPENDIX P

COMMODORE 64 SOUND CONTROL
SETTINGS

This handy table gives you the key numbers you need to use in your
sound programs, according to which of the Commodore 64's 3 voices
you want to use. To set or adjust a sound control in your BASIC pro-
gram, just POKE the number from the second column, followed by a
comma (,) and a number from the chart. . . like this: POKE 54276,17
(Selects a Triangle Waveform for VOICE 1).

Remember that you must set the VOLUME before you can generate
sound. POKE54296 followed by a number from 0 to 15 sets the volume
for all 3 voices.

It takes 2 separate POKEs to generate each musical note . . . for

example POKE54273,34:POKE54272,75 designates low C in the sample
scale below.

Also. . . you aren't limited to the numbers shown in the tables. If 34

doesn't sound "right" for a low C, try 35. To provide a higher SUSTAIN
or ATTACKrate than those shown, add two or more SUSTAIN numbers
together. (Examples: POKE54277,96 combines two attack rates (32 and
64) for a combined higher attack rate . . . but. . . POKE54277,20
provides a low attack rate (16) and a medium decay rate (4).

162

SETTING VOLUME-SAME FOR ALL3 VOICES

163

(0 to 15 . . . or . . . 0 to 255 depending on range)

TO PLAYA NOTE C C# D D#E F F# G G# A A# B C C#

HIGH FREQUENCY 54273 34 36 38 40 43 45 48 51 54 57 61 64 68 72

LOW FREQUENCY 54272 75 85 126 200 52 198 127 97 111 172 126 188 149 169

WAVEFORM POKE TRIANGLE SAWTOOTH I PULSE NOISE

54276 17 33 I 65 129

PULSE RATE(Pulse Waveform)

HI PULSE 54275

I

A value of 0 to 15 (for Pul.e waveform only)

LO PULSE 54274 A value of 0 to 255 (for Pul.e waveform only)

ATTACK/DECAY
I

POKE ATK4 ATK3 ATK2 ATKI DEC4 DEC3 DEC2 I DECI

54277 128 64 32 16 8 4 2

SUSTAIN/RELEASE I POKE SUS4 SUS3 SUS2 SUSI REL4 REL3

REL2 I REL154278 128 64 32 16 8 4 2 1
.- o

TO PLAYA NOTE C C# D D# E F F# G G# A A# B C C#

HIGH FREQUENCY 54280 34 36 38 40 43 45 48 51 54 57 61 64 68 72

LOW FREQUENCY 54279 75 85 126 200 52 198 127 97 111 172 126 188 149 169

WAVEFORM POKE TRIANGLE SAWTOOTH PULSE NOISE

54283 17 33 65 129

PULSE RATE

HI PULSE

I

54282

I

A value of 0 to 15 (for Pul.e waveform only)

LO PULSE 54281 A value of 0 to 255 (for Pulse waveform only)

ATTACK/DECAY POKE ATK4 ATK3 ATK2 ATKI DEC4 DEC3 DEC2 DECI

5-428-4 128 64 32 16 8 -4 2 1

SUSTAIN/RELEASE POKE SUS4 SUS3 SUS2 SUSI REL4 REL3 REL2 REL1

54285 128 64 32 16 8 4 2 1

II

TRY THESE SETTINGS TO SIMULATE DIFFERENT INSTRUMENTS

MEANINGS OF SOUND TERMS

ADSR-Attack!Oecay/SustainlRel8Gse

Attack-rat. sound rises to peak volume

D.coy-rat. 50und falls from peak volume to Sustain level

Sustain-prolong note at certain volume

Releas.-rote at which volume foU. from Sustain level

Waveform-".hape" oflOundwaye

Pulse-tone quality of Pulse Waveform

NOTE: Attack/Decay and Sustain/Release settings should always be POKEd in your program
BEFORE the Waveform is POKEd.

164

I
ocm
" . .. , ..

I TOop.LAYA NOoTE C CII D' D' E F FII. G GII. A All B' C CII.

