


MEGA65 TEAM

Dr. Paul Gardner-Stephen Detlef Hastik
(highlander) (deft)
Founder Co-Founder
Software and Virtual Hardware Architect General Manager
Spokesman and Lead Scientist Marketing & Sales

Martin Streit Anton Schneider-Michallek
(seriously) (adtbm)
Video and Photo Production Hardware Pool Management
Tax and Organization Soft-, Hard- and V-Hardware Testing
Social Media Forum Administration

Falk Rehwagen Antti Lukats
(bluewaysw) (antti-brain)
Jenkins Build Automation Host Hardware Design and Production
GEOS, Hardware Quality Management

Dieter Penner Dr. Edilbert Kirk
(doubleflash) (Bit Shifter)
Host Hardware Review and Testing MEGA65.ROM
File Hosting Manual and Tools

Gábor Lénárt Mirko H.
(LGB) (sy2002)
Emulator Additional Hardware and Platforms

Farai Aschwanden Gürçe Işıkyıldız
(Tayger) (gurce)
File Base, Tools Tools and Enhancements
Financial Advisory Sound

Oliver Graf Daniel England
(lydon) (Mew Pokémon)
VHDL, Manual and Tests Additional Code and Tools

Roman Standzikowski Hernán Di Pietro
(FeralChild) (indiocolifa)
Open ROMs Additional Emulation



Reporting Errors and Omissions

This book is being continuously refined and improved upon by the MEGA65 community.
The version of this edition is:

c o m m i t f f e 0 4 d d f 0 c c c 3 b b a 3 8 c b f 5 9 6 7 e c 7 e 5 b 9 6 7 f 5 1 7 0 2

date : Sat May 7 2 1 : 4 8 : 0 7 2022 + 1 0 0 0

We want this book to be the best that it possibly can. So if you see any errors, find
anything that is missing, or would like more information, please report them using the
MEGA65 User’s Guide issue tracker:

https://github.com/mega65/mega65-user-guide/issues

You can also check there to see if anyone else has reported a similar problem, while
you wait for this book to be updated.

Finally, you can always download the latest versions of our suite of books from these
locations:

• https://mega65.org/mega65-book

• https://mega65.org/user-guide

• https://mega65.org/developer-guide

• https://mega65.org/basic65-ref

• https://mega65.org/chipset-ref

• https://files.mega65.org/manuals-upload

3

https://github.com/mega65/mega65-user-guide/issues
https://mega65.org/mega65-book
https://mega65.org/user-guide
https://mega65.org/developer-guide
https://mega65.org/basic65-ref
https://mega65.org/chipset-ref
https://files.mega65.org/manuals-upload




MEGA65 BASIC 65 REFERENCE

Published by
the MEGA Museum of Electronic Games & Art e.V., Germany.



WORK IN PROGRESS

Copyright ©2019 – 2021 by Paul Gardner-Stephen, the the MEGA Museum of Elec-
tronic Games & Art e.V. and contributors.

This reference guide is made available under the GNU Free Documentation License
v1.3, or later, if desired. This means that you are free to modify, reproduce and re-
distribute this User’s Guide, subject to certain conditions. The full text of the GNU
Free Documentation License v1.3 can be found at https://www.gnu.org/licenses/
fdl-1.3.en.html.

Implicit in this copyright license, is the permission to duplicate and/or redistribute this
document in whole or in part for use in education environments. We want to support
the education of future generations, so if you have any worries or concerns, please
contact us.

May 7, 2022

ii

https://www.gnu.org/licenses/fdl-1.3.en.html
https://www.gnu.org/licenses/fdl-1.3.en.html


Contents

1 Introduction v

Welcome to the MEGA65! . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Other Books in this series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Come Join Us! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

2 BASIC 65 Command Reference 1

Commands, Functions and Operators . . . . . . . . . . . . . . . . . . . . . . 3

BASIC Command Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Special Keyboard Controls and Sequences 269

PETSCII Codes and CHR$ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

Control codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

Shifted codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

Escape Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

4 Supporters & Donors 281

Organisations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

Contributors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

Supporters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

INDEX 295

iii



iv



CHAPTER 1
Introduction

• Welcome to the MEGA65!

• Other Books in this series

• Come Join Us!



vi



WELCOME TO THE MEGA65!
Congratulations on your purchase of one of the most long-awaited computers in the
history of computing! The MEGA65 is community designed, and based on the never-
released Commodore® 651 computer; a computer designed in 1989 and intended
for public release in 1990. Decades have passed, and we have endeavoured to invoke
memories of an earlier time when computers were simple and friendly. They were not
only simple to operate and understand, but friendly and approachable for new users.

These 1980s computers inspired many of their owners to pursue the exciting and re-
warding technology careers they have today. Just imagine the exhilaration these early
computing pioneers experienced, as they learned they could use their new computer
to solve problems, write a letter, prepare taxes, invent new things, discover how the
universe works, and perhaps even play an exciting game or two! Wewant to re-awaken
that same level of excitement (which alas, is no longer found in modern computing),
so we have created the MEGA65.

The MEGA65 team believes that owning a computer is like owning a home. You don’t
just use a home; you change things, big and small, to make it your own custom living
space. After a while, when you settle in, you may decide to renovate or expand your
home to make it more comfortable, or provide more utility. Think of the MEGA65 as
your very own “computing home”.

This guide will teach you how to do more than just hang pictures on a wall; it will show
you how to build your dream home. While you read this user’s guide, you will learn
how to operate the MEGA65, write programs, add additional software, and extend
hardware capabilities. What won’t be immediately obvious is that along the journey,
you will also learn about the history of computing as you explore the many facets of
BASIC version 65 and operating system commands.

Computer graphics and music make computing more fun, and we designed the
MEGA65 to be fun! In this user’s guide, you will learn how to write programs using
the MEGA65’s built-in graphics and sound capabilities. But you don’t need to be a
programmer to have fun with the MEGA65. Because the MEGA65 includes a com-
plete Commodore® 64™2, it can also run thousands of existing games, utilities, and
business software packages, as well as new programs being written today by Com-
modore computer enthusiasts. Excitement for the MEGA65 will grow as we all witness
the programming marvels our MEGA65 community create, as they (and you!) discover
and master the powerful capabilities of this modern Commodore computer recre-
ation. Together, we can build a new “homebrew” community, teeming with software

1Commodore is a trademark of C= Holdings
2Commodore 64 is a trademark of C= Holdings

vii



and projects that push the MEGA65’s capabilities far beyond what anyone thought
would be possible.

We welcome you on this journey! Thank you for becoming a part of the MEGA65
community of users, programmers, and enthusiasts!

OTHER BOOKS IN THIS SERIES
This book is one of several within the MEGA65 documentation suite. The series in-
cludes:

• The MEGA65 User’s Guide
Provides an introduction to the MEGA65, and a condensed BASIC 65 command
reference

• The MEGA65 BASIC 65 Reference
Comprehensive documentation of all BASIC 65 commands, functions and oper-
ators

• The MEGA65 Chipset Reference
Detailed documentation about the MEGA65 and C65’s custom chips

• The MEGA65 Developer’s Guide
Information for developers who wish to write programs for the MEGA65

• The MEGA65 Complete Compendium
(Also known as The MEGA65 Book)
All volumes in a single huge PDF for easy searching. 1080 pages and growing!

COME JOIN US!
Get involved, learn more about your MEGA65, and join us online at:

• https://mega65.org/chat

• https://mega65.org/forum

viii

https://mega65.org/chat
https://mega65.org/forum


CHAPTER 2
BASIC 65 Command Reference
• Commands, Functions and Operators

• BASIC Command Reference



2



COMMANDS, FUNCTIONS AND
OPERATORS
This appendix describes each of the commands, functions, and other callable elements
of BASIC 65, which is an enhanced version of BASIC 10. Some of these can take one
or more arguments, which are pieces of input that you provide as part of the command
or function call, to help describe what you want to achieve. Some also require that
you use special words.

Below is an example of how commands, functions, and operators (all of which are also
known as keywords) will be described in this appendix.

KEY number, string

Here, KEY is a keyword. Keywords are special words that BASIC understands. Key-
words are always written in BOLD CAPITALS, so that you can easily recognise them.

The words not in bold must be replaced for the command, function or operator to work.
In this example, we need to replace number with a numeric expression, and string with
a string expression. We’ll explain what expressions are a bit more in a few moments.

The comma, and some other symbols and punctuation marks, just represent themselves
when they are in bold. In our example here, it means that there must be a comma
between the number and the string.

You might also see symbols and punctuation marks that are not in bold. When they
are not in bold they have a special meaning. You might see square brackets around
something. For example: [, numeric expression]. This means that whatever appears
between the square brackets is optional. That is, you can include it if you need to, but
the command, function or operator will also work just fine without it. For example, the
CIRCLE command has an optional numeric argument to indicate if the circle should
be filled when being drawn.

This arrangement of keywords, expressions and symbols is what’s called syntax. If you
miss something out, or put the wrong thing in the wrong place, it is called a syntax
error. The computer will tell you that you have a syntax error by displaying a ?SYNTAX ERROR

message.

There is nothing to worry about if you get an error from the MEGA65. Instead, it is just
the MEGA65’s way of telling you that something isn’t quite right, so that you can more
easily find and fix the problem. Error messages such as this won’t hurt the computer or
cause any damage to your program, so there is nothing to worry about. For example,
if we accidentally left the comma out, or replaced it with a full stop, the MEGA65 will
respond with a ?SYNTAX ERROR, similar to what’s shown below:

3



KEY 8"FISH"

?SYNTAX ERROR

KEY 8."FISH"

?SYNTAX ERROR

It is very common for commands, functions and operators to use one or more “ex-
pressions”. An expression is just a fancy name for something that has, or equates
to a value. This could be as simple as a string ("HELLO"), a number (23.7), or a complex
calculation that might include one or more functions or operators (LEN("HELLO") * (3 XOR 7)).
Generally speaking, expressions can result in either a string or a numeric result. In this
case we call the expressions string expressions or numeric expressions. For example,
"HELLO" is a string expression, while 23.7 is a numeric expression.

It is important to use the correct type of expression when writing your programs. If
you accidentally use the wrong type, the MEGA65 will display a ?TYPE MISMATCH ERROR, to say
that the type of expression you gave doesn’t match what it expected. For example,
we will get a ?TYPE MISMATCH ERROR if we type the following command, because "POTATO" is a
string expression instead of a numeric expression:

KEY "POTATO","SOUP"

If you wish, you can try typing this in yourself.

Commands are statements that you can use directly from the READY. prompt, or from
within a program, for example:

PRINT "HELLO"

HELLO

10 PRINT "HELLO"

RUN

HELLO

You can place a sequence of statements within a single line by separating them with
colons, for example:

4



PRINT "HELLO" : PRINT "HOW ARE YOU?" : PRINT "HOW IS THE WEATHER?"

HELLO

HOW ARE YOU?

HOW IS THE WEATHER?

Direct Mode Commands

Note that some commands are said to only work in direct mode. This means that the
command can’t be part of a BASIC program, but can be entered directly to the screen.
In the two PRINT examples above, the first was entered in direct mode, whereas the
second one wasn’t. The examples above would work since PRINT works in both direct
and indirect mode.

Command Format Syntax

The following table describes what the other symbols found in this appendix mean.

Symbol Meaning

… The bracket can be repeated zero or more times

[ ] Optional

< | > Include one of the choices

[ | ] Optionally include one of the choices

{ , }

One or more of the arguments is required. The
commas to the left of the last argument included are
required. Trailing commas must be omitted. See
CURSOR for an example.

[{ , }] Similar to { , } but all arguments can be omitted

Fonts

Whenever there’s a piece of text in this appendix that reflects some logic, something
you can type, or something the MEGA65 could display, the text will WILL USE THIS FONT. This
helps make it easier to for you to distinguish between these things and the written text.

5



BASIC 65 Constants

Type Example Example
Decimal Integer 32000 -55

Decimal Fixed Point 3.14 -7654.321

Decimal Floating Point 1.5E03 7.7E-02

Hex $D020 $FF

String "X" "TEXT"

BASIC 65 Variables

Each scalar variable consumes 8 bytes of storage in memory. The reserved area in
bank 0 from $F700-$FEFF can store 256 variables. Variables don’t need to be de-
clared, and their type is determined by an appended character. All variables without
an appended character are regarded as REAL by default, and storage is claimed at
their first usage. They are also initialised to zero, whereas string variables are initialised
as an empty string ””.

All 104 one-letter variables are declared as fast variables. 26 user functions are
declared as fast functions. These are the variables (A - Z), (A% - Z%), (A& - Z&)
and (A$ - Z$) and the functions (FNA() - FNZ()). They have fixed memory addresses
in the range $FD00 - $FEFF, the address is generated by a hash algorithm from the
variable name. The access to these variables and functions, either use or definition,
is much faster, than the access to two letter variables and functions. The address of
fast variables and functions is computed by a very fast algorithm, while the address of
two-letter variables and functions is stored in a table, which has to be searched for
every use.

Type Appended Character Range Example
Byte & 0 .. 255 BY& = 23

Integer % -32768 .. 32767 I% = 5

Real none -1E37 .. 1E37 XY = 1/3

String $ length = 0 .. 255 AB$ = "TEXT"

BASIC 65 Arrays

Each array consumes the number of elements multiplied by the item size, plus the size
of the header (6 + 2 * dimensions) in memory. For example the array

100 DIM X(8,2,3)

has 3 dimensions and 108 (9 x 3 x 4) items. You might be asking: Why is it 9 x 3 x 4,
when the program uses 8, 2, and 3? This is because array indexes start at 0, not 1.

6



The size for real items is 5, so the data of that array above would occupy 540 (5 x
108) bytes. The header size is 12 bytes (6 + 2 * 3), so the total length in memory is
552 bytes (540 + 12).

Arrays are stored in bank 1 starting at address $2000 and expand upwards. They
share the available memory at $2000 .. $F6FF with the string area, which starts in
bank 1 at address $F6FF, and expands downwards. Each of the above scalar variable
types can be used as an array, by declaring them with a DIM statement. The arrays
are initialised to zero for all elements on declaration. If an undeclared array element is
used, an automatic implicit declaration is performed, which sets the upper boundary
for each dimension to 10. For example, the usage of an undeclared element AB(3,5)

would automatically perform a DIM AB(10,10). As noted previously, the lower boundary for
each dimension is always 0 (zero), so an array initialised with DIM AB(10) consists of 11
elements and accepts indexes from 0 to 10.

String arrays are more precisely expressed as arrays of string descriptors. Each item
consists of three bytes, which hold these values: The length of the string, and the 2
byte address (low/high byte) of the string in string memory. The usage of the BASIC
function POINTER with a string or string array element as the argument, returns the
address of the descriptor, not the string itself.

Type & Item Size Appended Range Example
Character

Byte Array 1 & 0 .. 255 BY&(5,6) = 23

Integer Array 2 % -32768 .. 32767 I%(0,10) = 5

Real Array 5 none -1E37 .. 1E37 XY(I%) = 1/3

String Array 3 $ 0 .. 255 characters AB$(X) = "TEXT"

BASIC 65 Operators

BASIC 65 provides a set of operators that are typical of most BASIC programming
dialects. The usage and precedence of these operators is documented in this section.

The = symbol is used both as an assignment operator, and as a relational operator
for testing equality. For example, in the statement A = B = 5, the first equal sign is the
assignment operator, while the second is a logical operator, comparing the variable
B with 5. The value of A will either be assigned the value -1 (for TRUE), or the value 0

(for FALSE). You may have noticed that the value of -1 for TRUE is different to other
programming languages, such as C, where the value of 1 is used for TRUE instead.

The + symbol can be used as a positive sign for numerical expressions, as an addition
operator, or for string concatenation. The number and type of operands determines
the operation.

7



The - symbol can be used as a negative sign for numerical expressions, or as a sub-
traction operator. The number and type of operands determines the operation.

The operators NOT, AND, OR and XOR can be used both as logical operators, or as boolean
operators.

• Logical Operator Example: IF A>B AND A<0

• Boolean Operator Example: A = B AND $7F

Both examples always produce an integer result internally, which can be interpreted
either numerically or logically. If the result of a comparison is TRUE, the value will be
set to -1, while a FALSE result yields 0. In the boolean operator example above, the
AND operator converts both operands to a 16-bit integer value, and performs a bitwise
AND for all 16 bits. This example will take the value of B, set the upper 9 bits to zero,
and store the result in A.

The result of logical operations can be used in numerical expressions as well, for ex-
ample, A = A - (B > 7) will increment A by 1 if the result of (B > 7) is TRUE (-1). This is because
the mathematical expression of A = A - (-1) is the same as A = A + 1.

The operators have precedences, which are listed in the tables below. In the statement
A * A - B * B bothmultiplications will be performed first, before the subtraction is executed.
Parentheses are used to change the precedence, for example A * (A - B) * B) will execute
the subtraction first.

Assignment Operator

Symbol Description Examples
= Assignment A = 42, A$ ="HELLO", A = B < 42

Unary Mathematical Operators

Name Symbol Description Example
Plus + Positive sign A = +42

Minus - Negative sign B = -42

8



Binary Mathematical Operators

Name Symbol Description Example
Plus + Addition A = B + 42

Minus - Subtraction B = A - 42

Asterisk * Multiplication C = A * B

Slash / Division D = B / 13

Up Arrow ↑ Exponentiation E = 2 ↑ 10

Left Shift << Left Shift A = B << 2

Right Shift >> Right Shift A = B >> 1

Note that the ↑ character used for exponentiation is entered with ↑ , which is next

to RESTORE .

Relational Operators

Symbol Description Example
> Greater Than A > 42

>= Greater Than or Equal To B >= 42

< Less Than A < 42

<= Less Than or Equal To B <= 42

= Equal A = 42

<> Not Equal B <> 42

Logical Operators

Keyword Description Example
AND And A > 42 AND A < 84

OR Or A > 42 OR A = 0

XOR Exclusive Or A > 42 XOR B > 42

NOT Negation C = NOT A > B

Boolean Operators

Keyword Description Example
AND And A = B AND $FF

OR Or A = B OR $80

XOR Exclusive Or A = B XOR 1

NOT Negation A = NOT 22

9



String Operator

Name Symbol Description Operand type Example
Plus + Concatenates Strings String A$ = B$ + ".PRG"

Operator Precedence

Precedence Operators
High ↑

+ - (Unary Mathematical)
* /

+ - (Binary Mathematical)
<< >> (Arithmetic Shifts)
< <= > >= = <>

NOT

AND

Low OR XOR

10



Keywords And Tokens Part 1

* AC COLOR E7 FAST FE25
+ AA CONCAT FE13 FGOSUB FE48
- AB CONT 9A FGOTO FE47
/ AD COPY F4 FILTER FE03
< B3 COS BE FIND FE2B
= B2 CURSOR FE41 FN A5
> B1 CUT E4 FONT FE46
ABS B6 DATA 83 FOR 81
AND AF DCLEAR FE15 FOREGROUND FE39
APPEND FE0E DCLOSE FE0F FORMAT FE37
ASC C6 DEC D1 FRE B8
ATN C1 DEF 96 FREAD# FE1C
AUTO DC DELETE F7 FWRITE# FE1E
BACKGROUND FE3B DIM 86 GCOPY FE32
BACKUP F6 DIR EE GENLOCK FE38
BANK FE02 DISK FE40 GET A1
BEGIN FE18 DLOAD F0 GO CB
BEND FE19 DMA FE1F GOSUB 8D
BLOAD FE11 DMODE FE35 GOTO 89
BOOT FE1B DO EB GRAPHIC DE
BORDER FE3C DOPEN FE0D HEADER F1
BOX E1 DPAT FE36 HELP EA
BSAVE FE10 DSAVE EF HEX$ D2
BUMP CE03 DVERIFY FE14 HIGHLIGHT FE3D
BVERIFY FE28 ECTORY FE29 IF 8B
CATALOG FE0C EDIT FE45 INPUT 85
CHANGE FE2C EDMA FE21 INPUT# 84
CHAR E0 ELLIPSE FE30 INSTR D4
CHR$ C7 ELSE D5 INT B5
CIRCLE E2 END 80 JOY CF
CLOSE A0 ENVELOPE FE0A KEY F9
CLR 9C ERASE FE2A LEFT$ C8
CMD 9D ERR$ D3 LEN C3
COLLECT F3 EXIT ED LET 88
COLLISION FE17 EXP BD LINE E5

11



Keywords And Tokens Part 2

LIST 9B PRINT# 98 SLEEP FE0B
LOAD 93 PUDEF DD SOUND DA
LOADIFF FE43 RCOLOR CD SPC( A6
LOG BC RCURSOR FE42 SPEED FE26
LOG10 CE08 READ 87 SPRCOLOR FE08
LOOP EC RECORD FE12 SPRDEF FE1D
LPEN CE04 REM 8F SPRITE FE07
MEM FE23 RENAME F5 SPRSAV FE16
MERGE E6 RENUMBER F8 SQR BA
MID$ CA RESTORE 8C STEP A9
MOD CE0B RESUME D6 STOP 90
MONITOR FA RETURN 8E STR$ C4
MOUSE FE3E RGRAPHIC CC SYS 9E
MOVSPR FE06 RIGHT$ C9 TAB( A3
NEW A2 RMOUSE FE3F TAN C0
NEXT 82 RND BB TEMPO FE05
NOT A8 RPALETTE CE0D THEN A7
OFF FE24 RPEN D0 TO A4
ON 91 RPLAY CE0F TRAP D7
OPEN 9F RREG FE09 TROFF D9
OR B0 RSPCOLOR CE07 TRON D8
PAINT DF RSPEED CE0E TYPE FE27
PALETTE FE34 RSPPOS CE05 UNTIL FC
PASTE E3 RSPRITE CE06 USING FB
PEEK C2 RUN 8A USR B7
PEN FE33 RWINDOW CE09 VAL C5
PIXEL CE0C SAVE 94 VERIFY 95
PLAY FE04 SAVEIFF FE44 VIEWPORT FE31
POINTER CE0A SCNCLR E8 VOL DB
POKE 97 SCRATCH F2 WAIT 92
POLYGON FE2F SCREEN FE2E WHILE FD
POS B9 SET FE2D WINDOW FE1A
POT CE02 SGN B4 XOR E9
PRINT 99 SIN BF ^ AE

12



Tokens And Keywords Part 1

80 END A3 TAB( C6 ASC
81 FOR A4 TO C7 CHR$
82 NEXT A5 FN C8 LEFT$
83 DATA A6 SPC( C9 RIGHT$
84 INPUT# A7 THEN CA MID$
85 INPUT A8 NOT CB GO
86 DIM A9 STEP CC RGRAPHIC
87 READ AA + CD RCOLOR
88 LET AB - CF JOY
89 GOTO AC * D0 RPEN
8A RUN AD / D1 DEC
8B IF AE ^ D2 HEX$
8C RESTORE AF AND D3 ERR$
8D GOSUB B0 OR D4 INSTR
8E RETURN B1 > D5 ELSE
8F REM B2 = D6 RESUME
90 STOP B3 < D7 TRAP
91 ON B4 SGN D8 TRON
92 WAIT B5 INT D9 TROFF
93 LOAD B6 ABS DA SOUND
94 SAVE B7 USR DB VOL
95 VERIFY B8 FRE DC AUTO
96 DEF B9 POS DD PUDEF
97 POKE BA SQR DE GRAPHIC
98 PRINT# BB RND DF PAINT
99 PRINT BC LOG E0 CHAR
9A CONT BD EXP E1 BOX
9B LIST BE COS E2 CIRCLE
9C CLR BF SIN E3 PASTE
9D CMD C0 TAN E4 CUT
9E SYS C1 ATN E5 LINE
9F OPEN C2 PEEK E6 MERGE
A0 CLOSE C3 LEN E7 COLOR
A1 GET C4 STR$ E8 SCNCLR
A2 NEW C5 VAL E9 XOR

13



Tokens And Keywords Part 2

EA HELP FE02 BANK FE26 SPEED
EB DO FE03 FILTER FE27 TYPE
EC LOOP FE04 PLAY FE28 BVERIFY
ED EXIT FE05 TEMPO FE29 ECTORY
EE DIR FE06 MOVSPR FE2A ERASE
EF DSAVE FE07 SPRITE FE2B FIND
F0 DLOAD FE08 SPRCOLOR FE2C CHANGE
F1 HEADER FE09 RREG FE2D SET
F2 SCRATCH FE0A ENVELOPE FE2E SCREEN
F3 COLLECT FE0B SLEEP FE2F POLYGON
F4 COPY FE0C CATALOG FE30 ELLIPSE
F5 RENAME FE0D DOPEN FE31 VIEWPORT
F6 BACKUP FE0E APPEND FE32 GCOPY
F7 DELETE FE0F DCLOSE FE33 PEN
F8 RENUMBER FE10 BSAVE FE34 PALETTE
F9 KEY FE11 BLOAD FE35 DMODE
FA MONITOR FE12 RECORD FE36 DPAT
FB USING FE13 CONCAT FE37 FORMAT
FC UNTIL FE14 DVERIFY FE38 GENLOCK
FD WHILE FE15 DCLEAR FE39 FOREGROUND

CE02 POT FE16 SPRSAV FE3B BACKGROUND
CE03 BUMP FE17 COLLISION FE3C BORDER
CE04 LPEN FE18 BEGIN FE3D HIGHLIGHT
CE05 RSPPOS FE19 BEND FE3E MOUSE
CE06 RSPRITE FE1A WINDOW FE3F RMOUSE
CE07 RSPCOLOR FE1B BOOT FE40 DISK
CE08 LOG10 FE1C FREAD# FE41 CURSOR
CE09 RWINDOW FE1D SPRDEF FE42 RCURSOR
CE0A POINTER FE1E FWRITE# FE43 LOADIFF
CE0B MOD FE1F DMA FE44 SAVEIFF
CE0C PIXEL FE21 EDMA FE45 EDIT
CE0D RPALETTE FE23 MEM FE46 FONT
CE0E RSPEED FE24 OFF FE47 FGOTO
CE0F RPLAY FE25 FAST FE48 FGOSUB

14



BASIC COMMAND REFERENCE

15



ABS
Token: $B6

Format: ABS(x)

Usage: ABS returns the absolute value of the numeric argument x.

x numeric argument (integer or real expression).

Remarks: The result is of type real.

Example: Using ABS

PRINT ABS(-123)

123

PRINT ABS(4.5)

4.5

PRINT ABS(-4.5)

4.5

16



AND
Token: $AF

Format: operand AND operand

Usage: AND performs a bit-wise logical AND operation on two 16-bit values.
Integer operands are used as they are. Real operands are converted to a
signed 16-bit integer (losing precision). Logical operands are converted
to 16-bit integer using $FFFF (decimal -1) for TRUE, and $0000 (decimal
0) for FALSE.

Expression Result
0 AND 0 0

0 AND 1 0

1 AND 0 0

1 AND 1 1

Remarks: The result is of type integer. If the result is used in a logical context,
the value of 0 is regarded as FALSE, and all other non-zero values are
regarded as TRUE.

Examples: Using AND

PRINT 1 AND 3

1

PRINT 128 AND 64

0

In most cases, AND is used in IF statements.

IF (C >= 0 AND C < 256) THEN PRINT "BYTE VALUE"

17



APPEND
Token: $FE $0E

Format: APPEND# channel, filename [,D drive] [,U unit]

Usage: Opens an existing sequential file of type SEQ or USR for writing, and
positions the write pointer at the end of the file.

channel number, where:

• 1 <= channel <= 127 line terminator is CR.

• 128 <= channel <= 255 line terminator is CR LF.

filename is either a quoted string such as "DATA", or a string expression in
brackets such as (FI$).

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units such
as the 1541, 1571, or 1581.

unit device number on the IEC bus. Typically in the range from 8 to 11
for disk units. If a variable is used, it must be placed in brackets. The unit
# defaults to 8.

Remarks: APPEND# works similarly to DOPEN#... ,W, except that the file must al-
ready exist. The content of the file is retained, and all printed text is
appended to the end. Trying to APPEND to a non existing file reports a
DOS error.

Examples: Open existing file in append mode:

APPEND#5,"DATA",U9

APPEND#130,(DD$),U(UN%)

APPEND#3,"USER FILE,U"

APPEND#2,"DATA BASE"

18



ASC
Token: $C6

Format: ASC(string)

Usage: Takes the first character of the string argument and returns its numeric
code value. The namewas apparently chosen to be amnemonic to ASCII,
but the returned value is in fact the so-called PETSCII code.

Remarks: ASC returns zero for an empty string, whose behaviour is different to
BASIC 2, where ASC("") gave an error. The inverse function toASC isCHR$.
Refer to the CHR$ function on page 45 for more information.

Examples: Using ASC

PRINT ASC("MEGA")

77

PRINT ASC("")

0

19



ATN
Token: $C1

Format: ATN(numeric expression)

Usage: Returns the arc tangent of the argument. The result is in the range (−π/2
to π/2)

Remarks: A multiplication of the result with 180/π converts the value to the unit
”degrees”. ATN is the inverse function to TAN.

Examples: Using ATN

PRINT ATN(0.5)

.463647609

PRINT ATN(0.5) * 180 / ~

26.5650512

20



AUTO
Token: $DC

Format: AUTO [step]

Usage: Enables faster typing of BASIC programs. After submitting a new pro-

gram line to the BASIC editor with RETURN , the AUTO function generates
a new BASIC line number for the entry of the next line. The new number
is computed by adding step to the current line number.

step line number increment

Typing AUTO with no argument disables it.

Examples: Using AUTO

AUTO 10 : USE AUTO WITH INCREMENT 10

AUTO : SWITCH AUTO OFF

21



BACKGROUND
Token: $FE $3B

Format: BACKGROUND colour

Usage: Sets the background colour of the screen to the argument, which must be
in the range of 0 to 255. All colours within this range are customisable
via the PALETTE command. On startup, the MEGA65 only has the first
32 colours configured, which are described in the following table.

Colours: Index and RGB values of colour palette

22



Index Red Green Blue Colour
0 0 0 0 Black
1 15 15 15 White
2 15 0 0 Red
3 0 15 15 Cyan
4 15 0 15 Purple
5 0 15 0 Green
6 0 0 15 Blue
7 15 15 0 Yellow
8 15 6 0 Orange
9 10 4 0 Brown

10 15 7 7 Pink
11 5 5 5 Dark Grey
12 8 8 8 Medium Grey
13 9 15 9 Light Green
14 9 9 15 Light Blue
15 11 11 11 Light Grey
16 14 0 0 Guru Meditation
17 15 5 0 Rambutan
18 15 11 0 Carrot
19 14 14 0 Lemon Tart
20 7 15 0 Pandan
21 6 14 6 Seasick Green
22 0 14 3 Soylent Green
23 0 15 9 Slimer Green
24 0 13 13 The Other Cyan
25 0 9 15 Sea Sky
26 0 3 15 Smurf Blue
27 0 0 14 Screen of Death
28 7 0 15 Plum Sauce
29 12 0 15 Sour Grape
30 15 0 11 Bubblegum
31 15 3 6 Hot Tamales

Example: Using BACKGROUND

BACKGROUND 3 : REM SELECT BACKGROUND COLOUR CYAN

23



BACKUP
Token: $F6

Format: BACKUP U source TO U target
BACKUP D source TO D target [,U unit]

Usage: The first form of BACKUP, specifying units for source and target can only
be used for the drives connected to the internal FDC (Floppy Disk Con-
troller). Units 8 and 9 are reserved for this controller. These can be
either the internal floppy drive (unit 8) and another floppy drive (unit 9)
attached to the same ribbon cable, or mounted D81 disk images. There-
fore, BACKUP can be used to copy from floppy to floppy, floppy to image,
image to floppy and image to image, depending on image mounts and
the existence of a second physical floppy drive.

The second form of BACKUP, specifying drives for source and target, is
meant to be used for dual drive units connected to the IEC bus. For
example: CBM 4040, 8050, 8250 via an IEEE-488 to IEC adapter. The
backup is then done by the disk unit internally.

source unit or drive # of source disk.
target unit or drive # of target disk.

Remarks: The target disk will be formatted and an identical copy of the source disk
will be written.
BACKUP cannot be used to backup from internal devices to IEC devices
or vice versa.

Examples: Using BACKUP

BACKUP U8 TO U9 : REM BACKUP INTERNAL DRIVE 8 TO DRIVE 9

BACKUP U9 TO U8 : REM BACKUP DRIVE 9 TO INTERNAL DRIVE 8

BACKUP D0 TO D1, U10 : REM BACKUP ON DUAL DRIVE CONNECTED VIA IEC

24



BANK
Token: $FE $02

Format: BANK bank number

Usage: Selects the memory configuration for BASIC commands that use 16-bit
addresses. These are LOAD, LOADIFF, PEEK, POKE, SAVE, SYS, and
WAIT. Refer to the system memory map in the MEGA65 Book, System
Memory Map (Appendix F) for more information.

Remarks: A value > 127 selects memory mapped I/O. The default value for the
bank number is 128. This configuration has RAM from $0000 to $1FFF,
the BASIC and KERNAL ROM, and I/O from $2000 to $FFFF.

Example: Using BANK

BANK 1 :REM SELECT MEMORY CONFIGURATION 1

25



BEGIN
Token: $FE $18

Format: BEGIN ... BEND

Usage: BEGIN and BEND act as a pair of braces around a compound statement
to be executed after THEN or ELSE. This overcomes the single line limi-
tation of the standard IF ... THEN ... ELSE clause.

Remarks: Do not jump with GOTO or GOSUB into a compound statement, as it
may lead to unexpected results.

Example: Using BEGIN and BEND

10 GET A$

20 IF A$>="A" AND A$<="Z" THEN BEGIN

30 PW$=PW$+A$

40 IF LEN(PW$)>7 THEN 90

50 BEND :REM IGNORE ALL EXCEPT (A-Z)

60 IF A$<>CHR$(13) GOTO 10

90 PRINT "PW=";PW$

26



BEND
Token: $FE $19

Format: BEGIN ... BEND

Usage: BEGIN and BEND act as a pair of braces around a compound statement
to be executed after THEN or ELSE. This overcomes the single line limi-
tation of the standard IF ... THEN ... ELSE clause.

Remarks: The example below shows a quirk in the implementation of the compound
statement. If the condition evaluates to FALSE, execution does not re-
sume right after BEND as it should, but at the beginning of the next line.
Test this behaviour with the following program:

Example: Using BEGIN and BEND

10 IF Z > 1 THEN BEGIN:A$="ONE"

20 B$="TWO"

30 PRINT A$;" ";B$;:BEND:PRINT " QUIRK"

40 REM EXECUTION RESUMES HERE FOR Z <= 1

27



BLOAD
Token: $FE $11

Format: BLOAD filename [,B bank] [,P address] [,R] [,D drive] [,U unit]

Usage: ”Binary LOAD” loads a file of type PRG into RAM at address P.

BLOAD has two modes: The flat memory address mode can be used to
load a program to any address in the 28-bit (256MB) address range
where RAM is installed. This includes the standard RAM banks 0 to 5, as
well as the 8MB of ”attic RAM” at address $8000000.

This mode is triggered by specifying an address at parameter P that is
larger than $FFFF. The bank parameter is ignored in this mode.

For compatibility reasons with older BASIC versions, BLOAD accepts the
syntax with a 16-bit address at P and a bank number at B as well. The
attic RAM is out of range for this compatibility mode.

The optional parameter R (RAW MODE) does not interpret or use the first
two bytes of the program file as the load address, which is otherwise the
default behaviour. In RAW MODE every byte is read as data.

filename is either a quoted string such as "DATA", or a string expression in
brackets such as (FI$).

bank specifies the RAM bank to be used. If not specified, the current
bank, as set with the last BANK statement will be used.

address can be used to override the load address that is stored in the
first two bytes of the PRG file.

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units such
as the 1541, 1571, or 1581.

unit device number on the IEC bus. Typically in the range from 8 to 11
for disk units. If a variable is used, it must be placed in brackets. The unit
# defaults to 8.

Remarks: BLOAD cannot cross bank boundaries.

BLOAD uses the load address from the file, if no P parameter is given.

Examples: Using BLOAD

28



BLOAD "ML DATA", B0, U9

BLOAD "SPRITES"

BLOAD "ML ROUTINES", B1, P32768

BLOAD (FI$), B(BA%), P(PA), U(UN%)

BLOAD "CHUNK",P($8000000) :REM LOAD TO ATTIC RAM

29



BOOT
Token: $FE $1B

Format: BOOT filename [,B bank] [,P address] [,D drive] [,U unit]
BOOT SYS
BOOT

Usage: BOOT filename loads a file of type PRG into RAM at address P and bank
B, and starts executing the code at the load address.

BOOT SYS loads the boot sector from sector 0, track 1 and unit 8 to
address $0400 in bank 0, and performs a JSR $0400 afterwards (Jump To
Subroutine).

BOOT with no parameters attempts to load and execute a file named
AUTOBOOT.C65 from the default unit 8. It’s short for RUN ”AUTO-
BOOT.C65”.

filename is either a quoted string such as "DATA", or a string expression in
brackets such as (FI$).

bank specifies the RAM bank to be used. If not specified, the current
bank, as set with the last BANK statement, will be used.

address can be used to override the load address, that is stored in the
first two bytes of the PRG file.

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units such
as the 1541, 1571, or 1581.

unit device number on the IEC bus. Typically in the range from 8 to 11
for disk units. If a variable is used, it must be placed in brackets. The unit
# defaults to 8.

Remarks: BOOT SYS copies the contents of one physical sector (two logical sec-
tors) = 512 bytes from disk to RAM, filling RAM from $0400 to $05FF.

Examples: Using BOOT

BOOT SYS

BOOT (FI$), B(BA%), P(PA), U(UN%)

BOOT

30



BORDER
Token: $FE $3C

Format: BORDER colour

Usage: Sets the border colour of the screen to the argument, which must be in
the range of 0 to 255. All colours within this range are customisable
via the PALETTE command. On startup, the MEGA65 only has the first
32 colours configured, which are described in the table under BACK-
GROUND on page 23.

Example: Using BORDER

10 BORDER 4 : REM SELECT BORDER COLOUR PURPLE

31



BOX
Token: $E1

Format: BOX x0,y0, x2,y2 [, solid]
BOX x0,y0, x1,y1, x2,y2, x3,y3 [, solid]

Usage: The first form of BOX with two coordinate pairs and an optional solid
parameter draws a simple rectangle, assuming that the coordinate pairs
declare two diagonally opposite corners.

The second formwith four coordinate pairs declares a path of four points,
which will be connected with lines. The path is closed by connecting the
last coordinate with the first.

The quadrangle is drawn using the current drawing context set with
SCREEN, PALETTE and PEN. The quadrangle is filled if the parameter
solid is not 0.

Remarks: BOX can be used with four coordinate pairs to draw any shape that can
be defined with four points, not only rectangles. For example rhomboids,
kites, trapezoids and parallelograms. It is also possible to draw bow tie
shapes.

Examples: Using BOX

BOX 0,0, 160,0, 160,80, 0,80

BOX 0,0, 160,80, 160,0, 0,80

32



BOX 20,0, 140,0, 160,80, 0,80

33



BSAVE
Token: $FE $10

Format: BSAVE filename, P start TO P end [,B bank] [,D drive] [,U unit]

Usage: ”Binary SAVE” saves a memory range to a file of type PRG.

BSAVE has two modes: The flat memory address mode can be used to
save a memory block in the 28-bit (256MB) address range where RAM
is installed. This includes the standard RAM banks 0 to 5, as well as the
8MB of ”attic RAM” at address $8000000.

This mode is triggered by specifying addresses for the start and end pa-
rameter P, that are larger than $FFFF. The bank parameter is ignored in
this mode. This flat memory mode allows saving ranges greater than 64K.

For compatibility reasons with older BASIC versions, BSAVE accepts the
syntax with 16-bit addresses at P and a bank number at B as well. The
attic RAM is out of range for this compatibility mode. This mode cannot
cross bank boundaries, so start and end address must be in the same
bank.

filename is either a quoted string such as "DATA", or a string expression in
brackets such as (FI$). If the first character of the filename is an at sign ’@’,
it is interpreted as a ”save and replace” operation. It is not recommended
to use this option on 1541 and 1571 drives, as they contain a ”save and
replace bug” in their DOS.

start is the first address, where the saving begins. It also becomes the
load address, which is stored in the first two bytes of the PRG file.

end address where the saving ends. end-1 is the last address to be used
for saving.

bank specifies the RAM bank to be used. If not specified, the current
bank, as set with the last BANK statement, will be used.

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units such
as the 1541, 1571, or 1581.

unit device number on the IEC bus. Typically in the range from 8 to 11
for disk units. If a variable is used, it must be placed in brackets. The unit
# defaults to 8.

34



Remarks: The length of the file is end - start + 2.
If the number after an argument letter is not a decimal number, it must be
set in parenthesis, as shown in the third and fourth line of the examples.

The PRG file format that is used by BSAVE requires the load address to
be written to the first two bytes. If the saving is done with a bank number
that is not zero, or a start address greater than $FFFF, this information
will not fit. For compatibility reasons, only the the two low order bytes
are written. Loading the file with the BLOAD command will then require
the full 16-bit range of the load address as a parameter.

Examples: Using BSAVE

BSAVE "ML DATA", P 32768 TO P 33792, B0, U9

BSAVE "SPRITES", P 1536 TO P 2058

BSAVE "ML ROUTINES", B1, P($9000) TO P($A000)

BSAVE (FI$), B(BA%), P(PA) TO P(PE), U(UN%)

35



BUMP
Token: $CE $03

Format: BUMP(type)

Usage: Used to detect sprite-sprite (type=1) or sprite-data (type=2) collisions.
The return value is an 8-bit mask with one bit per sprite. The bit position
corresponds to the sprite number. Each bit set in the returned value
indicates that the sprite for its position was involved in a collision since
the last call of BUMP. Calling BUMP resets the collision mask, so you
will always get a summary of collisions encountered since the last call of
BUMP.

Remarks: It’s possible to detect multiple collisions, but you will need to evaluate
the sprite coordinates to detect which sprites have collided.

Example: Using BUMP

10 S% = BUMP(1) : REM SPRITE-SPRITE COLLISION

20 IF (S% AND 6) = 6 THEN PRINT "SPRITE 1 & 2 COLLISION"

30 REM ---

40 S% = BUMP(2) : REM SPRITE-DATA COLLISION

50 IF (S% <> 0) THEN PRINT "SOME SPRITE HIT DATA REGION"

Sprite Return Mask
0 1 0000 0001
1 2 0000 0010
2 4 0000 0100
3 8 0000 1000
4 16 0001 0000
5 32 0010 0000
6 64 0100 0000
7 128 1000 0000

36



BVERIFY
Token: $FE $28

Format: BVERIFY filename [,P address] [,B bank] [,D drive] [,U unit]

Usage: ”Binary VERIFY” compares a memory range to a file of type PRG.

filename is either a quoted string such as "DATA", or a string expression in
brackets such as (FI$).

bank specifies the RAM bank to be used. If not specified, the current
bank, as set with the last BANK statement, will be used.

address is the address where the comparison begins. If the parameter
P is omitted, it is the load address that is stored in the first two bytes of
the PRG file that will be used.