HIGH FREQUENCY 54287 34 36 38 40 43 45 48 51 54 57 61 64 68 72

LOW FREQUENCY 54286 75 85 126 200 52 198 127 97 111 172 126 188 149 169

WAVEFORM POKE TRIANGLE SAWTOOTH PUL5E NOISE

54290 17 33 65 129

PULSE RATE

HI PULSE 54289 A value of 0 to 15 (for Pul.e waveform only)

LO PULSE 54288 A value of 0 to 255 (for Pul.e waveform only)

ATTACK/DECAY POKE ATK4 ATK3 ATK2 ATKI DEC4 DEC3 DEC2 DECI

54291 128 64 32 16 8 4 2 I

SUSTAIN/RELEASE POKE SUS4 SUS3 SUS2 SUSI REl4 REl3 RE12 RELI

54292 128 64 32 16 8 4 2 I

Instrument Waveform Attack/Decay Sustain/Release Pulse Rate

Piano Pulse 9 0 Hi-O, Lo-255

Flute Triange 96 0 Not applicable

Harpsichord Sawtooth 9 0 Not applicable

Xylophone Triangle 9 0 Not applicable

Organ Triangle 0 240 Not applicable

Colliape Triangle 0 240 Not applicable

Accordion Triangle 102 0 Not applicable

Trumpet Sawtooth 96 0 Not applicable

INDEX
A

Abbreviations, BASIC commands, 130,
131

Accessories, viii, 106-108
Addition, 23, 26-27, 113
AND operator, 114
Animation, 43-44, 65-66, 69-75, 132,

138-139
Arithmetic, Operators, 23, 26-27,

113-114
Arithmetic, Formulas, 23, 26-27, 113,

120, 140
Arrays, 95-103
ASC function, 128, 135-137
ASCII character codes, 135-137

B
BASIC

abbreviations, 130-131
commands, 114-117
numeric functions, 125-127
operators, 113-114
other functions, 129
statements, 117-125
string functions, 128
variables, 112-113

Bibliography, 156-158
Binary arithmetic, 75-77
Bit, 75-76
Business aids, 108
Byte, 76

C

Calculations, 22-29
Cassette tape recorder (audio), viii, 3,

18-20,21
Cassette tape recorder (video), 7
Cassette, port 3
CHR$ function, 36-37, 46-47, 53,

58-60, 113, 128, 135-137, 148
CLR statement, 117
CLR/HOME key, 15
Clock, 113
CLOSE statement, 117
Color

adjustment, 11-12
CHR$ codes, 58
keys, 56-57
memory map, 64, 139
PEEKS and POKES, 60-61
screen and border, 60-63, 138

Commands, BASIC, 114-117
Commodore key, (see graphics keys)
Connections

optional, 6-7
rear, 2-3
side panel, 2
TV/Monitor, 3-5

CONT command, 114
ConTRL key, 11, 16
COSine function, 126
CuRSoR keys, 10, 15
Correcting errors, 34
Cursor, 10

D

DATASSETTE recorder, (see cassette
tape recorder)

Data, loading and saving (disk), 18-21
Data, loading and saving (tape),

18-21
DATAstatement, 92-94, 118
DEFine statement, 118
Delay loop, 61, 65
DELete key, 15
DIMension statement, 118-119
Division, 23, 26, 27, 113
Duration, (see For . . . Next)

E

Editing programs, 15, 34
END statement, 119
Equal, not-equal-to, signs, 23, 26-27,

114
Equations, 114
Error messages, 22-23, 150-151
Expansion port, 141-142
EXPonent function, 126
Exponentiation, 25-27, 113

F
Files, (DATASSETTE), 21, 110-111
Files, (disk), 21,110-111
FOR statement, 119
FRE function, 129
Functions, 125-129

G

Game controls and ports, 2-3, 141
GET statement, 47-48, 119-120
GET# statement, 120
Getti n9 sta rted, 13-29
GOSUB statement, 120
GOTO (GO TO) statement, 32-34, 120

165

Graphic keys, 17, 56-57, 61, 132-137
Graphic symbols, (see graphic keys)
Greater than, 114

H
Hyperbolic functions, 140
I
IEEE-488Interface, 2-3, 141
IF . . . THEN statement, 37-39, 120-

121
INPl/T statement, 45-47, 121
INPUT#, 121
INSert key, 15
INTeger function, 126
Integer variable, 112
I/O pinouts, 141-143
I/O ports, 2-7, 141-143

J

Joysticks, 2-3, 141

K

Keyboard, 14-17

L

LEFT$function, 128
LENgth function, 128
Less than, 114
LETstatement, 121
LISTcommand, 33-34, 115
LOAD command, 115
LOADing programs on tape, 18-20
LOGarithm function, 126
Loops, 39-40, 43-45
Lower case characters, 14-17

M

Mathematics
formulas, 23-27
function table, 140
symbols, 24-27, 38, 114

Memory expansion, 2-4, 142
Memory maps, 62-65
MID$ function, 128
Modulator, RF, 4-7
Multiplication, 24, 113
Music, 79-90