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units such
as the 1541, 1571, or 1581.

unit device number on the IEC bus. Typically in the range from 8 to 11
for disk units. If a variable is used, it must be placed in brackets. The unit
# defaults to 8.

Remarks: BVERIFY can only test for equality. It gives no information about the
number, or position of different valued bytes. In direct mode BVERIFY
exits either with the message OK or with VERIFY ERROR. In program mode, a
VERIFY ERROR either stops execution or enters the TRAP error handler,
if active.

Examples: Using BVERIFY

BVERIFY "ML DATA", P 32768, B0, U9

BVERIFY "SPRITES", P 1536

BVERIFY "ML ROUTINES", B1, P(DEC("9000"))

BVERIFY (FI$), B(BA%), P(PA), U(UN%)

37



CATALOG
Token: $FE $0C

Format: CATALOG [filepattern] [,W] [,R] [,D drive] [,U unit]
$ [filepattern] [,W] [,R] [,D drive] [,U unit]

Usage: Prints a file catalog/directory of the specified disk.

The W (Wide) parameter lists the directory three columns wide on the
screen and pauses after the screen has been filled with a page (63 di-
rectory entries). Pressing any key displays the next page.

The R (Recoverable) parameter includes files in the directory which are
flagged as deleted but still recoverable.

filepattern is either a quoted string, for example: "DA*" or a string expres-
sion in brackets, e.g. (DI$)

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units such
as the 1541, 1571, or 1581.

unit device number on the IEC bus. Typically in the range from 8 to 11
for disk units. If a variable is used, it must be placed in brackets. The unit
# defaults to 8.

Remarks: CATALOG is a synonym of DIRECTORY and DIR, and produces the same
listing. The filepattern can be used to filter the listing. The wildcard
characters * and ? may be used. Adding ,T= to the pattern string, with T
specifying a filetype of P, S, U or R (for PRG, SEQ, USR, REL) filters the
output to that filetype.

The shortcut symbol $ can only be used in direct mode.

Examples: Using CATALOG

CATALOG

0 "BLACK SMURF " BS 2A

508 "STORY PHOBOS" SEQ

27 "C8096" PRG

25 "C128" PRG

104 BLOCKS FREE.

38



CATALOG "*,T=S"

0 "BLACK SMURF " BS 2A

508 "STORY PHOBOS" SEQ

104 BLOCKS FREE.

Below is an example showing how a directory looks with the wide pa-
rameter:

DIR W

0 "BASIC EXAMPLES "

1 "BEGIN" P 1 "FREAD" P 2 "PAINT.COR" P

1 "BEND" P 1 "FRE" P 3 "PALETTE.COR" P

1 "BUMP" P 2 "GET#" P 1 "PEEK" P

1 "CHAR" P 1 "GETKEY" P 3 "PEN" P

1 "CHR$" P 1 "GET" P 1 "PLAY" P

4 "CIRCLE" P 2 "GOSUB" P 2 "POINTER" P

1 "CLOSE" P 2 "GOTO.COR" P 1 "POKE" P

1 "CLR" P 2 "GRAPHIC" P 1 "POS" P

2 "COLLISION" P 1 "HELP" P 1 "POT" P

1 "CURSOR" P 1 "IF" P 1 "PRINT#" P

0 "DATA BASE" R 2 "INPUT#" P 1 "PRINT" P

1 "DATA" P 2 "INPUT" P 1 "RCOLOR.COR" P

1 "DEF FN" P 2 "JOY" P 1 "READ" P

1 "DIM" P 1 "LINE INPUT#" P 1 "RECORD" P

1 "DO" P 3 "LINE" P 1 "REM" P

5 "ELLIPSE" P 1 "LOOP" P 1 "RESTORE" P

1 "ELSE" P 1 "MID$" P 1 "RESUME" P

1 "EL" P 1 "MOD" P 1 "RETURN" P

1 "ENVELOPE" P 1 "MOVSPR" P 1 "REVERS" S

2 "EXIT" P 1 "NEXT" P 3 "RGRAPHIC" P

1 "FOR" P 2 "ON" P 1 "RMOUSE" P

39



CHANGE
Token: $FE $2C

Format: CHANGE /findstring/ TO /replacestring/ [, line range]
CHANGE ”findstring” TO ”replacestring” [, line range]

Usage: CHANGE performs a find and replace of the BASIC program that is cur-
rently in memory. An optional line range limits the search to this range,
otherwise the entire BASIC program is searched. At each occurrence of
the findstring, the line is listed and the user is prompted for an action:

• Y RETURN perform the replace and find the next string

• N RETURN do not perform the replace and find the next string

• * RETURN replace the current and all following matches

• RETURN exit the command, and don’t replace the current match

Remarks: Any un-shifted character that is not part of the string can be used instead
of /.

However, using the double quote character finds text strings that are not
tokenised, and therefore not part of a keyword.
For example, CHANGE "LOOP" TO "OOPS" will not find the BASIC keyword LOOP, be-
cause the keyword is stored as a token and not as text. However CHANGE

/LOOP/ TO /OOPS/ will find and replace it (possibly causing SYNTAX ERRORs).

Can only be used in direct mode.

Examples: Using CHANGE

CHANGE "XX$" TO "UU$", 2000-2700

CHANGE /IN/ TO /OUT/

CHANGE &IN& TO &OUT&

40



CHAR
Token: $E0

Format: CHAR column, row, height,width, direction, string [, address of character
set]

Usage: Displays text on a graphic screen. It can be used in all resolutions.

column (in units of character positions) is the start position of the output
horizontally. As each column unit is 8 pixels wide, a screen width of 320
has a column range of 0-39, while a screen width of 640 has a column
range of 0-79.

row (in pixel units) is the start position of the output vertically. In contrast
to the column parameter, its unit is in pixels (not character positions), with
the top row having the value of 0.

height is a factor applied to the vertical size of the characters, where 1
is normal size (8 pixels), 2 is double size (16 pixels), and so on.

width is a factor applied to the horizontal size of the characters,
where 1 is normal size (8 pixels) 2 is double size (16 pixels), and so on.
direction controls the printing direction:

• 1 up

• 2 right

• 4 down

• 8 left

The optional address of character set can be used to select a charac-
ter set, different to the default character set at $29800, which includes
upper and lower case characters.

Three character sets (see also FONT) are available:

• $29000 Font A (ASCII)

• $3D000 Font B (Bold)

• $2D000 Font C (CBM)

The first part of the font (upper case / graphics) is stored at $xx000 -
$xx7FF.

41



The second part of the font (lower case / upper case) is stored at $xx800
- $xxFFF.

string is a string constant or expression which will be printed. This string
may optionally contain one or more of the following control characters:

Expression Keyboard Shortcut Description
CHR$(2) CTRL+B Blank Cell
CHR$(6) CTRL+F Flip Character
CHR$(9) CTRL+I AND With Screen
CHR$(15) CTRL+O OR With Screen
CHR$(24) CTRL+X XOR With Screen
CHR$(18) RVSON Reverse
CHR$(146) RVSOFF Reverse Off
CHR$(147) CLR Clear Viewport
CHR$(21) CTRL+U Underline
CHR$(25)+"-" CTRL+Y + ”-” Rotate Left
CHR$(25)+"+" CTRL+Y + ”+” Rotate Right
CHR$(26) CTRL+Z Mirror
CHR$(157) Cursor Left Move Left
CHR$(29) Cursor Right Move Right
CHR$(145) Cursor Up Move Up
CHR$(17) Cursor Down Move Down

Notice that the start position of the string has different units in the hor-
izontal and vertical directions. Horizontal is in columns and vertical is in
pixels.

Refer to the CHR$ function on page 45 for more information.

Remarks:Example: Using CHAR

10 SCREEN 640,400,2

20 CHAR 28,180,4,4,2,"MEGA65",$29000

30 GETKEY A$

40 SCREEN CLOSE

Will print the text ”MEGA65” at the centre of a 640 x 400 graphic screen.

42



CHDIR
Token: $FE $4B

Format: CHDIR dirname [,U unit]

Usage: Change to a subdirectory or a parent directory.

filename is either a quoted string such as "DATA", or a string expression in
brackets such as (FI$).

Dependent on the unit, CHDIR is applied to different filesystems.

UNIT 12 is reserved for the SD-Card (FAT filesystem). There this command
can be used to navigate to subdirectories and mount disk images, that
are stored there. CHDIR ”..”,U12 changes to the parent directory on
UNIT 12.

For units, that are managed by CBDOS (typically 8 and 9), CHDIR is used
to change into or out of subdirectories on floppy or disk image of type
D81. Existing subdirectories are displayed as filetype CBM in the parent
directory, they are created with the command MKDIR. CHDIR ”/”,U unit
changes to the root directory.

Examples: Using CHDIR

CHDIR "ADVENTURES",U12 :REM ENTER ADVENTURES ON SD CARD

CHDIR "..",U12 :REM GO BACK TO PARENT DIRECTORY

CHDIR "RACING",U12 :REM ENTER SUBDIRECTORY RACING

0 "MEGA65 " 1D

800 "MEGA65 GAMES" CBM

800 "MEGA65 TOOLS" CBM

600 "BASIC PROGRAMS" CBM

960 BLOCKS FREE.

CHDIR "MEGA65 GAMES",U8 :REM ENTER SUBDIRECTORY ON FLOPPY DISK

CHDIR "/",U8 :REM GO BACK TO ROOT DIRECTORY

43



CHARDEF
Token: $E0 $96

Format: CHARDEF index, bit-matrix

Usage: Change the bitmap matrix of characters

index is the character number in display code, (@:0, A:1, B:2, ...)

bit-matrix is a set of 8 byte values, which define the raster representa-
tion for the character from top row to bottom row. If more than 8 values
are used as arguments, the values 9-16 are used for the character in-
dex+1, 17-24 for index+2, etc.

Remarks: The character bitmap changes are applied to the VIC character gener-
ator, which resides in RAM at the address $FF7E000.

All changes are volatile and the VIC character set can be restored by a
reset or by using the FONT command.

Examples: Using CHARDEF

CHARDEF 1,$FF,$81,$81,$81,$81,$81,$81,$FF :REM CHANGE 'A' TO RECTANGLE

CHARDEF 9,$18,$18,$18,$18,$18,$18,$18,$00 :REM MAKE 'I' SANS SERIF

44



CHR$
Token: $C1

Format: CHR$(numeric expression)

Usage: Returns a string containing one character, whose PETSCII value is equal
to the argument.

Remarks: The argument range is from 0 - 255, so this function may also be used
to insert control codes into strings. Even the NULL character, with code
0, is allowed.
CHR$ is the inverse function to ASC. The complete table of characters
(and their PETSCII codes) is on page 271.

Example: Using CHR$

10 QUOTE$ = CHR$(34)

20 ESCAPE$ = CHR$(27)

30 PRINT QUOTE$;"MEGA65";QUOTE$ : REM PRINT "MEGA65"

40 PRINT ESCAPE$;"Q"; : REM CLEAR TO END OF LINE

45



CIRCLE
Token: $E2

Format: CIRCLE xc, yc, radius [, flags , start, stop]

Usage: A special case of ELLIPSE, using the same value for horizontal and ver-
tical radius.

xc is the x coordinate of the centre in pixels

yc is the y coordinate of the centre in pixels

radius is the radius of the circle in pixels

flags control filling, arcs and the position of the 0 degree angle. Default
setting (zero) is don’t fill, draw legs and the 0 degree radian points to 3
o’ clock.

Bit Name Value Action if set
0 fill 1 Fill circle or arc with the current pen colour
1 legs 2 Suppress drawing of the legs of an arc
2 combs 4 Let the zero radian point to 12 o’ clock

The units for the start- and stop-angle are degrees in the range of 0 to
360. The 0 radian starts at 3 o’ clock and moves clockwise. Setting bit
2 of flags (value 4) moves the zero-radian to the 12 o’ clock position.

start start angle for drawing an arc.

stop stop angle for drawing an arc.

Remarks: CIRCLE is used to draw circles on screens with an aspect ratio of 1:1
(for example: 320 x 200 or 640 x 400). Whilst using other resolutions
(such as 640 x 200), the shape will be an ellipse instead.

The example program uses the random number function RND for circle
colour, size and position. So it shows a different picture for each run.

46



47



Example: Using CIRCLE

100 REM CIRCLE (AFTER F.BOWEN)

110 BORDER 0 :REM BLACK

120 SCREEN 320,200,4 :REM SIMPLE SCREEN SETUP

130 PALETTE 0,0,0,0,0 :REM BLACK

140 PALETTE 0,1,RND(.)*16,RND(.)*16,15 :REM RANDOM COLOURS

150 PALETTE 0,2,RND(.)*16,15,RND(.)*16

160 PALETTE 0,3,15,RND(.)*16,RND(.)*16

170 PALETTE 0,4,RND(.)*16,RND(.)*16,15

180 PALETTE 0,5,RND(.)*16,15,RND(.)*16

190 PALETTE 0,6,15,RND(.)*16,RND(.)*16

200 SCNCLR 0 :REM CLEAR

210 FORI=0TO32 :REM CIRCLE LOOP

220 PEN 0,RND(.)*6+1 :REM RANDOM PEN

230 R=RND(.)*36+1 :REM RADIUS

240 XC=R+RND(.)*320:IF(XC+R)>319THEN240:REM X CENTRE

250 YC=R+RND(.)*200:IF(YC+R)>199THEN250:REM Y CENTRE

260 XC=XC+WT*320:YC=YC+HT*200

270 CIRCLE XC,YC,R,. :REM DRAW

280 NEXT

290 GETKEY A$ :REM WAIT FOR KEY

300 SCREEN CLOSE:BORDER 6

48



CLOSE
Token: $A0

Format: CLOSE channel

Usage: Closes an input or output channel.

channel number, which was given to a previous call of commands such
as APPEND, DOPEN, or OPEN.

Remarks: Closing files that have previously been opened before a program has
completed is very important, especially for output files. CLOSE flushes
output buffers and updates the directory information on disks. Failing to
CLOSE can corrupt files and disks. BASIC does NOT automatically close
channels nor files when a program stops.

Example: Using CLOSE

10 OPEN 2,8,2,"TEST,S,W"

20 PRINT#2,"TESTSTRING"

30 CLOSE 2 : REM OMITTING CLOSE GENERATES A SPLAT FILE

49



CLR
Token: $9C

Format: CLR
CLR variable

Usage: Used for management of BASIC variables, arrays and strings. The run-
time stack pointers, and the table of open channels is reset. After ex-
ecuting CLR all variables and arrays will be undeclared. RUN performs
CLR automatically.

CLR variable clears (zeroes) the variable. variable can be a numeric
variable or a string variable, but not an array.

Remarks: CLR should not be used inside loops or subroutines, as it destroys the
return address. AfterCLR, all variables are unknown andwill be initialised
when they are next used.

Example: Using CLR

10 A=5: P$="MEGA65"

20 CLR

30 PRINT A;P$

RUN

0

50



CLRBIT
Token: $9C $FE $4E

Format: CLRBIT address, bit number

Usage: Clears (resets) a single bit at the address.

If the address is in the range of $0000 to $FFFF (0-65535), the memory
bank set by BANK is used.

Addresses greater than or equal to $10000 (decimal 65536) are as-
sumed to be flat memory addresses and used as such, ignoring the BANK
setting.

The bit number is a value in the range of 0-7.

A bank value > 127 is used to access I/O, and the underlying system
hardware such as the VIC, SID, FDC, etc.

Example: Using CLRBIT

10 BANK 128 :REM SELECT SYSTEM MAPPING

20 CLRBIT $D011,4 :REM DISABLE DISPLAY

30 CLRBIT $D016,3 :REM SWITCH TO 38 OR 76 COLUMN MODE

51



CMD
Token: $9D

Format: CMD channel [, string]

Usage: Redirects the standard output from screen to a channel. This enables
you to print listings and directories to other output channels. It is also
possible to redirect this output to a disk file, or a modem.

channel number, which was given to a previous call of commands such
as APPEND, DOPEN, or OPEN.

The optional string is sent to the channel before the redirection begins
and can be used, for example, for printer or modem setup escape se-
quences.

Remarks: The CMD mode is stopped with PRINT#, or by closing the channel with
CLOSE. It is recommended to use PRINT# before closing to make sure
that the output buffer has been flushed.

Example: Using CMD to print a program listing:

OPEN 1,4 :REM OPEN CHANNEL #1 TO PRINTER AT UNIT 4

CMD 1

LIST

PRINT#1

CLOSE 1

52



COLLECT
Token: $F3

Format: COLLECT [,D drive] [,U unit]

Usage: Rebuilds the BAM (Block Availability Map) of a disk, deleting splat files
(files which have been opened, but not properly closed) and marking
unused blocks as free.

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units such
as the 1541, 1571, or 1581.

unit device number on the IEC bus. Typically in the range from 8 to 11
for disk units. If a variable is used, it must be placed in brackets. The unit
# defaults to 8.

Remarks: While this command is useful for cleaning a disk from splat files, it is
dangerous for disks with boot blocks or random access files. These blocks
are not associated with standard disk files and will therefore be marked
as free and may be overwritten by further disk write operations.

Examples: Using COLLECT

COLLECT

COLLECT U9

COLLECT D0, U9

53



COLLISION
Token: $FE $17

Format: COLLISION type [, line number]

Usage: Enables or disables a user-programmed interrupt handler. A call with-
out the line number argument disables the handler, while a call with line
number enables it. After the execution of COLLISION with line number,
a sprite collision of the same type, (as specified in the COLLISION call)
interrupts the BASIC program and performs a GOSUB to line number,
which is expected to contain the user code for handling sprite collisions.
This handler must give control back with RETURN.

type specifies the collision type for this interrupt handler:

Type Description
1 Sprite - Sprite Collision
2 Sprite - Data - Collision
3 Light Pen

linenumber must point to a subroutine which has code for handling
sprite collision and ends with RETURN.

Remarks: It is possible to enable the interrupt handler for all types, but only one
can execute at any time. An interrupt handler cannot be interrupted by
another interrupt handler. Functions such as BUMP, LPEN and RSPPOS
may be used for evaluation of the sprites which are involved, and their
positions.

Info: COLLISION wasn’t completed in BASIC 10, and a working implementa-
tion will be available in a future BASIC 65 update.

Example: Using COLLISION

10 COLLISION 1,70 : REM ENABLE

20 SPRITE 1,1 : MOVSPR 1,120, 0 : MOVSPR 1,0#5

30 SPRITE 2,1 : MOVSPR 2,120,100 : MOVSPR 2,180#5

40 FOR I=1 TO 50000:NEXT

50 COLLISION 1 : REM DISABLE

60 END

70 REM SPRITE <-> SPRITE INTERRUPT HANDLER

80 PRINT "BUMP RETURNS";BUMP(1)

90 RETURN: REM RETURN FROM INTERRUPT

54



COLOR
Token: $E7

Format: COLOR colour-index

Usage: The commandworks in the sameway as FOREGROUND, i.e: sets the fore-
ground colour (text colour) of the screen to the colour argument, which
must be in the range of 0 to 31. Refer to the table under BACKGROUND
on page 23 for the colour values and their corresponding colours.

Example: Using COLOR

55



CONCAT
Token: $FE $13

Format: CONCAT appendfile [,D drive] TO targetfile [,D drive] [,U unit]

Usage: CONCAT (concatenation) appends the contents of appendfile to the
targetfile. Afterwards, targetfile contains the contents of both files,
while appendfile remains unchanged.

appendfile is either a quoted string, for example: "DATA" or a string ex-
pression in brackets, for example: (FI$)

targetfile is either a quoted string, for example: "SAFE" or a string expres-
sion in brackets, for example: (FS$)

If the disk unit has dual drives, it is possible to apply CONCAT to files
which are stored on different disks. In this case, it is necessary to specify
the drive# for both files. This is also necessary if both files are stored on
drive#1.

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units such
as the 1541, 1571, or 1581.

unit device number on the IEC bus. Typically in the range from 8 to 11
for disk units. If a variable is used, it must be placed in brackets. The unit
# defaults to 8.

Remarks: CONCAT is executed in the DOS of the disk drive. Both files must ex-
ist and no pattern matching is allowed. Only files of type SEQ may be
concatenated.

Examples: Using CONCAT

CONCAT "NEW DATA" TO "ARCHIVE" ,U9

CONCAT "ADDRESS",D0 TO "ADDRESS BOOK",D1

56



CONT
Token: $9A

Format: CONT

Usage: Used to resume program execution after a break or stop caused by an

END or STOP statement, or by pressing RUN
STOP . This is a useful debug-

ging tool. The BASIC program may be stopped and variables can be
examined, and even changed. The CONT statement resumes execution.

Remarks: CONT cannot be used if a program has stopped because of an error.
Also, any editing of a program inhibits continuation. Stopping and con-
tinuation can spoil the screen output, and can also interfere with in-
put/output operations.

Example: Using CONT

10 I=I+1:GOTO 10

RUN

BREAK IN 10

READY.

PRINT I

947

CONT

57



COPY
Token: $F4

Format: COPY source [,D drive] [,U unit] TO [target] [,D drive] [,U unit]

Usage: Copies the contents of source to target. It is used to copy either single
files or, by using wildcard characters, multiple files.

source is either a quoted string, e.g. "DATA" or a string expression in brack-
ets, e.g. (FI$).

target is either a quoted string, e.g. "BACKUP" or a string expression in brack-
ets, e.g. (FS$)

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units such
as the 1541, 1571, or 1581.

unit device number on the IEC bus. Typically in the range from 8 to 11
for disk units. If a variable is used, it must be placed in brackets. The unit
# defaults to 8.

If none or one unit number is given, or the unit numbers before and after
the TO token are equal, COPY is executed on the disk drive itself, and
the source and target files will be on the same disk.

If the source unit (before TO) is different to the target unit (after TO),
COPY is executed in MEGA65 BASIC by reading the source files into a
RAM buffer and writing to the target unit. In this case, the target file
name cannot be chosen, it will be the same as the source filename. The
extended unit-to-unit copy mode allows the copying of single files, pat-
tern matching files or all files of a disk. Any combination of units is al-
lowed, internal floppy, D81 disk images, IEC floppy drives such as the
1541, 1571, 1581, or CMD floppy and hard drives.

Remarks: The file types PRG, SEQ and USR can be copied. If source and target are
on the same disk, the target filename must be different from the source
file name.

COPY cannot copy DEL files, which are commonly used as titles or sep-
arators in disk directories. These do not conform to Commodore DOS
rules and cannot be accessed by standard OPEN routines.

REL files cannot be copied from unit to unit.

Examples: Using COPY

58



COPY U8 TO U9 :REM COPY ALL FILES

COPY "CODES" TO "BACKUP" :REM COPY SINGLE FILE

COPY "*.TXT",U8 TO U9 :REM PATTERN COPY

COPY "M*",U9 TO U11 :REM PATTERN COPY

59



COS
Token: $BE

Format: COS(numeric expression)

Usage: Returns the cosine of the argument. The argument is expected in units
of radians. The result is in the range (-1.0 to +1.0)

Remarks: An argument in units of degrees can be converted to radians by multi-
plying it with π/180.

Examples: Using COS

PRINT COS(0.7)

0.76484219

X=60:PRINT COS(X * ~ / 180)

0.5

60



CURSOR
Format: CURSOR <ON | OFF> [{, column, row, style}]

CURSOR {column, row, style}

Usage: Moves the text cursor to the specified position on the current text screen.

ON or OFF displays or hides the cursor.

column and row specify the new position.

style defines a solid (1) or flashing (0) cursor.

Example: Using CURSOR

10 SCNCLR

20 CURSOR ON,1,2,1 :REM DISPLAY A SOLID CURSOR AT COLUMN 1, ROW 2

30 PRINT "A"; : SLEEP 1

40 CURSOR ,,0 :REM CHANGE TO A FLASHING CURSOR

50 PRINT "B"; : SLEEP 1

60 CURSOR OFF :REM HIDE THE CURSOR

70 PRINT "C"; : SLEEP 1

80 CURSOR 20,10 :REM MOVE THE CURSOR TO COLUMN 20, ROW 10

90 PRINT "D"; : SLEEP 1

100 CURSOR ,50 :REM MOVE THE CURSOR TO ROW 5 BUT DO NOT CHANGE THE COLUMN

110 PRINT "E"; : SLEEP 1

100 CURSOR 0 :REM MOVE THE CURSOR TO THE START OF THE ROW

110 PRINT "F"; : SLEEP 1

61



CUT
Token: $E4

Format: CUT x, y, width, height

Usage: CUT is used on graphic screens and copies the content of the speci-
fied rectangle with upper left position x, y and the width and height to
a buffer and fills the region afterwards with the colour of the currently
selected pen.

The cut out can be inserted at any position with the command PASTE.

Remarks: The size of the rectangle is limited by the 1K size of the cut/copy/paste
buffer. The memory requirement for a cut out region is width * height *
number of bitplanes / 8. It must not equal or exceed 1024 byte. For a
4-bitplane screen for example, a 45 x 45 region needs 1012.5 byte.

Example: Using CUT

10 SCREEN 320,200,2

20 BOX 60,60,300,180,1 :REM DRAW A WHITE BOX

30 PEN 2 :REM SELECT RED PEN

40 CUT 140,80,40,40 :REM CUT OUT A 40 * 40 REGION

50 PASTE 10,10,40,40 :REM PASTE IT TO NEW POSITION

60 GETKEY A$ :REM WAIT FOR KEYPRESS

70 SCREEN CLOSE

62



DATA
Token: $83

Format: DATA [constant [, constant ...]]

Usage: Used to define constants which can be read by READ statements in a pro-
gram. Numbers and strings are allowed, but expressions are not. Items
are separated by commas. Strings containing commas, colons or spaces
must be placed in quotes.

RUN initialises the data pointer to the first item of the first DATA state-
ment and advances it for every read item. It is the programmer’s re-
sponsibility that the type of the constant and the variable in the READ
statement match. Empty items with no constant between commas are
allowed and will be interpreted as zero for numeric variables and an
empty string for string variables.

RESTORE may be used to set the data pointer to a specific line for sub-
sequent reads.

Remarks: It is good programming practice to put large amounts of DATA state-
ments at the end of the program, so they don’t slow down the search for
line numbers afterGOTO, and other statements with line number targets.

Example: Using DATA

1 REM DATA

10 READ NA$, VE

20 READ N% : FOR I=2 TO N% : READ GL(I) : NEXT I

30 PRINT "PROGRAM:";NA$;" VERSION:";VE

40 PRINT "N-POINT GAUSSLEGENDRE FACTORS E1":

50 FOR I=2 TO N%:PRINT I;GL(I):NEXT I

60 END

80 DATA "MEGA65",1.1

90 DATA 5,0.5120,0.3573,0.2760,0.2252

RUN

PROGRAM:MEGA65 VERSION: 1.1

N-POINT GAUSSLEGENDRE FACTORS E1

2 0.512

3 0.3573

4 0.276

5 0.2252

63



DCLEAR
Token: $FE $15

Format: DCLEAR [,D drive] [,U unit]

Usage: Sends an initialise command to the specified unit and drive.

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units such
as the 1541, 1571, or 1581.

unit device number on the IEC bus. Typically in the range from 8 to 11
for disk units. If a variable is used, it must be placed in brackets. The unit
# defaults to 8.

The DOS of the disk drive will close all open files, clear all channels, free
buffers and re-read the BAM. All open channels on the computer will also
be closed.

Examples: Using DCLEAR

DCLEAR

DCLEAR U9

DCLEAR D0, U9

64



DCLOSE
Token: $FE $0F

Format: DCLOSE [U unit]
DCLOSE # channel

Usage: Closes a single file or all files for the specified unit.

channel number, which was given to a previous call to commands such
as APPEND, DOPEN, or OPEN.

unit device number on the IEC bus. Typically in the range from 8 to 11
for disk units. If a variable is used, it must be placed in brackets. The unit
# defaults to 8.

DCLOSE is used either with a channel argument or a unit number, but
never both.

Remarks: It is important to close all open files before a program ends. Otherwise
buffers will not be freed and even worse, open files that have been writ-
ten to may be incomplete (commonly called splat files), and no longer
usable.

Examples: Using DCLOSE

DCLOSE#2 :REM CLOSE FILE ASSIGNED TO CHANNEL 2

DCLOSE U9:REM CLOSE ALL FILES OPEN ON UNIT 9

65



DEC
Token: $D1

Format: DEC(string expression)

Usage: Returns the decimal value of the argument, that is written as a hex string.
The argument range is ”0000” to ”FFFF” (0 to 65535 in decimal). The
argument must have 1-4 hex digits.

Remarks: Allowed digits in uppercase/graphics mode are 0-9 and A-Z
(0123456789ABCDEF) and in lowercase/uppercase mode are 0-9 and a-z
(0123456789abcdef).

Example: Using DEC

PRINT DEC("D000")

53248

POKE DEC("600"),255

66



DEF FN
Token: $96

Format: DEF FN name(real variable) = [expression]

Usage: Defines a single statement user function with one argument of type real,
returning a real value. The definition must be executed before the func-
tion can be used in expressions. The argument is a dummy variable, which
will be replaced by the argument when the function is used.

Remarks: The value of the dummy variable will not change and the variable may
be used in other contexts without side effects.

Example: Using DEF FN

10 PD = ~ / 180

20 DEF FN CD(X)= COS(X*PD): REM COS FOR DEGREES

30 DEF FN SD(X)= SIN(X*PD): REM SIN FOR DEGREES

40 FOR D=0 TO 360 STEP 90

50 PRINT USING "###";D

60 PRINT USING " ##.##";FNCD(D);

70 PRINT USING " ##.##";FNSD(D)

80 NEXT D

RUN

0 1.00 0.00

90 0.00 1.00

180 -1.00 0.00

270 0.00 -1.00

360 1.00 0.00

67



DELETE
Token: $F7

Format: DELETE [line range]
DELETE filename [,D drive] [,U unit] [,R]

Usage: Used to either delete a range of lines from the BASIC program or to
delete files from disk.

line range consists of the first and last line to delete, or a single line
number. If the first number is omitted, the first BASIC line is assumed.
The second number in the range specifier defaults to the last BASIC line.

filename is either a quoted string, for example: "SAFE"" or a string expres-
sion in brackets, for example: (FS$)

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units such
as the 1541, 1571, or 1581.

unit device number on the IEC bus. Typically in the range from 8 to 11
for disk units. If a variable is used, it must be placed in brackets. The unit
# defaults to 8.

R Recover a previously deleted file. This will only work if there were no
write operations between deletion and recovery, which may have altered
the contents of the file.

Remarks: DELETE filename is a synonym of SCRATCH filename and ERASE file-
name.

Examples: Using DELETE

DELETE 100 :REM DELETE LINE 100

DELETE 240-350 :REM DELETE ALL LINES FROM 240 TO 350

DELETE 500- :REM DELETE FROM 500 TO END

DELETE -70 :REM DELETE FROM START TO 70

DELETE "DRM",U9 :REM DELETE FILE DRM ON UNIT 9

DELETE "*=SEQ" :REM DELETE ALL SEQUENTIAL FILES

DELETE "R*=PRG" :REM DELETE PROGRAM FILES STARTING WITH 'R'

68



DIM
Token: $86

Format: DIM name(limits) [, name(limits) ...]

Usage: Declares the shape, bounds and the type of a BASIC array. As a decla-
ration statement, it must be executed only once and before any usage
of the declared arrays. An array can have one or more dimensions. One
dimensional arrays are often called vectors while two or more dimensions
define a matrix. The lower bound of a dimension is always zero, while the
upper bound is as declared. The rules for variable names apply for array
names as well. You can create byte arrays, integer arrays, real arrays
and string arrays. It is legal to use the same identifier for scalar variables
and array variables. The left parenthesis after the name identifies array
names.

Remarks: Byte arrays consume one byte per element, integer arrays two bytes, real
arrays five bytes and string arrays three bytes for the string descriptor
plus the length of the string itself.
If an array identifier is used without being previously declared, an implicit
declaration of an one dimensional array with limit of 10 is performed.

Example: Using DIM

1 REM DIM

10 DIM A%(8) : REM ARRAY OF 9 ELEMEMTS

20 DIM XX(2,3) : REM ARRAY OF 3X4 = 12 ELEMENTS

30 FOR I=0 TO 8 : A%(I)=PEEK(256+I) : PRINT A%(I);: NEXT:PRINT

40 FOR I=0 TO 2 : FOR J=0 TO 3 : READ XX(I,J):PRINT XX(I,J);: NEXT J,I

50 END

60 DATA 1,-2,3,-4,5,-6,7,-8,9,-10,11,-12

RUN

45 52 50 0 0 0 0 0 0

1 -2 3 -4 5 -6 7 -8 9 -10 11 -12

69



DIR
Token: $EE (DIR) $FE $29 (ECTORY)

Format: DIR [filepattern] [,W] [,R] [,D drive] [,U unit]
DIRECTORY [filepattern] [,W] [,R] [,D drive] [,U unit]
$ [filepattern] [,W] [,R] [,D drive] [,U unit]

Usage: Prints a file directory/catalog of the specified disk.

The W (Wide) parameter lists the directory three columns wide on the
screen and pauses after the screen has been filled with a page (63 di-
rectory entries). Pressing any key displays the next page.

The R (Recoverable) parameter includes files in the directory, which are
flagged as deleted but are still recoverable.

filepattern is either a quoted string, for example: "DA*" or a string expres-
sion in brackets, e.g. (DI$)

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units such
as the 1541, 1571, or 1581.

unit device number on the IEC bus. Typically in the range from 8 to 11
for disk units. If a variable is used, it must be placed in brackets. The unit
# defaults to 8.

Remarks: DIR is a synonym of CATALOG and DIRECTORY, and produces the same
listing. The filepattern can be used to filter the listing. The wildcard
characters * and ? may be used. Adding ,T= to the pattern string, with T
specifying a filetype of P, S, U or R (for PRG, SEQ, USR, REL) filters the
output to that filetype.

The shortcut symbol $ can only be used in direct mode.

Examples: Using DIR

DIR

0 "BLACK SMURF " BS 2A

508 "STORY PHOBOS" SEQ

27 "C8096" PRG

25 "C128" PRG

104 BLOCKS FREE.

70



For a DIR listing with the wide parameter, please refer to the example
under CATALOG on page 39.

71



DISK
Token: $FE $40

Format: DISK command [,U unit]
@ command [,U unit]

Usage: Sends a command string to the specified disk unit.

unit device number on the IEC bus. Typically in the range from 8 to 11
for disk units. If a variable is used, it must be placed in brackets. The unit
# defaults to 8.

command is a string expression.

Remarks: The command string is interpreted by the disk unit and must be compat-
ible to the used DOS version. Read the disk drive manual for possible
commands.

Using DISK with no parameters prints the disk status.

The shortcut key @ can only be used in direct mode.

Examples: Using DISK

DISK "I0" :REM INITIALISE DISK IN DRIVE 0

DISK "U0>9" :REM CHANGE UNIT# TO 9

72



DLOAD
Token: $F0

Format: DLOAD filename [,D drive] [,U unit]
DLOAD ”$[pattern=type]” [,D drive] [,U unit]
DLOAD ”$$[pattern=type]” [,D drive] [,U unit]

Usage: The first form loads a file of type PRG into memory reserved for BASIC
programs.

The second form loads a directory into memory, which can then be
viewed with LIST or LISTP. It is structured like a BASIC program, but file
sizes are displayed instead of line numbers.

The third form is similar to the second one, but the files are numbered.
This listing can be scrolled like a BASIC program with the keys F9 or
F11 , edited, listed, saved or printed.

A filter can be applied by specifying a pattern or a pattern and a type.
The asterisk matches the rest of the name, while the ? matches any
single character. The type specifier can be a character of (P,S,U,R), that
is Program, Sequential, User, or Relative file.

filename is either a quoted string such as "DATA", or a string expression in
brackets such as (FI$).

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units such
as the 1541, 1571, or 1581.

unit device number on the IEC bus. Typically in the range from 8 to 11
for disk units. If a variable is used, it must be placed in brackets. The unit
# defaults to 8.

Remarks: The load address, which is stored in the first two bytes of the file is ig-
nored. The program is loaded into BASIC memory. This enables loading
of BASIC programs that were saved on other computers with different
memory configurations. After loading, the program is re-linked and ready
to be RUN or edited. It is possible to use DLOAD in a running program.
This is called overlaying, or chaining. If you do this, then the newly loaded
program replaces the current one, and the execution starts automatically
on the first line of the new program. Variables, arrays and strings from
the current run are preserved and can also be used by the newly loaded
program.

73



Every DLOAD either program or directory, will replace contents (pro-
grams), that are currently in memory.

Examples: Using DLOAD

DLOAD "APOCALYPSE"

DLOAD "MEGA TOOLS",U9

DLOAD (FI$),U(UN%)

DLOAD "$" :REM LOAD WHOLE DIRECTORY - WITH FILE SIZES

DLOAD "$$" :REM LOAD WHOLE DIRECTORY - SCROLLABLE

DLOAD "$$X*=P" :REM DIRECTOY WITH PRG FILES STARTING with 'X'

74



DMA
Token: $FE $1F

Format: DMA command [, length, source address, source bank, target address,
target bank [, sub]]

Usage: DMA (”Direct Memory Access”) is obsolete, and has been replaced by
EDMA.

command 0: copy, 1: mix, 2: swap, 3: fill

length number of bytes

source address 16-bit address of read area or fill byte

source bank bank number for source (ignored for fill mode)

target 16-bit address of write area

target bank bank number for target

sub sub command

Remarks: DMA has access to the lower 1MB address range organised in 16 banks
of 64 K. To avoid this limitation, use EDMA, which has access to the full
256MB address range.

Examples: A sequence of DMA calls to demonstrate fast screen drawing operations

DMA 0, 80*25, 2048, 0, 0, 4 :REM SAVE SCREEN TO $00000 BANK 4

DMA 3, 80*25, 32, 0, 2048, 0 :REM FILL SCREEN WITH BLANKS

DMA 0, 80*25, 0, 4, 2048, 0 :REM RESTORE SCREEN FROM $00000 BANK 4

DMA 2, 80, 2048, 0, 2048+80, 0 :REM SWAP CONTENTS OF LINE 1 & 2 OF SCREEN

75



DMODE
Token: $FE $35

Format: DMODE jam, complement, stencil, style, thick

Usage: ”Display MODE” sets several parameters of the graphics context, which
is used by drawing commands.

Mode Values
jam 0 - 1
complement 0 - 1
stencil 0 - 1
style 0 - 3
thick 1 - 8

76



DO
Token: $EB

Format: DO ... LOOP
DO [<UNTIL | WHILE> logical expression]
. . . statements [EXIT]
LOOP [<UNTIL | WHILE> logical expression]

Usage: DO and LOOP define the start of a BASIC loop. Using DO and LOOP
alone without any modifiers creates an infinite loop, which can only be
exited by the EXIT statement. The loop can be controlled by adding
UNTIL or WHILE after the DO or LOOP.

Remarks: DO loops may be nested. An EXIT statement only exits the current loop.

Examples: Using DO and LOOP

10 PW$="":DO

20 GET A$:PW$=PW$+A$

30 LOOP UNTIL LEN(PW$)>7 OR A$=CHR$(13)

10 DO : REM WAIT FOR USER DECISION

20 GET A$

30 LOOP UNTIL A$="Y" OR A$="N" OR A$="y" OR A$="n"

10 DO WHILE ABS(EPS) > 0.001

20 GOSUB 2000 : REM ITERATION SUBROUTINE

30 LOOP

10 I%=0 : REM INTEGER LOOP 1-100

20 DO: I%=I%+1

30 LOOP WHILE I% < 101

77



DOPEN
Token: $FE $0D

Format: DOPEN# channel, filename [,L [reclen]] [,W] [,D drive] [,U unit]

Usage: Opens a file for reading or writing.

channel number, where:

• 1 <= channel <= 127 line terminator is CR.

• 128 <= channel <= 255 line terminator is CR LF.

L indicates, that the file is a relative file, which is opened for read/write,
as well as random access. The reclength is mandatory for creating rel-
ative files. For existing relative files, reclen is used as a safety check, if
given.

W opens a file for write access. The file must not exist.

filename is either a quoted string such as "DATA", or a string expression in
brackets such as (FI$).

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units such
as the 1541, 1571, or 1581.

unit device number on the IEC bus. Typically in the range from 8 to 11
for disk units. If a variable is used, it must be placed in brackets. The unit
# defaults to 8.

Remarks: DOPEN# may be used to open all file types. The sequential file type SEQ
is default. The relative file type REL is chosen by using the L parameter.
Other file types must be specified in the filename, e.g. by adding ”,P” to
the filename for PRG files or ”,U” for USR files.

If the first character of the filename is an at sign ’@’, it is interpreted as a
”save and replace” operation. It is not recommended to use this option
on 1541 and 1571 drives, as they contain a ”save and replace bug” in
their DOS.

78



Examples: Using DOPEN

DOPEN#5,"DATA",U9

DOPEN#130,(DD$),U(UN%)

DOPEN#3,"USER FILE,U"

DOPEN#2,"DATA BASE",L240

DOPEN#4,"MYPROG,P" : REM OPEN PRG FILE

79



DOT
Token: $FE $4C

Format: DOT x, y [,colour]

Usage: Draws a pixel at screen coordinates x and y. The optional third parameter
defines the colour to be used. If not specified, the current pen colour will
be used.

Example: Using DOT:

10 SCREEN 320,200,5

20 BOX 50,50,270,150

30 VIEWPORT 50,50,220,100

40 FORI=0TO127

50 DOT I+I+I,I+I,I

60 NEXT

70 GETKEY A

80 SCREEN CLOSE

80



DPAT
Token: $FE $36

Format: DPAT type [, number, pattern ...]

Usage: ”Drawing PATtern” sets the pattern of the graphics context for drawing
commands.

There a four predefined pattern types, that can be selected by specifying
the type number (1, 2, 3, or 4) as a single parameter.

A value of zero for the type number indicates a user defined pattern.
This pattern can be set by using a bit string that consists of either 8, 16,
24, or 32 bits. The number of used pattern bytes is given as the second
parameter. It defines how many pattern bytes (1, 2, 3, or 4) follow.

• Type 0-4

• Number number of following pattern bytes (1-4)

• Pattern pattern bytes

81



DS
Format: DS

Usage: DS holds the status of the last disk operation. It is a volatile variable.
Each use triggers the reading of the disk status from the current disk de-
vice in usage. DS is coupled to the string variable DS$ which is updated
at the same time. Reading the disk status from a disk device automat-
ically clears any error status on that device, so subsequent reads will
return 0, if no other activity has since occurred.

Remarks: DS is a reserved system variable.

Example: Using DS

100 DOPEN#1,"DATA"

110 IF DS<>0 THEN PRINT"COULD NOT OPEN FILE DATA":STOP

82



DS$
Format: DS$

Usage: DS$ holds the status of the last disk operation in text form of the format:
Code,Message,Track,Sector.