N
Names

program, 18-21
variable, 34-37

NEW command, 115
NEXT statement, 121-122

NOT operator, 114
Numeric variables, 36-37

o
ON statement, 122
OPEN statement, 122
Operators

arithmetic, 113
logical, 114
relational, 114

p

Parentheses, 28
PEEK function, 60-62
Peripherals, viii, 2-8, 107-109
POKE statement, 60-61
Ports, I/O, 2-3, 141-143
POS function, 129
PRINT statement, 23-29, 123-124
PRINT#, 124
Programs

editing, 15, 34
line numbering, 32-33
loading/saving (DATASSETTE),18-21
loading/saving (disk), 18-21

Prompt, 45

Q
Quotation marks, 22

R

RaNDom function, 48-53, 126
Random numbers, 48-53
READ statement, 124
REMark statement, 124
Reserved words, (see Command state-

ments)
Restore key, 15, 18
RESTOREstatement, 124
Return key, 15, 18
RETURN statement, 124
RIGHT$ function, 128
RUN command, 116
RUN/STOP key, 16-17

5
SAVEcommand, 21, 116
Saving programs (DATASSETTE),21
Saving programs (disk), 21
Screen memory maps, 62-63, 138
SGN, function, 127
Shift key, 14-15, 17
SINe function, 127
Sound effects, 89-90
SPC function, 129

166

SPRITE EDITOR, vii, 69-76
SPRITE graphics, vii, 69-76
SQuaRe function, 127
STOP command, 125
STOP key, 16-17
String variables, 36-37, 112-113
STR$ function, 128
Subscripted variables, 95-98, 112-113
Subtraction, 24, 113
Syntax error, 22
SYS statement, 125

T

TABfunction, 129
TAN function, 127
TI variable, 113
TI$ variable, 113
Time clock, 113
TV connections, 3-7

u
Upper/Lower Case mode, 14

USR function, 127
User defined function, (see DEF)

V

VALuefunction, 128
Variables

array, 95-103, 113
dimensions, 98-103, 113
floating point, 95-103, 113
integer, 95-103, 112
numeric, 95-103, 112
string ($), 95-103, 112

VERIFYcommand, 117
Voice, 80-90, 162-164

W

WAIT command, 125
Writing to tape, 110

Z
Z-80, vii, 108

167

Commodore hopes you've enjoyed the COMMODORE 64
USER'S GUIDE. Although this manual contains some pro-

gramming information and tips, it is NOT intended to be a

Programmer's Reference Manual. For those of you who are
advanced programmers and computer hobbyists Commo-
dore suggests that you consider purchasing the COMMO-
DORE 64 PROGRAMMER'S REFERENCE GUIDE available

through your local Commodore dealer.

In addition updates and corrections as well as programming hints and tips are available in
the COMMODORE and POWER PLAY magazines, on the COMMODORE database of the

COMPUSERVE INFORMATION NETWORK, accessed through a VICMODEM.

SIMPLE VARIABLES

COMMODORE 64 QUICK REFERENCE CARD

Type Nam~ Range
Real XY ::1.701411183E+38

~2.93873S88E-39

Integ~r XY" ~32767
String XY$ 0 to 255 charaCters
X is a tener (A-Z), Y is a Jener ar number (0.9). Variable names
can be more than 2 choracters. but only the firsl two are recog.
niud.

ARRAY "'RIAlLES

Type

Singl~ Dimension

Two-Dimension

Three-Dimension

Name

XY(S)
XY(5,S)
XY(S,5,S)

AlGEBRAIC OPERATORS

Arrays of up 10 eleven .Iements (subscripts 0.10) can be used
where n.ed~d. Anay$ with more Ihan eleven er~m.nts need 10
be DIMens;on.d.

= Assigns ...alu. 10 variabl.

- "'egalion
Exponentiation

· Multiplication
I Division
+ Addition- Sublraction

RELATIONAL AND LOGiCAl OPERATORS

Equal
<> NOl Equal 10
< Less Than
> Greol~r Than

< = Less Thon or Equal To

> = Grealer Thon or Equal To

NOT logical "Nor"
AND logical "And"
OR logical "Or"
Expr.ssion..quals 1 if true, 0 if fals~.