DS$ is coupled to the numeric variable DS. It is updated when DS is used.
DS$ is set to 00,OK,00,00 if there was no error, otherwise it is set to a DOS
error message (listed in the disk drive manuals).

Remarks: DS$ is a reserved system variable.

Example: Using DS$

100 DOPEN#1,"DATA"

110 IF DS<>0 THEN PRINT DS$:STOP

83



DSAVE
Token: $EF

Format: DSAVE filename [,D drive] [,U unit]

Usage: ”Disk SAVE” saves the BASIC program to a file of type PRG.

filename is either a quoted string such as "DATA", or a string expression in
brackets such as (FI$). The maximum length of the filename is 16 charac-
ters. If the first character of the filename is an at sign ’@’ it is interpreted
as a ”save and replace” operation. It is not recommended to use this
option on 1541 and 1571 drives, as they contain a ”save and replace
bug” in their DOS.

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units such
as the 1541, 1571, or 1581.

unit device number on the IEC bus. Typically in the range from 8 to 11
for disk units. If a variable is used, it must be placed in brackets. The unit
# defaults to 8.

Remarks: DVERIFY can be used after DSAVE to check if the saved program on disk
is identical to the program in memory.

Example: Using DSAVE

DSAVE "ADVENTURE"

DSAVE "ZORK-I",U9

DSAVE "DUNGEON",D1,U10

84



DT$
Format: DT$

Usage: DT$ holds the current date and is updated before each usage from the
RTC (Real-TimeClock). The stringDT$ is formatted as: ”DD-MON-YYYY”,
for example: ”04-APR-2021”.

Remarks: DT$ is a reserved system variable. For more information on how to set
the Real-Time Clock, refer to the Configuration Utility section on page
??.

Example: Using DT$

100 PRINT "TODAY IS: ";DT$

85



DVERIFY
Token: $FE $14

Format: DVERIFY filename [,D drive] [,U unit]

Usage: ”Disk VERIFY” compares the BASIC program in memory with a disk file of
type PRG.

filename is either a quoted string such as "DATA", or a string expression in
brackets such as (FI$).

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units such
as the 1541, 1571, or 1581.

unit device number on the IEC bus. Typically in the range from 8 to 11
for disk units. If a variable is used, it must be placed in brackets. The unit
# defaults to 8.

Remarks: DVERIFY can only test for equality. It gives no information about the
number or position of different valued bytes. DVERIFY exits either with
the message OK or with VERIFY ERROR.

Example: Using DVERIFY

DVERIFY "ADVENTURE"

DVERIFY "ZORK-I",U9

DVERIFY "DUNGEON",D1,U10

86



EDIT
Format: EDIT <ON | OFF>

Usage: EDIT switches the built-in editor either to text mode with EDIT ON, or to
the BASIC program editor withEDIT OFF.

After power up or reset, the editor is initialised as BASIC program editor.

After setting the editor to text mode with EDIT ON, the differences to
program mode are:

The editor does no tokenising/parsing. All text entered after a linenum-
ber remains pure text, BASIC keywords such as FOR and GOTO are not
converted to BASIC tokens, as they are whilst in program mode.

The line numbers are only used for text organisation, sorting, deleting,
listing etc. When the text is saved to file with DSAVE, a sequential file
(type SEQ) is written, not a program (PRG) file, which is how they’re writ-
ten whilst in program mode. Line numbers are not written to the file.

DLOAD in text mode can load only sequential files. Line numbers are
automatically generated for editing purposes.

The mode of the editor can be recognised by looking at the prompt: In
program mode, the prompt is READY., whilst in text mode the prompt is OK.

Text mode affects entered lines with leading numbers only, lines with no
line number are executed as BASIC commands, as usual.

Sequential files, created with the text editor, can be displayed (without
loading them) on the screen by using TYPE <filename>.

87



Example: Using EDIT

ready.

edit on

ok.

100 This is a simple text editor.

dsave "example"

ok.

new

ok.

catalog

0 "demoempty " 00 3d

1 "example" seq

3159 blocks free

ok.

type "example"

This is a simple text editor.

ok.

dload "example"

loading

ok.

list

1000 This is a simple text editor.

ok.

88



EDMA
Token: $FE $21

Format: EDMA command, length, source, target [, sub, mod]

Usage: EDMA (”Extended Direct Memory Access”) is the fastest method to ma-
nipulate memory areas using the DMA controller.

command 0: copy, 1: mix, 2: swap, 3: fill.

length number of bytes (maximum = 65535).

source 28-bit address of read area or fill byte.

target 28-bit address of write area.

sub sub command (see chapter on DMA controller in the MEGA65 Book).

mod modifier (see chapter on DMA controller in the MEGA65 Book).

Remarks: EDMA can access the entire 256MB address range, using up to 28 bits
for the addresses of the source and target.

Examples: Using EDMA

EDMA 0, $800, $F700, $8000000 :REM COPY SCALAR VARIABLES TO ATTIC RAM

EDMA 3, 80*25, 32, 2048 :REM FILL SCREEN WITH BLANKS

EDMA 0, 80*25, 2048, $8000800 :REM COPY SCREEN TO ATTIC RAM

89



EL
Format: EL

Usage: EL has the value of the line where the most recent BASIC error occurred,
or the value -1 if there was no error.

Remarks: EL is a reserved system variable.

This variable is typically used in a TRAP routine, where the error line is
taken from EL.

Example: Using EL

10 TRAP 100

20 PRINT SQR(-1) :REM PROVOKE ERROR

30 PRINT "AT LINE 30":REM HERE TO RESUME

40 END

100 IF ER>0 THEN PRINT ERR$(ER);" ERROR"

110 PRINT " IN LINE";EL

120 RESUME NEXT :REM RESUME AFTER ERROR

90



ELLIPSE
Token: $FE $30

Format: ELLIPSE xc, yc, xr, yr [, flags , start, stop]

Usage: Draws an ellipse.

xc is the x coordinate of the centre in pixels

yc is the y coordinate of the centre in pixels

xr is the x radius of the ellipse in pixels

yr is the y radius of the ellipse in pixels

flags control filling, arcs and orientation of the zero radian (combs flag
named after retroCombs). Default setting (zero) is: Don’t fill, draw legs,
start drawing at 3 ’o clock.

Bit Name Value Action if set
0 fill 1 Fill ellipse or arc with the current pen colour
1 legs 2 Suppress drawing of the legs of an arc
2 combs 4 Drawing (0 degree) starts at 12 ’o clock

The units for the start- and stop-angle are degrees in the range of 0 to
360. The 0 radian starts at 3 o’ clock and moves clockwise. The combs-
flag shifts the 0 radian and the start position to the 12 ’o clock position.

start start angle for drawing an elliptic arc.

stop stop angle for drawing an elliptic arc.

Remarks: ELLIPSE is used to draw ellipses on screens at various resolutions. If a
full ellipse is to be drawn, start and stop should be either omissed or set
both to zero (not 0 and 360). Drawing and filling of full ellipses is much
faster, than using elliptic arcs.

Example: Using ELLIPSE

91



92



100 S%=2:D%=3:W%=320*S%:H%=200*S% :REM SCREEN SETTINGS

110 CX%=W%/2:CY%=H%/2 :REM CENTRE AND RADII

120 RX%=W%/2:RY%=H%/2

130 SCREEN W%,H%,D% :REM OPEN SCREEN

140 ELLIPSE CX%,CY%,CX%-4,CY%-4

150 PEN2:CIRCLE CX%,CY%,RY%-4,2

160 PEN3:CIRCLE CX%,CY%,RY%-14,2

170 PEN4:CIRCLE CX%,CY%,RY%-24,0,135,45

180 PEN5:ELLIPSE CX%,CY%/2,RX%/4,RY%/4,1

190 PEN6:CIRCLE 120*S%,CY%,40,1,45,315

200 PEN7:CIRCLE 200*S%,CY%,40,1,225,135

210 PEN0:CHAR 34,CY%/2-8,2,2,2,"MEGA65",$3D000

220 GETKEY A& :REM WAIT FOR ANY KEY

230 SCREEN CLOSE :REM CLOSE GRAPHICS SCREEN

93



ELSE
Token: $D5

Format: IF expression THEN true clause [ELSE false clause]

Usage: ELSE is an optional part of an IF statement.

expression a logical or numeric expression. A numeric expression is
evaluated as FALSE if the value is zero and TRUE for any non-zero value.

true clause one or more statements starting directly after THEN on the
same line. A line number after THEN performs a GOTO to that line in-
stead.

false clause one or more statements starting directly after ELSE on the
same line. A linenumber after ELSE performs aGOTO to that line instead.

Remarks: There must be a colon before ELSE. There cannot be a colon or end-of-
line after ELSE.

The standard IF ... THEN ... ELSE structure is restricted to a single line.
But the true clause and false clause may be expanded to several lines
using a compound statement surrounded with BEGIN and BEND.

When the true clause does not use BEGIN and BEND, ELSE must be on
the same line as IF.

Example: Using ELSE

100 REM ELSE

110 RED$=CHR$(28):BLACK$=CHR$(144):WHITE$=CHR$(5)

120 INPUT "ENTER A NUMBER";V

130 IF V<0 THENPRINT RED$;:ELSEPRINT BLACK$;

140 PRINT V : REM PRINT NEGATIVE NUMBERS IN RED

150 PRINT WHITE$

160 INPUT "END PROGRAM:(Y/N)";A$

170 IF A$="Y" THENEND

180 IF A$="N" THEN120:ELSE160

Using ELSE with BEGIN and BEND.

94



100 A = 0 : GOSUB 200

110 A = 1 : GOSUB 200

120 END

200 IF A = 0 THEN BEGIN

210 PRINT "HELLO"

220 BEND : ELSE BEGIN

230 PRINT "GOODBYE"

240 BEND

250 RETURN

95



END
Token: $80

Format: END

Usage: Ends the execution of the BASIC program. The READY. prompt appears and
the computer goes into direct mode waiting for keyboard input.

Remarks: END does not clear channels nor close files. Also, variable definitions
are still valid after END. The program may be continued with the CONT
statement. After executing the last line of a program, END is automati-
cally executed.

Example: Using END

10 IF V < 0 THEN END : REM NEGATIVE NUMBERS END THE PROGRAM

20 PRINT V

96



ENVELOPE
Token: $FE $0A

Format: ENVELOPE n [{, attack, decay, sustain, release, waveform, pw}]

Usage: Used to define the parameters for the synthesis of a musical instrument.

n envelope slot (0-9).

attack attack rate (0-15).

decay decay rate (0-15).

sustain sustain rate (0-15).

release release rate (0-15).

waveform 0: triangle, 1: sawtooth, 2: square/pulse, 3: noise, 4: ring
modulation.

pw pulse width (0-4095) for waveform.

There are 10 slots for storing instrument parameters, preset with the fol-
lowing default values:

n A D S R WF PW Instrument
0 0 9 0 0 2 1536 Piano
1 12 0 12 0 1 Accordion
2 0 0 15 0 0 Calliope
3 0 5 5 0 3 Drum
4 9 4 4 0 0 Flute
5 0 9 2 1 1 Guitar
6 0 9 0 0 2 512 Harpsichord
7 0 9 9 0 2 2048 Organ
8 8 9 4 1 2 512 Trumpet
9 0 9 0 0 0 Xylophone

Example: Using ENVELOPE

10 ENVELOPE 9,10,5,10,5,2,4000

20 VOL 9

30 TEMPO 30

40 PLAY "T9O4Q CDEFGAB U3T8 CDEFGAB L","T5O3Q H CGEQG T7 HCGEQG L"

97



ER
Format: ER

Usage: ER has the value of the most recent BASIC error that has occurred, or -1
if there was no error.

Remarks: ER is a reserved system variable.

This variable is typically used in a TRAP routine, where the error number
is taken from ER.

Example: Using ER

10 TRAP 100

20 PRINT SQR(-1) :REM PROVOKE ERROR

30 PRINT "AT LINE 30":REM HERE TO RESUME

40 END

100 IF ER>0 THEN PRINT ERR$(ER);" ERROR"

110 PRINT " IN LINE";EL

120 RESUME NEXT :REM RESUME AFTER ERROR

98



ERASE
Token: $FE $2A

Format: ERASE filename [,D drive] [,U unit] [,R]

Usage: Used to erase a disk file.

filename is either a quoted string such as "DATA", or a string expression in
brackets such as (FI$).

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units such
as the 1541, 1571, or 1581.

unit device number on the IEC bus. Typically in the range from 8 to 11
for disk units. If a variable is used, it must be placed in brackets. The unit
# defaults to 8.

R Recover a previously erased file. This will only work if there were no
write operations between erasing and recovery, which may have altered
the contents of the disk.

Remarks: ERASE filename is a synonym of SCRATCH filename and DELETE file-
name.

In direct mode the success and the number of erased files is printed.
The second to last number from the message contains the number of
successfully erased files,

Examples: Using ERASE

ERASE "DRM",U9 :REM ERASE FILE DRM ON UNIT 9

01, FILES SCRATCHED,01,00

ERASE "OLD*" :REM ERASE ALL FILES BEGINNING WITH "OLD"

01, FILES SCRATCHED,04,00

ERASE "R*=PRG" :REM ERASE PROGRAM FILES STARTING WITH 'R'

01, FILES SCRATCHED,09,00

99



ERR$
Token: $D3

Format: ERR$(number)

Usage: Used to convert an error number to an error string.

number is a BASIC error number (1-41).

This function is typically used in a TRAP routine, where the error number
is taken from the reserved variable ER.

Remarks: Arguments out of range (1-41) will produce an ILLEGAL QUANTITY error.

Example: Using ERR$

10 TRAP 100

20 PRINT SQR(-1) :REM PROVOKE ERROR

30 PRINT "AT LINE 30":REM HERE TO RESUME

40 END

100 IF ER>0 THEN PRINT ERR$(ER);" ERROR"

110 PRINT " IN LINE";EL

120 RESUME NEXT :REM RESUME AFTER ERROR

100



EXIT
Token: $FD

Format: EXIT

Usage: Exits the current DO .. LOOP and continues execution at the first state-
ment after LOOP.

Remarks: In nested loops, EXIT exits only the current loop, and continues execution
in an outer loop (if there is one).

Example: Using EXIT

1 REM EXIT

10 OPEN 2,8,0,"$" : REM OPEN CATALOG

15 IF DS THEN PRINT DS$: STOP: REM CANT READ

20 GET#2,D$,D$ : REM DISCARD LOAD ADDRESS

25 DO : REM LINE LOOP

30 GET#2,D$,D$ : REM DISCARD LINE LINK

35 IF ST THEN EXIT : REM END-OF-FILE

40 GET#2,LO,HI : REM FILE SIZE BYTES

45 S=LO + 256 * HI : REM FILE SIZE

50 LINE INPUT#2, F$ : REM FILE NAME

55 PRINT S;F$ : REM PRINT FILE ENTRY

60 LOOP

65 CLOSE 2

101



EXP
Token: $BD

Format: EXP(numeric expression)

Usage: The EXP (EXPonential function) computes the value of the mathemati-
cal constant Euler’s number (2.71828183) raised to the power of the
argument.

Remarks: An argument greater than 88 produces an OVERFLOW ERROR.

Examples: Using EXP

PRINT EXP(1)

2.71828183

PRINT EXP(0)

1

PRINT EXP(LOG(2))

2

102



FAST
Token: $FE $25

Format: FAST [speed]

Usage: Set CPU clock to 1MHz, 3.5MHz or 40MHz.

speed CPU clock speed where:

• 1 sets CPU to 1MHz.

• 3 sets CPU to 3MHz.

• Anything other than 1 or 3 sets the CPU to 40MHz.

Remarks: Although it’s possible to call FAST with any real number, the precision
part (the decimal point and any digits after it), will be ignored.

FAST is a synonym of SPEED.

FAST has no effect if POKE 0,65 has previously been used to set the CPU to
40MHz.

Example: Using FAST

10 FAST :REM SET SPEED TO MAXIMUM (40 MHZ)

20 FAST 1 :REM SET SPEED TO 1 MHZ

30 FAST 3 :REM SET SPEED TO 3.5 MHZ

40 FAST 3.5 :REM SET SPEED TO 3.5 MHZ

103



FGOSUB
Token: $FE $48

Format: FGOSUB numeric expression

Usage: Evaluates the given numeric expression, then calls (GOSUBs) the subrou-
tine at the resulting line number.

Warning: Using this feature can break your program if RENUMBER is applied, as line
numbers may change and the numeric expression will no longer address
your intended line numbers.

Example: Using FGOSUB:

10 INPUT "WHICH SUBROUTINE TO EXECUTE 100,200,300";LI

20 FGOSUB LI :REM HOPEFULLY THIS LINE # EXISTS

30 GOTO 10 :REM REPEAT

100 PRINT "AT LINE 100":RETURN

200 PRINT "AT LINE 200":RETURN

300 PRINT "AT LINE 300":RETURN

104



FGOTO
Token: $FE $47

Format: FGOTO numeric expression

Usage: Evaluates the given numeric expression, then jumps (GOesTO) to the re-
sulting line number.

Warning: Using this feature can break your program if RENUMBER is applied, as line
numbers may change and the numeric expression will no longer address
your intended line numbers.

Example: Using FGOTO:

10 INPUT "WHICH LINE # TO EXECUTE 100,200,300";LI

20 FGOTO LI :REM HOPEFULLY THIS LINE # EXISTS

30 END

100 PRINT "AT LINE 100":END

200 PRINT "AT LINE 200":END

300 PRINT "AT LINE 300":END

105



FILTER
Token: $FE $03

Format: FILTER sid [{, freq, lp, bp, hp, res}]

Usage: Sets the parameters for a SID sound filter.

sid 1: right SID, 2: left SID

freq filter cut off frequency (0 - 2047)

lp low pass filter (0: off, 1: on)

bp band pass filter (0: off, 1: on)

hp high pass filter (0: off, 1: on)

resonance resonance (0 - 15)

Remarks: Missing parameters keep their current value. The effective filter is the
sum of of all filter settings. This enables band reject and notch effects.

Example: Using FILTER

10 PLAY "T7X1O3P9C"

15 SLEEP 0.02

20 PRINT "LOW PASS SWEEP" :L=1:B=0:H=0:GOSUB 100

30 PRINT "BAND PASS SWEEP":L=0:B=1:H=0:GOSUB 100

40 PRINT "HIGH PASS SWEEP":L=0:B=0:H=1:GOSUB 100

50 GOTO 20

100 REM *** SWEEP ***

110 FOR F = 50 TO 1950 STEP 50

120 IF F >= 1000 THEN FF = 2000-F : ELSE FF = F

130 FILTER 1,FF,L,B,H,15

140 PLAY "X1"

150 SLEEP 0.02

160 NEXT F

170 RETURN

106



FIND
Token: $FE $2B

Format: FIND /string/ [, line range]
FIND ”string” [, line range]

Usage: FIND is an editor command that can only be used in direct mode. It
searches a given line range (if specified), otherwise the entire BASIC
program is searched. At each occurrence of the ”find string” the line is

listed with the string highlighted. NO
SCROLL can be used to pause the output.

Remarks: Any un-shifted character that is not part of the string can be used instead
of /.

However, using double quotes ” as a delimiter has a special effect: The
search text is not tokenised. FIND ”FOR” will search for the three letters
F, O, and R, not the BASIC keyword FOR. Therefore, it can find the word
FOR in string constants or REM statements, but not in program code.

On the other hand, FIND /FOR/ will find all occurrences of the BASIC
keyword, but not the text ”FOR” in strings.

Partial keywords cannot be searched. For example, FIND /LOO/ will not
find the keyword LOOP,

Example: Using FIND

107



FN
Token: $A5

Format: FN name(numeric expression)

Usage: FN functions are user-defined functions, that accept a numeric expres-
sion as an argument and return a real value. They must first be defined
with DEF FN before being used.

Example: Using FN

10 PD = ~ / 180

20 DEF FN CD(X)= COS(X*PD): REM COS FOR DEGREES

30 DEF FN SD(X)= SIN(X*PD): REM SIN FOR DEGREES

40 FOR D=0 TO 360 STEP 90

50 PRINT USING "###";D

60 PRINT USING " ##.##";FNCD(D);

70 PRINT USING " ##.##";FNSD(D)

80 NEXT D

RUN

0 1.00 0.00

90 0.00 1.00

180 -1.00 0.00

270 0.00 -1.00

360 1.00 0.00

108



FONT
Token: $FE $46

Format: FONT <A | B | C>

Usage: FONT is used to switch between fonts, and the code pages PETSCII, and
enhanced PETSCII. The enhanced PETSCII includes all ASCII symbols that
are missing in the PETSCII code page, although the order is still PETSCII.
The ASCII symbols are typed by pressing the keys in the table below, some

of which also require the holding down of the ` key. The codes for
uppercase and lowercase are swapped compared to ASCII. The upper-
case/graphics character set is not changed.

Code Key PETSCII ASCII
$5C Pound \ \ (backslash)
$5E Up Arrow (next to RESTORE) ^ ^ (caret)
$5F Left Arrow (next to 1) _ _ (underscore)
$7B MEGA + Colon ě { (open brace)
$7C MEGA + Dot Ĝ | (pipe)
$7D MEGA + Semicolon ĝ } (close brace)
$7E MEGA + Comma ~ ~ (tilde)

Remarks: The additional ASCII characters provided by FONT A and B are only avail-
able while using the lowercase/uppercase character set.

Examples: Using FONT

FONT A :REM ASCII - ENABLE {|}_~^
FONT B :REM LIKE A, WITH A SERIF FONT
FONT C :REM COMMODORE FONT (DEFAULT)

109



FOR
Token: $81

Format: FOR index = start TO end [STEP step] ... NEXT [index]

Usage: FOR statements start a BASIC loop with an index variable.

index may be incremented or decremented by a constant value on each
iteration. The default is to increment the variable by 1. The index variable
must be a real variable.

start is used to initialise the index.

end is checked at the end of an iteration, and determines whether an-
other iteration will be performed, or if the loop will exit.

step defines the change applied to to the index variable at the end of an
iteration. Positive step values increment it, while negative values decre-
ment it. It defaults to 1.0 if not specified.

Remarks: For positive increments end must be greater than or equal to start,
whereas for negative increments endmust be less than or equal to start.

It is bad programming practice to change the value of the index variable
inside the loop or to jump into or out of a loop body with GOTO.

Examples: Using FOR

10 FOR D=0 TO 360 STEP 30

20 R = D * ~ / 180

30 PRINT D;R;SIN(R);COS(R);TAN(R)

40 NEXT D

10 DIM M(20,20)

20 FOR I=0 TO 20

30 FOR J=I TO 20

40 M(I,J) = I + 100 * J

50 NEXT J,I

110



FOREGROUND
Token: $FE $39

Format: FOREGROUND colour

Usage: Sets the foreground colour (text colour) of the screen to the argument,
which must be in the range of 0 to 31. Refer to the table under BACK-
GROUND on page 23 for the colour values and their corresponding
colours.

Remarks: COLOR also has the ability to change the foreground colour.

Example: Using FOREGROUND

111



FORMAT
Token: $FE $37

Format: FORMAT diskname [,I id] [,D drive] [,U unit]

Usage: Used to format (or clear) a disk.

I The disk ID.

diskname is either a quoted string, e.g. "DATA" or a string expression in
brackets, e.g. (DN$). The maximum length of diskname is 16 characters.

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units such
as the 1541, 1571, or 1581.

unit device number on the IEC bus. Typically in the range from 8 to 11
for disk units. If a variable is used, it must be placed in brackets. The unit
# defaults to 8.

Remarks: FORMAT and HEADER are aliases and call the same routine.

For new floppy disks which have not already been formatted in MEGA65
(1581) format, it is necessary to specify the disk ID with the I parame-
ter. This switches the format command to low level format, which writes
sector IDs and erases all contents. This takes some time, as every block
on the floppy disk will be written.

If the I parameter is omitted, a quick format will be performed. This is
only possible if the disk has already been formatted as a MEGA65 or
1581 floppy disk. A quick format writes the new disk name and clears
the block allocation map, marking all blocks as free. The disk ID is not
changed, and blocks are not overwritten, so contents may be recovered
with ERASE R. You can read more about ERASE on page 99.

Examples: Using FORMAT

FORMAT "ADVENTURE",IDK : FORMAT DISK WITH NAME ADVENTURE AND ID DK

FORMAT "ZORK-I",U9 : FORMAT DISK IN UNIT 9 WITH NAME ZORK-I

FORMAT "DUNGEON",D1,U10: FORMAT DISK IN DRIVE 1 UNIT 10 WITH NAME DUNGEON

112



FRE
Token: $B8

Format: FRE(bank)

Usage: Returns the number of free bytes for banks 0 or 1, or the ROM version if
the argument is negative.

FRE(0) returns the number of free bytes in bank 0, which is used for BASIC
program source.

FRE(1) returns the number of free bytes in bank 1, which is the bank for
BASIC variables, arrays and strings. FRE(1) also triggers “garbage col-
lection”, which is a process that collects strings in use at the top of the
bank, thereby defragmenting string memory.

FRE(-1) returns the ROM version, a six-digit number of the form 92XXXX.

Example: Using FRE:

10 PM = FRE(0)

20 VM = FRE(1)

30 RV = FRE(-1)

40 PRINT PM;" FREE FOR PROGRAM"

50 PRINT VM;" FREE FOR VARIABLES"

60 PRINT RV;" ROM VERSION"

113



FREAD
Token: $FE $1C

Format: FREAD# channel, pointer, size

Usage: Reads size bytes from channel to memory starting at the 32-bit address
pointer.

channel number, which was given to a previous call to commands such
as DOPEN, or OPEN.

Care must be taken not to overwrite memory that is used by the system
or the interpreter.

It is recommended to use the POINTER statement for the pointer argu-
ment, and to compute the size parameter by multiplying the number of
elements with the item size.

Type Item Size
Byte Array 1
Integer Array 2
Real Array 5

Keep in mind that the POINTER function with a string argument does NOT
return the string address, but the string descriptor. It is not recommended
to use FREAD for strings or string arrays unless you are fully aware on how
to handle the string storage internals.

Also, ensure that you always specify an index if you use an array. The
start address of array XY() is POINTER(XY(0)). POINTER(XY) returns the address of
the scalar variable XY.

Example: Using FREAD:

100 N=23

110 DIM B&(N),C&(N)

120 DOPEN#2,"TEXT"

130 FREAD#2,POINTER(B&(0)),N

140 DCLOSE#2

150 FORI=0TON-1:PRINTCHR$(B&(I));:NEXT

160 FORI=0TON-1:C&(I)=B&(N-1-I):NEXT

170 DOPEN#2,"REVERS",W

180 FWRITE#2,POINTER(C&(0)),N

190 DCLOSE#2

114



FREEZER
Token: $FE $4A

Format: FREEZER

Usage: FREEZER calls the FREEZER program.

Remarks: Calling FREEZER via BASIC command is an alternative to the keypress of
RESTORE .

Examples: Using FREEZER

FREEZER :REM CALL FREEZER MENU

115



FWRITE
Token: $FE $1E

Format: FWRITE# channel, pointer, size

Usage: Writes size bytes to channel from memory starting at the 32-bit address
pointer.

channel number, which was given to a previous call to commands such
as APPEND, DOPEN, or OPEN.

It is recommended to use the POINTER statement for the pointer argu-
ment and compute the size parameter by multiplying the number of ele-
ments with the item size.

Refer to the FREAD item size table on page 114 for the item sizes.

Keep in mind that the POINTER function with a string argument does NOT
return the string address, but the string descriptor. It is not recommended
to use FWRITE for strings or string arrays unless you are fully aware on
how to handle the string storage internals.

Also, ensure that you always specify an index if you use an array. The
start address of array XY() is POINTER(XY(0)). POINTER(XY) returns the address of
the scalar variable XY.

Example: Using FWRITE:

100 N=23

110 DIM B&(N),C&(N)

120 DOPEN#2,"TEXT"

130 FREAD#2,POINTER(B&(0)),N

140 DCLOSE#2

150 FORI=0TON-1:PRINTCHR$(B&(I));:NEXT

160 FORI=0TON-1:C&(I)=B&(N-1-I):NEXT

170 DOPEN#2,"REVERS",W

180 FWRITE#2,POINTER(C&(0)),N

190 DCLOSE#2

116



GCOPY
Token: $FE $32

Format: GCOPY x, y, width, height

Usage: GCOPY is used on graphic screens and copies the content of the spec-
ified rectangle with upper left position x, y and the width and height to
the cut/copy/paste buffer.

The copied region can be inserted at any position with the command
PASTE.

Remarks: The size of the rectangle is limited by the 1K size of the cut/copy/paste
buffer. The memory requirement for a region is width * height * number
of bitplanes / 8. It must not equal or exceed 1024 byte. For a 4-bitplane
screen for example, a 45 x 45 region needs 1012.5 byte.

Example: Using GCOPY (see also CUT).

10 SCREEN 320,200,2

20 BOX 60,60,300,180,1 :REM DRAW A WHITE BOX

30 GCOPY 140,80,40,40 :REM COPY A 40 * 40 REGION

40 PASTE 10,10,40,40 :REM PASTE IT TO NEW POSITION

50 GETKEY A$ :REM WAIT FOR KEYPRESS

60 SCREEN CLOSE

117



GET
Token: $A1

Format: GET variable

Usage: Gets the next character (or byte value of the next character) from the
keyboard queue. If the variable being set to the character is of type string
and the queue is empty, an empty string is assigned to it, otherwise a one
character string is created and assigned instead. If the variable is of type
numeric, the byte value of the key is assigned to it, otherwise zero will be
assigned if the queue is empty. GET does not wait for keyboard input,
so it’s useful to check for key presses at regular intervals or in loops.

Remarks: GETKEY is similar, but waits until a key has been pressed.

Example: Using GET:

10 DO: GET A$: LOOP UNTIL A$ <> ""

40 IF A$ = "W" THEN 1000 :REM GO NORTH

50 IF A$ = "A" THEN 2000 :REM GO WEST

60 IF A$ = "S" THEN 3000 :REM GO EAST

70 IF A$ = "Z" THEN 4000 :REM GO SOUTH

80 IF A$ = CHR$(13) THEN 5000 :REM RETURN

90 GOTO 10

118



GET#
Token: $A1 ’#’

Format: GET# channel, variable [, variable …]

Usage: Reads a single byte from the channel argument and assigns single char-
acter strings to string variables, or an 8-bit binary value to numeric vari-
ables. This is useful for reading characters (or bytes) from an input stream
one byte at a time.

channel number, which was given to a previous call to commands such
as DOPEN, or OPEN.

Remarks: All values from 0 to 255 are valid, soGET can also be used to read binary
data.

Example: Using GET# to read a disk directory:

1 REM GET#

10 OPEN 2,8,0,"$" : REM OPEN CATALOG

15 IF DS THEN PRINT DS$: STOP: REM CANT READ

20 GET#2,D$,D$ : REM DISCARD LOAD ADDRESS

25 DO : REM LINE LOOP

30 GET#2,D$,D$ : REM DISCARD LINE LINK

35 IF ST THEN EXIT : REM END-OF-FILE

40 GET#2,LO,HI : REM FILE SIZE BYTES

45 S=LO + 256 * HI : REM FILE SIZE

50 LINE INPUT#2, F$ : REM FILE NAME

55 PRINT S;F$ : REM PRINT FILE ENTRY

60 LOOP

65 CLOSE 2

119



GETKEY
Token: $A1 $F9 (GET token and KEY token)

Format: GETKEY variable

Usage: Gets the next character (or byte value of the next character) from the
keyboard queue. If the queue is empty, the program will wait until a key
has been pressed. After a key has been pressed, the variable will be set
and program execution will continue. When used with a string variable, a
one character string is created and assigned. Otherwise if the variable
is of type numeric, the byte value is assigned.

Example: Using GETKEY:

10 GETKEY A$ :REM WAIT AND GET CHARACTER

40 IF A$ = "W" THEN 1000 :REM GO NORTH

50 IF A$ = "A" THEN 2000 :REM GO WEST

60 IF A$ = "S" THEN 3000 :REM GO EAST

70 IF A$ = "Z" THEN 4000 :REM GO SOUTH

80 IF A$ = CHR$(13) THEN 5000 :REM RETURN

90 GOTO 10

120



GO64
Token: $CB $36 $34 (GO token and 64 )

Format: GO64

Usage: Switches the MEGA65 to C64-compatible -mode. If you’re in direct
mode, a security prompt ARE YOU SURE? is displayed, which must be responded
with Y to continue. SYS58552 can be used to switch back to C65-mode.

Example: Using GO64:

GO64

ARE YOU SURE?

121



GOSUB
Token: $8D

Format: GOSUB line

Usage: GOSUB (GOto SUBroutine) continues program execution at the given
BASIC line number, saving the current BASIC program counter and line
number on the run-time stack. This enables the resumption of execution
after theGOSUB statement, once a RETURN statement in the called sub-
routine is executed. Calls to subroutines via GOSUB may be nested, but
the subroutines must always end with RETURN, otherwise a stack over-
flow may occur.

Remarks: Unlike other programming languages, BASIC 65 does not support argu-
ments or local variables for subroutines.
Programs can be optimised by grouping subroutines at the beginning of
the program source. The GOSUB calls will then have low line numbers
with fewer digits to decode. The subroutines will also be found faster,
since the search for subroutines often starts at the beginning of the pro-
gram.

Example: Using GOSUB:

10 GOTO 100 :REM TO MAIN PROGRAM

20 REM *** SUBROUTINE DISK STATUS CHECK ***

30 DD=DS:IF DD THEN PRINT "DISK ERROR";DS$

40 RETURN

50 REM *** SUBROUTINE PROMPT Y/N ***

60 DO:INPUT "CONTINUE (Y/N)";A$

70 LOOP UNTIL A$="Y" OR A$="N"

80 RETURN

90 REM *** MAIN PROGRAM ***

100 DOPEN#2,"BIG DATA"

110 GOSUB 30: IF DD THEN DCLOSE#2:GOSUB 60:REM ASK

120 IF A$="N" THEN STOP

130 GOTO 100: REM RETRY

122



GOTO
Token: $89 (GOTO) or $CB $A4 (GO TO)

Format: GOTO line
GO TO line

Usage: Continues program execution at the given BASIC line number.

Remarks: If the target line number is higher than the current line number, the search
starts from the current line, proceeding to higher line numbers. If the
target line number is lower, the search starts at the first line number of
the program. It is possible to optimise the run-time speed of the program
by grouping often used targets at the start (with lower line numbers).

GOTO (written as a single word) executes faster than GO TO.

Example: Using GOTO:

10 GOTO 100 :REM TO MAIN PROGRAM

20 REM *** SUBROUTINE DISK STATUS CHECK ***

30 DD=DS:IF DD THEN PRINT "DISK ERROR";DS$

40 RETURN

50 REM *** SUBROUTINE PROMPT Y/N ***

60 DO:INPUT "CONTINUE (Y/N)";A$

70 LOOP UNTIL A$="Y" OR A$="N"

80 RETURN

90 *** MAIN PROGRAM ***

100 DOPEN#2,"BIG DATA"

110 GOSUB 30: IF DD THEN DCLOSE#2:GOTO 60:REM ASK

120 IF A$="N" THEN STOP

130 GOTO 100: REM RETRY

123



GRAPHIC
Token: $DE

Format: GRAPHIC CLR

Usage: Initialises the BASIC graphic system. It clears the graphics memory and
screen, and sets all parameters of the graphics context to their default
values.

Once the graphics system has been cleared, commands such as LINE,
PALETTE, PEN, SCNCLR, and SCREEN can be used to set graphic system
parameters again.

Example: Using GRAPHIC:

100 REM GRAPHIC

110 GRAPHIC CLR : REM INITIALISE

120 SCREEN DEF 1,1,1,2 : REM 640 X 400 X 2

130 SCREEN OPEN 1 : REM OPEN IT

140 SCREEN SET 1,1 : REM VIEW IT

150 PALETTE 1,0,0, 0,0 : REM BLACK

160 PALETTE 1,1,0,15,0 : REM GREEN

170 SCNCLR 0 : REM FILL SCREEN WITH BLACK

180 PEN 0,1 : REM SELECT PEN

190 LINE 50,50,590,350 : REM DRAW LINE

200 GETKEY A$ : REM WAIT FOR KEYPRESS

210 SCREEN CLOSE 1 : REM CLOSE SCREEN AND RESTORE PALETTE

124



HEADER
Token: $F1

Format: HEADER diskname [,I id] [,D drive] [,U unit]

Usage: Used to format (or clear) a disk.

I The disk ID.

diskname is either a quoted string, e.g. "DATA" or a string expression in
brackets, e.g. (DN$). The maximum length of diskname is 16 characters.

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units such
as the 1541, 1571, or 1581.

unit device number on the IEC bus. Typically in the range from 8 to 11
for disk units. If a variable is used, it must be placed in brackets. The unit
# defaults to 8.

Remarks: FORMAT and HEADER are aliases and call the same routine.

For new floppy disks which have not already been formatted in MEGA65
(1581) format, it is necessary to specify the disk ID with the I parame-
ter. This switches the format command to low level format, which writes
sector IDs and erases all contents. This takes some time, as every block
on the floppy disk will be written.

If the I parameter is omitted, a quick format will be performed. This is
only possible if the disk has already been formatted as a MEGA65 or
1581 floppy disk. A quick format writes the new disk name and clears
the block allocation map, marking all blocks as free. The disk ID is not
changed, and blocks are not overwritten, so contents may be recovered
with ERASE R. You can read more about ERASE on page 99.

Examples: Using HEADER

HEADER "ADVENTURE",IDK : FORMAT DISK WITH NAME ADVENTURE AND ID DK

HEADER "ZORK-I",U9 : FORMAT DISK IN UNIT 9 WITH NAME ZORK-I

HEADER "DUNGEON",D1,U10: FORMAT DISK IN DRIVE 1 UNIT 10 WITH NAME DUNGEON

125



HELP
Token: $EA

Format: HELP

Usage: When the BASIC program stops due to an error, HELP can be used to
gain further information. The interpreted line is listed, with the erroneous
statement highlighted or underlined.

Remarks: Displays BASIC errors. For errors related to disk I/O, the disk status vari-
able DS or the disk status string DS$ should be used instead.

Example: Using HELP

10 A=1.E20

20 B=A+A:C=EXP(A):PRINT A,B,C

RUN

?OVERFLOW ERROR IN 20

READY.

HELP

20 B=A+A:ţŝťŸŰňšŉ:PRINT A,B,C

126



HEX$
Token: $D2

Format: HEX$(numeric expression)

Usage: Returns a four character hexadecimal representation of the argument.
The argument must be in the range of 0-65535, corresponding to the
hex numbers $0000-$FFFF.

Remarks: If real numbers are used as arguments, the fractional part will be ignored.
In other words, real numbers will not be rounded.

Example: Using HEX$:

PRINT HEX$(10),HEX$(100),HEX$(1000.9)

000A 0064 03E8

127



HIGHLIGHT
Token: $FE $3D

Format: HIGHLIGHT colour [, mode]

Usage: Sets the colours used for highlighting. Different colours can be set for
system messages, REM statements and BASIC 65 keywords.

colour is one of the first 16 colours in the current palette. Refer to page
23 for the colours in the default palette.

mode indicates what the colour will be used for.

• 0 system messages (the default mode)

• 1 REM statements

• 2 BASIC keywords

Remarks: The system messages colour is used when displaying error messages, and
in the output of CHANGE, FIND, and HELP. The colours for REM state-
ments and BASIC keywords are used by LIST.

Example: Using HIGHLIGHT to change the color of BASIC keywords to red.

128



IF
Token: $8B

Format: IF expression THEN true clause [ELSE false clause]

Usage: Starts a conditional execution statement.

expression a logical or numeric expression. A numeric expression is
evaluated as FALSE if the value is zero and TRUE for any non-zero value.

true clause one or more statements starting directly after THEN on the
same line. A line number after THEN performs a GOTO to that line in-
stead.

false clause one or more statements starting directly after ELSE on the
same line. A linenumber after ELSE performs aGOTO to that line instead.

Remarks: The standard IF ... THEN ... ELSE structure is restricted to a single line.
But the true clause and false clause may be expanded to several lines
using a compound statement surrounded with BEGIN and BEND.

Example: Using IF

1 REM IF

10 RED$=CHR$(28) : BLACK$=CHR$(144) : WHITE$=CHR$(5)

20 INPUT "ENTER A NUMBER";V

30 IF V<0 THEN PRINT RED$; : ELSE PRINT BLACK$;

40 PRINT V : REM PRINT NEGATIVE NUMBERS IN RED

50 PRINT WHITE$

60 INPUT "END PROGRAM: (Y/N)"; A$

70 IF A$="Y" THEN END

80 IF A$="N" THEN 20 : ELSE 60

129



IMPORT
Token: $DD

Format: IMPORT filename [,D drive] [,U unit]

Usage: The IMPORT command loads a BASIC program in text format and type
SEQ into memory reserved for BASIC programs.

filename is either a quoted string such as "DATA", or a string expression in
brackets such as (FI$).

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units such
as the 1541, 1571, or 1581.

unit device number on the IEC bus. Typically in the range from 8 to 11
for disk units. If a variable is used, it must be placed in brackets. The unit
# defaults to 8.

Remarks: The program is loaded into BASIC memory and converted from text to
the tokenised form of PRG files. This enables loading of BASIC programs
that were saved as plain text files as program listing. After loading, the
program is re-linked and ready to be RUN or edited. It is possible to use
IMPORT for merging a program text file from disk to a program already
in memory. Each line read from the file is processed in the same way, as
if typed from the user with the screen editor.

There is no EXPORT counterpart, because this function is already avail-
able. The sequence DOPEN#1,"LISTING",W:CMD 1:LIST:DCLOSE#1 converts the program
in memory to text and writes it to the file, that is named in the DOPEN
statement.

Examples: Using IMPORT

IMPORT "APOCALYPSE"

IMPORT "MEGA TOOLS",U9

IMPORT (FI$),U(UN%)

130



INPUT
Token: $85

Format: INPUT [prompt <, | ;>] variable [, variable ...]

Usage: Prints an optional prompt string and question mark to the screen, flashes
the cursor and waits for user input from the keyboard.

prompt optional string expression to be printed as the prompt. If the
separator between prompt and variable list is a comma, the cursor
is placed directly after the prompt. If the separator is a semicolon, a
question mark and a space is added to the prompt instead.

variable list list of one or more variables that receive the input.

The input will be processed after the user presses RETURN .

Remarks: The user must take care to enter the correct type of input, so it matches
the variable list types. Also, the number of input items must match the
number of variables. A surplus of input items will be ignored, whereas
too few input items trigger another request for input with the prompt ??.
Typing non numeric characters for integer or real variables will produce a
TYPE MISMATCH ERROR. Strings for string variables must be in double quotes (”) if
they contain spaces or commas. Many programs that need a safe input
routine use LINE INPUT and a custom parser, in order to avoid program
errors by wrong user input.