SYSTEM COMMANDS

LOAD "NAME"
SAlE "NAM£'"

LOAD "NAME" ,8

SAlE "NAME" ,8

. VERIFY "NAME"

RUN
RUNxxx

STOP
END
CONT

PEEK(X)

POKE X,Y

SYS xxxxx

WAIT X. Y.Z

USR(X)

loads a program from tope

Sav.s a program on lope

loads a program from disk

Sa s a program 10 disk

Verifies Ihal program was SAlEd

wilhoul ~rrors

Execules a program

Execules program storting at line

"""

Holts execution

Ends execution

Continues program execution from

lin. where program was halted

R.lums conlents of memory

location X

Chang.s contenls of 10cOlion X

10 ...alue Y

Jumps to .xecule a machine language

program, starting at JCXXXX

Program wafts until conlents of'

location X, when FORed with Z and

ANDed with Y, is nonzero.
Posses value of X 10 a machine

language subrouline

EDITING AND FORMAJTlNG COMMANDS

LIST
UST A-.B

REMMessage

tAB(X)

Lisn entire program

Usts from line A to line B

Comment message can be listed but

is ignored during program execution

Used In PRINT stotements. Spaces X

pasltions on screen

SPC(X)
POS(X)
ClR/HOME

PRINTs X blanks on line

Relurns currenl cursor position

Posilions cursor to left comer of

scr~~n

CI.ars scr.en and places cursor in

"Home" position

Inserts spac. at current cursor

position
Deletes character at currenl cursor

position

When us.d wilh numeric color key,

sel.cts text color. May b~ used in

PRINT slatement.

Moves cursor up, down. left, righl

SHIFT CLRlHOME

SHIFT INST/DEL

INST/DEL

CTRL

CRSR Keys

Commodore Key When used with SHin s.lects

betw..n upperllower case and
graphic display mod..
When us.d wilh numeric color key,

selects oplional lext color

ARRAYS AND STRINGS

DIM A(X. Y.Z) Sets maximum subscripts for A;
reserves space for (X+1)-(Y+1)-CZ+1)
eJem.nts starting 01 A(O,O,O)
Returns number of characters in X$
Re",rns numeric value of X.

con rt.d 10 a string
Returns num.ric value of AS, up 10
first nonnumeric character
Returns ASCII character whose code
is X
Returns ASCII cod. for fir"
character of XS
Retums leftmost X characlers of AS

Relurns rightmost X characters
of AS
Relurns Y characters of AS

Slorting at character X

LEN(XS)
STRS(X)

UX$)

CHRS(X)

ASC(X$)

LEFT$(AS.X)

RIGHTS(A$,X)

MIDS(AS,X, Y)

INPUT/OUTPUTCOMMANDS

INPUTAS OR A PRINTs'?' on screen and waits for

us.r to enter a sIring or value
INPUT"ABC";A PRINTsmessage and waits for user

to ent.r value. Can also INPUTAS
GETA$ or A 't'Ibits for user 10 type one-

character value; no RETURNneed.d
DATAA,"B",C Initializes a s.t of values thol

can be used by READstatement
READA$ or A Assigns nexl DATAvalue 10 AS or A
RESTORE Res~Is dOlo pointer to start

READingthe DATAlist again
PRINT"A-";A PRINTsSIring 'A= ' and value of A

./ suppresses spac.s -': tabs data
to next field.

PROGRAM ROW

GOTO X Branche. 10 line X
If A=3 THEN 10 If assertion is Irue THENexecute

following port of statement. If
fal... execute next line number

FOR A= 1 TO 10 Executes all statements betw.en FOR

STEP2 : NEXT and corresponding NEXT.with A
going from 1 10 10 by 2. SI.p size
is 1 unless s~jfied

NEXTA Defines .nd of loop. A is optional
GOSUB 2000 Branches 10 subroutine slarting at

line 2000
RETURN Marks end of subroutine. R~turns to

stat.ment following mosl recent
GOSUB

ON X GOTO A,B Bronches 10 xth line number on
list. If X-I branches 10 A, elc.

ON X GOSUB A,B Bronches 10 subroutine at Xth line
number in list

(:t commodore
COMPUTER

Commoda-e R11sin<>•s MAr.hinP.s. lnc.-Computer Systems Division
487 Devon Park Drove, Wayne. PA 19087.

DISlRIBUTEO BY

Howard W. Sams & Co., Inc.
4300W. 62nd Street, lndiUM1polis. lndilW'la 46268 USA

$12.95122{110 ISBN: 0-672·22010·5

	c64-users_guide-00-toc_introduction.pdf
	c64-users_guide-01-setup.pdf
	c64-users_guide-02-getting_started.pdf
	c64-users_guide-03-beginning_basic_programming.pdf
	c64-users_guide-04-advanced_basic.pdf
	c64-users_guide-05-advanced_color_graphic_commands.pdf
	c64-users_guide-06-sprite_graphics.pdf
	c64-users_guide-07-creating_sound.pdf
	c64-users_guide-08-advanced_data_handling.pdf
	c64-users_guide-09-appendices.pdf