Example: Using INPUT:

10 DIM N$(100),A%(100),S$(100):

20 DO

30 INPUT "NAME, AGE, GENDER";NA$,AG%,SE$

40 IF NA$="" THEN 30

50 IF NA$="END" THEN EXIT

60 IF AG% < 18 OR AG% > 100 THEN PRINT "AGE?":GOTO 30

70 IF SE$ <> "M" AND SE$ <> "F" THEN PRINT "GENDER?":GOTO 30

80 REM CHECK OK: ENTER INTO ARRAY

90 N$(N)=NA$:A%(N)=AG%:S$(N)=SE$:N=N+1

100 LOOP UNTIL N=100

110 PRINT "RECEIVED";N;" NAMES"

131



INPUT#
Token: $84

Format: INPUT# channel, variable [, variable ...]

Usage: Reads a record from an input device, e.g. a disk file and assigns the data
to the variables in the list.

channel number, which was given to a previous call to commands such
as DOPEN, or OPEN.

variable list list of one or more variables, that receive the input.

The input record must be terminated by a RETURN character and must
be not longer than the input buffer (160 characters).

Remarks: The type and number of data in a record must match the variable list.
Reading non numeric characters for integer or real variables will produce
a FILE DATA ERROR. Strings for string variables have to be put in quotes if they
contain spaces or commas.
LINE INPUT# may be used to read a whole record into a single string
variable.

Sequential files, that can be read by INPUT# can be generated by pro-
grams with PRINT# or with the editor of the MEGA65. For example:

EDIT ON

10 "CHUCK PEDDLE",1937,"ENGINEER OF THE 6502"

20 "JACK TRAMIEL",1928,"FOUNDER OF CBM"

30 "BILL MENSCH",1945,"HARDWARE"

DSAVE "CBM-PEOPLE"

EDIT OFF

Example: Using INPUT#:

132



10 DIM N$(100),B%(100),S$(100):

20 DOPEN#2,"CBM-PEOPLE":REM OPEN SEQ FILE

25 IF DS THEN PRINT DS$:STOP:REM OPEN ERROR

30 FOR I=0 TO 100

40 INPUT#2,N$(I),B%(I),S$(I)

50 IF ST AND 64 THEN 80:REM END OF FILE

60 IF DS THEN PRINT DS$:GOTO 80:REM DISK ERROR

70 NEXT I

80 DCLOSE#2

110 PRINT "READ";I;" RECORDS"

120 FOR J=0 TO I:PRINT N$(I):NEXT J

RUN

CHUCK PEDDLE

JACK TRAMIEL

BILL MENSCH

TYPE "CBM-PEOPLE"

"CHUCK PEDDLE",1937,"ENGINEER OF THE 6502"

"JACK TRAMIEL",1928,"FOUNDER OF CBM"

"BILL MENSCH",1945,"HARDWARE"

133



INSTR
Token: $D4

Format: INSTR(haystack, needle [, start])

Usage: Locates the position of the string expression needle in the string expres-
sion haystack, and returns the index of the first occurrence, or zero if
there is no match.

The string expression haystack is searched for the occurrence of the
string expression needle.

An enhanced version of string search using pattern matching is used if
the first character of the search string is a pound sign ’£’. The pound sign
is not part of the search but enables the use of the ’.’ (dot) as a wildcard
character, which matches any character. The second special pattern
character is the ’*’ (asterisk) character. The asterisk in the search string
indicates that the preceding character may never appear, appear once,
or repeatedly in order to be considered as a match.

The optional argument start is an integer expression, which defines the
starting position for the search in haystack. If not present, it defaults to
one.

Remarks: If either string is empty or there is no match the function returns zero.

Examples: Using INSTR:

I = INSTR("ABCDEF","CD") : REM I = 3

I = INSTR("ABCDEF","XY") : REM I = 0

I = INSTR("RAIIIN","\A*IN") : REM I = 5

I = INSTR("ABCDEF","\C.E") : REM I = 3

I = INSTR(A$+B$,C$)

134



INT
Token: $B5

Format: INT(numeric expression)

Usage: Returns the integer part of the argument. This function is NOT limited
to the typical 16-bit integer range (-32768 to 32767), as it uses real
arithmetic. The allowed range is therefore determined by the size of the
real mantissa which is 32-bits wide (-2147483648 to 2147483647).

Remarks: It is not necessary to use the INT function for assigning real values to
integer variables, as this conversion will be done implicitly, but only for
the 16-bit range.

Examples: Using INT:

X = INT(1.9) :REM X = 1

X = INT(-3.1) :REM X = -3

X = INT(100000.5) :REM X = 100000

N% = INT(100000.5) :REM ?ILLEGAL QUANTITY ERROR

135



JOY
Token: $CF

Format: JOY(port)

Usage: Returns the state of the joystick for the selected controller port (1 or 2).
Bit 7 contains the state of the fire button. The stick can be moved in eight
directions, which are numbered clockwise starting at the upper position.

Left Centre Right
Up 8 1 2

Centre 7 0 3
Down 6 5 4

Example: Using JOY:

10 N = JOY(1)

20 IF N AND 128 THEN PRINT "FIRE! ";

30 REM N NE E SE S SW W NW

40 ON N AND 15 GOSUB 100,200,300,400,500,600,700,800

50 GOTO 10

100 PRINT "GO NORTH" :RETURN

200 PRINT "GO NORTHEAST":RETURN

300 PRINT "GO EAST" :RETURN

400 PRINT "GO SOUTHEAST":RETURN

500 PRINT "GO SOUTH" :RETURN

600 PRINT "GO SOUTHWEST":RETURN

700 PRINT "GO WEST" :RETURN

800 PRINT "GO NORTHWEST":RETURN

136



KEY
Token: $F9

Format: KEY
KEY <ON | OFF>
KEY <LOAD | SAVE> filename
KEY number, string

Usage: Reads the state of the function keys. The function keys can either send
their key code when pressed, or a string assigned to the key. After power
up or reset this feature is activated and the keys have their default as-
signments.

KEY list current assignments.

KEYON switch on function key strings. The keys will send assigned strings
if pressed.

KEYOFF switch off function key strings. The keys will send their character
code if pressed.

KEY LOAD loads key definitions from file.

KEY SAVE saves key definitions to file.

KEY number, string assigns the string to the key with the given number.

Default assignments:

137



KEY

KEY 1,CHR$(27)+"X"

KEY 2,CHR$(27)+"@"

KEY 3,"DIR"+CHR$(13)

KEY 4,"DIR "+CHR$(34)+"*=PRG"+CHR$(34)+CHR$(13)

KEY 5,"ŵ"

KEY 6,"KEY6"+CHR$(141)

KEY 7,"ŷ"

KEY 8,"MONITOR"+CHR$(13)

KEY 9,"Ű"

KEY 10,"KEY10"+CHR$(141)

KEY 11,"Ŷ"

KEY 12,"KEY12"+CHR$(141)

KEY 13,CHR$(27)+"O"

KEY 14,"Ŵ"+CHR$(27)+"O"

KEY 15,"HELP"+CHR$(13)

KEY 16,"RUN "+CHR$(34)+"*"+CHR$(34)+CHR$(13)

Remarks: The sum of the lengths of all assigned strings must not exceed 240 char-
acters. Special characters such as RETURN or QUOTE are entered using
their codes with the CHR$ function. Refer to CHR$ on page 45 for more
information.

Examples: Using KEY:

KEY ON :REM ENABLE FUNCTION KEYS

KEY OFF :REM DISABLE FUNCTION KEYS

KEY :REM LIST ASSIGNMENTS

KEY 2,"PRINT ~"+CHR$(14) :REM ASSIGN PRINT PI TO F2

KEY SAVE "MY KEY SET" :REM SAVE CURRENT DEFINITIONS TO FILE

KEY LOAD "ELEVEN-SET" :REM LOAD DEFINITIONS FROM FILE

138



LEFT$
Token: $C8

Format: LEFT$(string, n)

Usage: Returns a string containing the first n characters from the argument
string. If the length of string is equal to or less than n, the resulting
string will be identical to the argument string.

string a string expression.

n a numeric expression (0-255).

Remarks: Empty strings and zero length strings are legal values.

Example: Using LEFT$:

PRINT LEFT$("MEGA-65",4)

MEGA

139



LEN
Token: $C3

Format: LEN(string)

Usage: Returns the length of a string.

string a string expression.

Remarks: There is no terminating character, as opposed to other programming lan-
guages such as C, which uses the NULL character. The length of the string
is internally stored in an extra byte of the string descriptor.

Example: Using LEN:

PRINT LEN("MEGA-65"+CHR$(13))

8

140



LET
Token: $88

Format: [LET] variable = expression

Usage: Assigns values (or results of expressions) to variables.

Remarks: The LET statement is obsolete and not required. Assignment to variables
can be done without using LET, but it has been left in BASIC 65 for back-
wards compatibility.

Examples: Using LET:

LET A=5 :REM LONGER AND SLOWER

A=5 :REM SHORTER AND FASTER

141



LINE
Token: $E5

Format: LINE xbeg, ybeg [, xnext1, ynext1 ...]

Usage: Draws a pixel at (xbeg/ybeg), if only one coordinate pair is given.

If more than one pair is defined, a line is drawn on the current graphics
screen from the coordinate (xbeg/ybeg) to the next coordinate pair(s).

All currently defined modes and values of the graphics context are used.

Example: Using LINE:

1 REM SCREEN EXAMPLE 1

10 SCREEN 320,200,2 :REM SCREEN #0 320 X 200 X 2

20 PEN 1 :REM DRAWING PEN COLOR 1 (WHITE)

30 LINE 25,25,295,175 :REM DRAW LINE

40 GETKEY A$ :REM WAIT FOR KEYPRESS

50 SCREEN CLOSE :REM CLOSE SCREEN AND RESTORE PALETTE

142



LINE INPUT#
Token: $E5 $84

Format: LINE INPUT# channel, variable [, variable ...]

Usage: Reads one record per variable from an input device, (such as a disk drive)
and assigns the read data to the variable. The records must be termi-
nated by a RETURN character, which will not be copied to the string vari-
able. Therefore, an empty line consisting of only the RETURN character
will result in an empty string being assigned.

channel number, which was given to a previous call to commands such
as DOPEN, or OPEN.

variable list list of one or more variables, that receive the input.

Remarks: Only string variables or string array elements can be used in the variable
list. Unlike other INPUT commands, LINE INPUT# does not interpret or
remove quote characters in the input. They are accepted as data, as all
other characters.

Records must not be longer than the input buffer, which is 160 charac-
ters.

Example: Using LINE INPUT#:

10 DIM N$(100)

20 DOPEN#2,"DATA"

30 FOR I=0 TO 100

40 LINE INPUT#2,N$(I)

50 IF ST=64 THEN 80:REM END OF FILE

60 IF DS THEN PRINT DS$:GOTO 80:REM DISK ERROR

70 NEXT I

80 DCLOSE#2

110 PRINT "READ";I;" RECORDS"

143



LIST
Token: $9B

Format: LIST [P] [line range]

Usage: Used to list a range of lines from the BASIC program.

line range consists of the first and/or last line to list, or a single line
number. If the first number is omitted, the first BASIC line is assumed. If
the second number is omitted, the last BASIC line is assumed.

Format: LIST [P] filename [,U unit]

Usage: Used to list a BASIC program directly from unit, which by default is 8.

Remarks: The optional parameter P enables page mode. After listing 24 lines, the
listing will stop and display the prompt [MORE] at the bottom of the screen.
Pressing Q quits page mode, while any other key triggers the listing of
the next page.

LIST output can be redirected to other devices via CMD.

The keys F9 and F11 , or Ctrl P and Ctrl V scroll a BASIC
listing on screen up or down.

Examples: Using LIST

LIST 100 :REM LIST LINE 100

LIST 240-350 :REM LIST ALL LINES FROM 240 TO 350

LIST 500- :REM LIST FROM 500 TO END

LIST -70 :REM LIST FROM START TO 70

LIST "DEMO" :REM LIST FILE "DEMO"

LIST P :REM LIST PROGRAM IN PAGE MODE

LIST P "MURX" :REM LIST FILE "MURX" IN PAGE MODE

144



LOAD
Token: $93

Format: LOAD filename [, unit [, flag]]
LOAD ”$[pattern=type]” [, unit]
LOAD ”$$[pattern=type]” [, unit]
/ filename [, unit [, flag]]

Usage: The first form loads a file of type PRG into memory reserved for BASIC
programs.

The second form loads a directory into memory, which can then be
viewed with LIST or LISTP. It is structured like a BASIC program, but file
sizes are displayed instead of line numbers.

The third form is similar to the second one, but the files are numbered.
This listing can be scrolled like a BASIC program with the keys F9 or
F11 , edited, listed, saved or printed.

A filter can be applied by specifying a pattern or a pattern and a type.
The asterisk matches the rest of the name, while the ? matches any
single character. The type specifier can be a character of (P,S,U,R), that
is Program, Sequential, User, or Relative file.

A common use of the shortcut symbol / is to quickly load PRG files. To do
this:

1. Print a disk directory using either DIR, or CATALOG.

2. Move the cursor to the desired line.

3. type / in the first column of the line, and press RETURN .

After pressing RETURN , the listed file on the line with the leading / will be
loaded. Characters before and after the file name double quotes (”) will
be ignored. This applies to PRG files only.

filename is either a quoted string, e.g. "PROG", or a string expression.

The unit number is optional. If not present, the default disk device is
assumed.

If flag has a non-zero value, the file is loaded to the address which is
read from the first two bytes of the file. Otherwise, it is loaded to the
start of BASIC memory and the load address in the file is ignored.

145



Remarks: LOAD loads files of type PRG into RAM bank 0, which is also used for
BASIC program source.

LOAD ”*” can be used to load the first PRG from the given unit.

LOAD ”$” can be be used to load the list of files from the given unit.
When using LOAD ”$”, LIST can be used to print the listing to screen.

LOAD is implemented in BASIC 65 to keep it backwards compatible with
BASIC V2.

The shortcut symbol / can only be used in direct mode.

By default the C64 uses unit 1, which is assigned to datasette tape
recorders connected to the cassette port. However the MEGA65 uses
unit 8 by default, which is assigned to the internal disk drive. This means
you don’t need to add ,8 to LOAD commands that use it.

Examples: Using LOAD

LOAD "APOCALYPSE" :REM LOAD A FILE CALLED APOCALYPSE TO BASIC MEMORY

LOAD "MEGA TOOLS",9 :REM LOAD A FILE CALLED "MEGA TOOLS" FROM UNIT 9 TO BASIC MEMORY

LOAD "*",8,1 :LOAD THE FIRST FILE ON UNIT 8 TO RAM AS SPECIFIED IN THE FILE

LOAD "$" :REM LOAD WHOLE DIRECTORY - WITH FILE SIZES

LOAD "$$" :REM LOAD WHOLE DIRECTORY - SCROLLABLE

LOAD "$$X*=P" :REM DIRECTORY, WITH PRG FILES STARTING with 'X'

146



LOADIFF
Token: $FE $43

Format: LOADIFF filename [,D drive] [,U unit]

Usage: Loads an IFF file into graphics memory. The IFF (Interchange File For-
mat) is supported by many different applications and operating systems.
LOADIFF assumes that files contain bitplane graphics which fit into the
MEGA65 graphics memory. Supported resolutions are:

Width Height Bitplanes Colours Memory
320 200 max. 8 max. 256 max. 64 K
640 200 max. 8 max. 256 max. 128 K
320 400 max. 8 max. 256 max. 128 K
640 400 max. 4 max. 16 max. 128 K

filename is either a quoted string such as "DATA", or a string expression in
brackets such as (FI$).

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units such
as the 1541, 1571, or 1581.

unit device number on the IEC bus. Typically in the range from 8 to 11
for disk units. If a variable is used, it must be placed in brackets. The unit
# defaults to 8.

Remarks: Tools are available to convert popular image formats to IFF. These tools
are available on several operating systems, such as AMIGA OS, macOS,
Linux, and Windows. For example, ImageMagick is a free graphics
package that includes a tool called convert, which can be used to cre-
ate IFF files in conjunction with the ppmtoilbm tool from the Netbpm
package.

To use convert and ppmtoilbm for converting a JPG file to an IFF file on
Linux:

convert <myImage.jpg> <myImage.ppm>
ppmtoilbm -aga <myImage.ppm> > <myImage.iff>

Example: Using LOADIFF

147



100 BANK128:SCNCLR

110 REM DISPLAY PICTURES IN 320 X 200 X 7 RESOLUTION

120 GRAPHIC CLR:SCREEN DEF 0,0,0,7:SCREEN OPEN 0:SCREEN SET 0,0

130 FORI=1TO7: READF$

140 LOADIFF(F$+".IFF"):SLEEP 4:NEXT

150 DATA ALIEN,BEAKER,JOKER,PICARD,PULP,TROOPER,RIPLEY

160 SCREEN CLOSE 0

170 PALETTE RESTORE

148



LOCK
Token: $FE $50

Format: LOCK filename/pattern [,D drive] [,U unit]

Usage: Used to lock files. The specified file or a set of files, that matches the
pattern, is locked and cannot be deleted with the commands DELETE,
ERASE or SCRATCH.

The command UNLOCK removes the lock.

filename is either a quoted string such as "DATA", or a string expression in
brackets such as (FI$).

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units such
as the 1541, 1571, or 1581.

unit device number on the IEC bus. Typically in the range from 8 to 11
for disk units. If a variable is used, it must be placed in brackets. The unit
# defaults to 8.

Remarks: In direct mode the number of locked files is printed. The second to last
number from the message contains the number of locked files,

Examples: Using LOCK

LOCK "DRM",U9 :REM LOCK FILE DRM ON UNIT 9

03,FILES LOCKED,01,00

LOCK "BS*" :REM LOCK ALL FILES BEGINNING WITH "BS"

03,FILES LOCKED,04,00

149



LOG
Token: $BC

Format: LOG(numeric expression)

Usage: Computes the value of the natural logarithm of the argument. The natural
logarithm uses Euler’s number (2.71828183) as base, not 10 which is
typically used in log functions on a pocket calculator.

Remarks: The log function with base 10 can be computed by dividing the result by
log(10).

Example: Using LOG

PRINT LOG(1)

0

PRINT LOG(0)

?ILLEGAL QUANTITY ERROR

PRINT LOG(4)

1.38629436

PRINT LOG(100) / LOG(10)

2

150



LOG10
Token: $CE $08

Format: LOG10(numeric expression)

Usage: Computes the value of the decimal logarithm of the argument. The dec-
imal logarithm uses 10 as base.

Example: Using LOG10

PRINT LOG10(1)

0

PRINT LOG10(0)

?ILLEGAL QUANTITY ERROR

PRINT LOG10(5)

0.69897

PRINT LOG10(100);LOG10(10);LOG10(1);LOG10(0.1);LOG10(0.01)

2 1 0 -1 -2

151



LOOP
Token: $EC

Format: DO ... LOOP
DO [<UNTIL | WHILE> logical expression]
. . . statements [EXIT]
LOOP [<UNTIL | WHILE> logical expression]

Usage: DO and LOOP define the start of a BASIC loop. Using DO and LOOP
alone without any modifiers creates an infinite loop, which can only be
exited by the EXIT statement. The loop can be controlled by adding
UNTIL or WHILE after the DO or LOOP.

Remarks: DO loops may be nested. An EXIT statement only exits the current loop.

Examples: Using DO and LOOP

10 PW$="":DO

20 GET A$:PW$=PW$+A$

30 LOOP UNTIL LEN(PW$)>7 OR A$=CHR$(13)

10 DO : REM WAIT FOR USER DECISION

20 GET A$

30 LOOP UNTIL A$="Y" OR A$="N" OR A$="y" OR A$="n"

10 DO WHILE ABS(EPS) > 0.001

20 GOSUB 2000 : REM ITERATION SUBROUTINE

30 LOOP

10 I%=0 : REM INTEGER LOOP 1-100

20 DO I%=I%+1

30 LOOP WHILE I% < 101

152



LPEN
Token: $CE $04

Format: LPEN(coordinate)

Usage: This function requires the use of a CRT monitor (or TV), and a light pen. It
will not work with an LCD or LED screen. The light pen must be connected
to port 1.

LPEN(0) returns the X position of the light pen, the range is 60-320.

LPEN(1) returns the Y position of the light pen, the range is 50-250.

Remarks: The X resolution is two pixels, therefore LPEN(0) only returns even num-
bers. A bright background colour is needed to trigger the light pen. The
COLLISION statement may be used to enable an interrupt handler.

Example: Using LPEN

PRINT LPEN(0),LPEN(1) :REM PRINT LIGHT PEN COORDINATES

153



MEM
Token: $FE $23

Format: MEM mask4,mask5

Usage: mask4 and mask5 are byte values, that are interpreted as mask of 8
bits. Each bit set to 1 reserves an 8K segment of memory in bank 4 for
the first argument and in bank 5 for the second argument..

bit memory segment
0 $0000 - $1FFF
1 $2000 - $3FFF
2 $4000 - $5FFF
3 $6000 - $7FFF
4 $8000 - $9FFF
5 $A000 - $BFFF
6 $C000 - $DFFF
7 $E000 - $FFFF

Remarks: After reserving memory with MEM the graphics library will not use the
reserved areas, so it can be used for other purposes. Access to bank 4
and 5 is possible with the commands PEEK, PEEKW, POKE, POKEW and
EDMA.

If a graphics screen cannot be opened, because the remaining memory
is not sufficient, the program stops with a ?OUT OF MEMORY ERROR.

Example: Using MEM

10 MEM 1,3 :REM RESERVE $40000 - $41FFF AND $50000 - $53FFF

20 SCREEN 320,200 :REM SCREEN WILL NOT USE RESERVED SEGMENTS

40 EDMA 3,$2000,0,$4000:REM FILL SEGMENT WITH ZEROES

154



MERGE
Token: $E6

Format: MERGE filename [,D drive] [,U unit]

Usage: MERGE loads a BASIC program file from disk and appends it to the pro-
gram in memory.

filename is either a quoted string such as "DATA", or a string expression in
brackets such as (FI$).

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units such
as the 1541, 1571, or 1581.

unit device number on the IEC bus. Typically in the range from 8 to 11
for disk units. If a variable is used, it must be placed in brackets. The unit
# defaults to 8.

Remarks: The load address, which is stored in the first two bytes of the file is
ignored. The loaded program does not replace a program in memory
(which is what DLOAD does), but is appended to a program in memory.
After loading, the program is re-linked and ready to run or edit.

It is the user’s responsibility to ensure that there are no line number con-
flicts among the program in memory and the merged program. The first
line number of the merged program must be greater than the last line
number of the program in memory.

Example: Using MERGE

DLOAD "MAIN PROGRAM"

MERGE "LIBRARY"

155



MID$
Token: $CA

Format: MID$(string, index, n)
MID$(string, index, n) = string expression

Usage: MID$ can be used either as a function which returns a string, or as a
statement for inserting sub-strings into an existing string.

string a string expression.

index start index (0-255).

n length of sub-string (0-255).

Remarks: Empty strings and zero lengths are legal values.

Example: Using MID$:

10 A$ = "MEGA-65"

20 PRINT MID$(A$,3,4)

30 MID$(A$,5,1) = "+"

40 PRINT A$

RUN

GA-6

MEGA+65

156



MKDIR
Token: $FE $51

Format: MKDIR dirname ,L size [,U unit]

Usage: Make (create) a subdirectory on a floppy or D81 disk image.

filename is either a quoted string such as "DATA", or a string expression in
brackets such as (FI$).

MKDIR can only be used on units, managed by CBDOS. These are the in-
ternal floppy disk drive and SD-Card images of D81 type. The command
cannot be used on external drives connected to the serial IEC bus.

The size parameter specifies the number of tracks, to be reserved for the
subdirectory, with one track = 40 sectors at 256 byte. The first track of
the reserved range is used as directory track for the subdirectory.

The minimum size is 3 tracks, the maximm 38 tracks. There must be a
contiguous region of empty tracks on the floppy (D81 image), that is
large enough for the creation of the subdirectory. The error message
DISK FULL is reported, if there isn’t such a region.

Several subdirectories may be created as long as there are enough
empty tracks.

After successful creation of the subdirectory an automatic CHDIR into
this subdirectory is performed.

CHDIR ”/” changes back to the root directory.

Examples: Using MKDIR

MKDIR "SUBDIR",L5 :REM MAKE SUBDIRECTORY WITH 5 TRACKS

DIR

0 "SUBDIR " 1D

160 BLOCKS FREE.

157



MOD
Token: $NN

Format: MOD(dividend, divisor)

Usage: The MOD function returns the remainder of the division.

Remarks: In other programming languages such as C, this function is implemented
as an operator (%). In BASIC 65 it is implemented as a function.

Example: Using MOD:

FOR I = 0 TO 8: PRINT MOD(I,4);: NEXT I

0 1 2 3 0 1 2 3 0

158



MONITOR
Token: $FA

Format: MONITOR

Usage: Calls the machine language monitor program, which is mainly used for
debugging.

Remarks: Using the MONITOR requires knowledge of the CSG4510 / 6502 /
6510 CPU, the assembly language they use, and their architectures.
More information on the MONITOR is available in the MEGA65 Book,
Enhanced Machine Language Monitor (section K).

To exit the monitor press X.

Help text can be displayed with either ? or H.

Example: Using MONITOR

MONITOR

159



MOUNT
Token: $FE $49

Format: MOUNT filename [,U unit]

Usage: Mount a floppy image file of type D81 from SD-Card to unit 8 (default)
or unit 9.

If no argument is given, MOUNT assigns the real floppy drive of the
MEGA65 to unit 8.

filename is either a quoted string such as "DATA", or a string expression in
brackets such as (FI$).

unit device number on the IEC bus. Typically in the range from 8 to 11
for disk units. If a variable is used, it must be placed in brackets. The unit
# defaults to 8.

Remarks: MOUNT can be used either in direct mode or in a program. It searches
the file on the SD-card and mounts it, as requested, on unit 8 or 9. After
mounting the floppy image can be used as usual with all DOS commands.

Examples: Using MOUNT

MOUNT "APOCALYPSE.D81" ;REM MOUNT IMAGE TO UNIT 8

MOUNT "BASIC.D81",U9 :REM MOUNT IMAGE TO UNIT 9

MOUNT (FI$),U(UN%) :REM MOUNT WITH VARIABLE ARGUMENTS

MOUNT :REM SELECT REAL FLOPPY DRIVE

160



MOUSE
Token: $FE $3E

Format: MOUSE ON [{, port, sprite, pos}]
MOUSE OFF

Usage: Enables the mouse driver and connects the mouse at the specified port
with the mouse pointer sprite.

port mouse port 1, 2 (default) or 3 (both).

sprite sprite number for mouse pointer (default 0).

pos initial mouse position (x,y).

MOUSE OFF disables the mouse driver and frees the associated sprite.

Remarks: The ”hot spot” of the mouse pointer is the upper left pixel of the sprite.

Examples: Using MOUSE:

REM LOAD DATA INTO SPRITE #0 BEFORE USING IT

MOUSE ON, 1 :REM ENABLE MOUSE WITH SPRITE #0

MOUSE OFF :REM DISABLE MOUSE

161



MOVSPR
Token: $FE $06

Format: MOVSPR number, position

Usage: Moves a sprite on screen. Each position argument consists of two 16-
bit values, which specify either an absolute coordinate, a relative coor-
dinate, an angle, or a speed. The value type is determined by a prefix:

• +value relative coordinate: positive offset.

• -value relative coordinate: negative offset.

• #value speed.

If no prefix is given, the absolute coordinate or angle is used.

Therefore, the position argument can be used to either:

• set the sprite to an absolute position on screen.

• specify a displacement relative from the current position.

• trigger a relative movement from a specified position.

• describe movement with an angle and speed starting from the cur-
rent position.

MOVSPR number, position is used to set the sprite immediately to the
position or, in the case of an angle#speed argument, describe its further
movement.

Format: MOVSPR number, start-position TO end-position, speed

Usage: Places the sprite at the start position, defines the destination position,
and the speed of movement. The sprite is placed at the start position,
and will move in a straight line to the destination at the given speed.
Coordinates must be absolute or relative. The movement is controlled by
the BASIC interrupt handler and happens concurrently with the program
execution.

number sprite number (0-7).

position x,y | xrel,y | x,yrel | xrel,yrel | angle#speed.

x absolute screen coordinate pixel.

y absolute screen coordinate pixel.

xrel relative screen coordinate pixel.

162



yrel relative screen coordinate pixel.

angle compass direction for sprite movement [degrees]. 0: up, 90:
right, 180: down, 270: left, 45 upper right, etc.

speed speed of movement, configured as a floating point number in the
range of 0.0-127.0, in pixels per frame. PAL has 50 frames per second
whereas NTSC has 60 frames per second. A speed value of 1.0 will move
the sprite 50 pixels per second in PAL mode.

Remarks: The ”hot spot” is the upper left pixel of the sprite.

Example: Using MOVSPR:

100 CLR:SCNCLR:SPRITECLR

110 BLOAD "DEMOSPRITES1",B0,P1536

130 FORI=0TO7: C=I+1:SP=0.07*(I+1)

140 MOVSPRI, 160,120

145 MOVSPRI,45*I#SP

150 SPRITEI,1,C,,0,0

160 NEXT

170 SLEEP 3

180 FORI=0TO7:MOVSPR I,0#0:NEXT

163



NEW
Token: $A2

Format: NEW
NEW RESTORE

Usage: Resets all BASIC parameters to their default values. Since NEW resets
parameters and pointers, (but does not overwrite the address range of a
BASIC program that was in memory), it is possible to recover the program.
If there were no LOAD operations, or editing performed after NEW, the
program can be restored with the NEW RESTORE.

Examples: Using NEW:

NEW :REM RESET BASIC

NEW RESTORE :REM TRY TO RECOVER NEW'ED PROGRAM

164



NEXT
Token: $82

Format: FOR index = start TO end [STEP step] ... NEXT [index]

Usage: Marks the end of the BASIC loop associated with the given index variable.
When a BASIC loop is declared with FOR, it must end with NEXT.

The index variable may be incremented or decremented by a constant
value step on each iteration. The default is to increment the variable by
1. The index variable must be a real variable.

start value to initialise the index with.

end is checked at the end of an iteration, and determines whether an-
other iteration will be performed, or if the loop will exit.

step defines the change applied to to the index variable at the end of
every iteration. Positive step values increment it, while negative values
decrement it. It defaults to 1.0 if not specified.

Remarks: The index variable after NEXT is optional. If it is omitted, the variable for
the current loop is assumed. Several consecutive NEXT statements may
be combined by specifying the indexes in a comma separated list. The
statements NEXT I:NEXT J:NEXT K and NEXT I,J,K are equivalent.

Example: Using NEXT

10 FOR D=0 TO 360 STEP 30

20 R = D * ~ / 180

30 PRINT D;R;SIN(R);COS(R);TAN(R)

40 NEXT D

10 DIM M(20,20)

20 FOR I=0 TO 20

30 FOR J=I TO 20

40 M(I,J) = I + 100 * J

50 NEXT J,I

165



NOT
Token: $A8

Format: NOT operand

Usage: Performs a bit-wise logical NOT operation on a 16-bit value. Integer
operands are used as they are, whereas real operands are converted
to a signed 16-bit integer (losing precision). Logical operands are con-
verted to a 16-bit integer, using $FFFF (decimal -1) for TRUE, and $0000
(decimal 0) for FALSE.

Expression Result
NOT 0 1

NOT 1 0

Remarks: The result is of type integer.

Examples: Using NOT

PRINT NOT 3

-4

PRINT NOT 64

-65

In most cases, NOT is used in IF statements.

OK = C < 256 AND C >= 0

IF (NOT OK) THEN PRINT "NOT A BYTE VALUE"

166



OFF
Token: $FE $24

Format: keyword OFF

Usage: OFF is a secondary keyword used in combination with primary keywords,
such as COLOR, KEY, and MOUSE.

Remarks: OFF cannot be used on its own.

Examples: Using OFF

COLOR OFF :REM DISABLE SCREEN COLOUR

KEY OFF :REM DISABLE FUNCTION KEY STRINGS

MOUSE OFF :REM DISABLE MOUSE DRIVER

167



ON
Token: $91

Format: ON expression GOSUB line number [, line number ...]
ON expression GOTO line number [, line number ...]
keyword ON

Usage: ON calls either a computed GOSUB or GOTO statement. Depending on
the result of the expression, the target for GOSUB and GOTO is chosen
from the table of line addresses at the end of the statement.

When used as a secondary keyword, ON is used in combination with pri-
mary keywords, such as COLOR, KEY, and MOUSE.

expression is a positive numeric value. Real values are converted to
integer (losing precision). Logical operands are converted to a 16-bit
integer, using $FFFF (decimal -1) for TRUE, and $0000 (decimal 0) for
FALSE.

Remarks: Negative values for expression will stop the program with an error mes-
sage. The line number list specifies the targets for values of 1, 2, 3,
etc.
An expression result of zero, or a result that is greater than the number of
target lines will not do anything, and the program will continue execution
with the next statement.

168



Example: Using ON

10 COLOR ON :REM ENABLE SCREEN COLOUR

20 KEY ON :REM ENABLE FUNCTION KEY STRINGS

30 MOUSE ON :REM ENABLE MOUSE DRIVER

40 N = JOY(1):IF N AND 128 THEN PRINT "FIRE! ";

60 REM N NE E SE S SW W NW

70 ON N AND 15 GOSUB 100,200,300,400,500,600,700,800

80 GOTO 40

100 PRINT "GO NORTH" :RETURN

200 PRINT "GO NORTHEAST":RETURN

300 PRINT "GO EAST" :RETURN

400 PRINT "GO SOUTHEAST":RETURN

500 PRINT "GO SOUTH" :RETURN

600 PRINT "GO SOUTHWEST":RETURN

700 PRINT "GO WEST" :RETURN

800 PRINT "GO NORTHWEST":RETURN

169



OPEN
Token: $9F

Format: OPEN channel, first address [, secondary address [, filename]]

Usage: Opens an input/output channel for a device.

channel number, where:

• 1 <= channel <= 127 line terminator is CR.

• 128 <= channel <= 255 line terminator is CR LF.

first address device number. For IEC devices the unit number is the
primary address. Following primary address values are possible:

Unit Device
0 Keyboard
1 System Default
2 RS232 Serial Connection
3 Screen

4-7 IEC Printer and Plotter
8-31 IEC Disk Drives

The secondary address has some reserved values for IEC disk units, 0:
load, 1: save, 15: command channel. The values 2-14 may be used for
disk files.

filename is either a quoted string, e.g. "DATA" or a string expression. The
syntax is different to DOPEN#, since the filename for OPEN includes all
file attributes, for example: "0:DATA,S,W".

Remarks: For IEC disk units the usage of DOPEN# is recommended.

If the first character of the filename is an at sign ’@’, it is interpreted as a
”save and replace” operation. It is not recommended to use this option
on 1541 and 1571 drives, as they contain a ”save and replace bug” in
their DOS.

Example: Using OPEN

OPEN 4,4 :REM OPEN PRINTER

CMD 4 :REM REDIRECT STANDARD OUTPUT TO 4

LIST :REM PRINT LISTING ON PRINTER DEVICE 4

OPEN 3,8,3,"0:USER FILE,U"

OPEN 2,9,2,"0:DATA,S,W"

170



OR
Token: $B0

Format: operand OR operand

Usage: Performs a bit-wise logical OR operation on two 16-bit values. Integer
operands are used as they are. Real operands are converted to a signed
16-bit integer (losing precision). Logical operands are converted to a
16-bit integer using $FFFF (decimal -1) for TRUE, and $0000 (decimal
0), for FALSE.

Expression Result
0 OR 0 0

0 OR 1 1

1 OR 0 1

1 OR 1 1

Remarks: The result is of type integer. If the result is used in a logical context,
the value of 0 is regarded as FALSE, and all other non-zero values are
regarded as TRUE.

Example: Using OR

PRINT 1 OR 3

3

PRINT 128 OR 64

192

In most cases, OR is used in IF statements.

IF (C < 0 OR C > 255) THEN PRINT "NOT A BYTE VALUE"

171



PAINT
Token: $DF

Format: PAINT x, y, mode [, region border colour]

Usage: Performs a flood fill of an enclosed graphics area using the current pen
colour.

x, y is a coordinate pair, which must lie inside the area to be painted.

mode specifies the paint mode:

• 0 The colour of pixel (x,y) defines the colour, which is replaced by
the pen colour.

• 1 The region border colour defines the region to be painted with
the pen colour.

• 2 Paint the region connected to pixel (x,y).

region border colour defines the colour index for mode 1.

Example: Using PAINT

10 SCREEN 320,200,2 :REM OPEN SCREEN

20 PALETTE 0,1,10,15,10 :REM COLOUR 1 TO LIGHT GREEN

30 PEN 1 :REM SET DRAWING PEN (PEN 0) TO LIGHT GREEN (1)

40 LINE 160,0,240,100 :REM 1ST. LINE

50 LINE 240,100,80,100 :REM 2ND. LINE

60 LINE 80,100,160,0 :REM 3RD. LINE

70 PAINT 160,10 :REM FILL TRIANGLE WITH PEN COLOUR

80 GETKEY A& :REM WAIT FOR KEY

90 SCREEN CLOSE :REM END GRAPHICS

172



PALETTE
Token: $FE $34

Format: PALETTE screen, colour, red, green, blue
PALETTE COLOR colour, red, green, blue
PALETTE RESTORE

Usage: PALETTE can be used to change an entry of the system colour palette,
or the palette of a screen.
PALETTE RESTORE resets the system palette to the default values.

screen screen number (0-3).

COLOR keyword for changing system palette.

colour index to palette (0-255).

red red intensity (0-15).

green green intensity (0-15).

blue blue intensity (0-15).

Example: Using PALETTE

10 REM CHANGE SYSTEM COLOUR INDEX

20 REM --- INDEX 9 (BROWN) TO (DARK BLUE)

30 PALETTE COLOR 9,0,0,7

173



10 GRAPHIC CLR :REM INITIALISE

20 SCREEN DEF 1,0,0,2 :REM 320 X 200

30 SCREEN OPEN 1 :REM OPEN

40 SCREEN SET 1,1 :REM MAKE SCREEN ACTIVE

50 PALETTE 1,0, 0, 0, 0 :REM 0 = BLACK

60 PALETTE 1,1, 15, 0, 0 :REM 1 = RED

70 PALETTE 1,2, 0, 0,15 :REM 2 = BLUE

80 PALETTE 1,3, 0,15, 0 :REM 3 = GREEN

90 PEN 2 :REM SET DRAWING PEN (PEN 0) TO BLUE (2)

100 LINE 160,0,240,100 :REM 1ST. LINE

110 LINE 240,100,80,100 :REM 2ND. LINE

120 LINE 80,100,160,0 :REM 3RD. LINE

130 PAINT 160,10,0,2 :REM FILL TRIANGLE WITH BLUE (2)

140 GETKEY K$ :REM WAIT FOR KEY

150 SCREEN CLOSE 1 :REM END GRAPHICS

174



PASTE
Token: $E3

Format: PASTE x, y, width, height

Usage: PASTE is used on graphic screens and pastes the content of the cut/-
copy/paste buffer into the screen. The arguments upper left position x,
y and the width and height specify the paste position on the screen.

Remarks: The size of the rectangle is limited by the 1K size of the cut/copy/paste
buffer. The memory requirement for region is width * height * number of
bitplanes / 8. It must not equal or exceed 1024 byte. For a 4-bitplane
screen for example, a 45 x 45 region needs 1012.5 byte.

Example: Using PASTE

10 SCREEN 320,200,2

20 BOX 60,60,300,180,1 :REM DRAW A WHITE BOX

30 PEN 2 :REM SELECT RED PEN

40 CUT 140,80,40,40 :REM CUT OUT A 40 * 40 REGION

50 PASTE 10,10,40,40 :REM PASTE IT TO NEW POSITION

60 GETKEY A$ :REM WAIT FOR KEYPRESS

70 SCREEN CLOSE

175



PEEK
Token: $C2

Format: PEEK(address)

Usage: Returns an unsigned 8-bit value (byte) from address.

If the address is in the range of $0000 to $FFFF (0-65535), the memory
bank set by BANK is used.

Addresses greater than or equal to $10000 (decimal 65536) are as-
sumed to be flat memory addresses and used as such, ignoring the BANK
setting.

Remarks: Banks 0-127 give access to RAM or ROM banks. Banks greater than 127
are used to access I/O, and the underlying system hardware such as the
VIC, SID, FDC, etc.

Example: Using PEEK

10 BANK 128 :REM SELECT SYSTEM BANK

20 L = PEEK($02F8) :REM USR JUMP TARGET LOW

30 H = PEEK($02F9) :REM USR JUMP TARGET HIGH

40 T = L + 256 * H :REM 16-BIT JUMP ADDRESS

50 PRINT "USR FUNCTION CALLS ADDRESS";T

176



PEEKW
Token: $C2 ’W’

Format: PEEKW(address)

Usage: Returns an unsigned 16-bit value (word) read from address (low byte)
and address+1 (high byte).

If the address is in the range of $0000 to $FFFF (0-65535), the memory
bank set by BANK is used.

Addresses greater than or equal to $10000 (decimal 65536) are as-
sumed to be flat memory addresses and used as such, ignoring the BANK
setting.

Remarks: Banks 0-127 give access to RAM or ROM banks. Banks greater than 127
are used to access I/O, and the underlying system hardware such as the
VIC, SID, FDC, etc.

Example: Using PEEKW

20 UA = PEEKW($02F8) :REM USR JUMP TARGET

50 PRINT "USR FUNCTION CALL ADDRESS";UA

177



PEN
Token: $FE $33

Format: PEN [pen,] colour

Usage: Sets the colour of the graphic pen.

pen pen number (0-2):

• 0 drawing pen (default, if only single parameter provided).

• 1 off bits in jam2 mode.

• 2 currently unused.

colour palette index. Refer to the table under BACKGROUND on page
23 for the colour values and their corresponding colours.

Remarks: The colour selected by PEN will be used by all graphic/drawing com-
mands that follow it. If you intend to set the drawing pen 0 to a colour,
you can omit the first parameter, and only provide the colour parameter.

Example: Using PEN

10 GRAPHIC CLR :REM INITIALISE

20 SCREEN DEF 1,0,0,2 :REM 320 X 200

30 SCREEN OPEN 1 :REM OPEN

40 SCREEN SET 1,1 :REM MAKE SCREEN ACTIVE

50 PALETTE 1,0, 0, 0, 0 :REM 0 = BLACK

60 PALETTE 1,1, 15, 0, 0 :REM 1 = RED

70 PALETTE 1,2, 0, 0,15 :REM 2 = BLUE

80 PALETTE 1,3, 0,15, 0 :REM 3 = GREEN

90 PEN 1 :REM SET DRAWING PEN (PEN 0) TO RED (1)

100 LINE 160,0,240,100 :REM DRAW RED LINE

110 PEN 2 :REM SET DRAWING PEN (PEN 0) TO BLUE (2)

120 LINE 240,100,80,100 :REM DRAW BLUE LINE

130 PEN 3 :REM SET DRAWING PEN (PEN 0) TO GREEN (3)

140 LINE 80,100,160,0 :REM DRAW GREEN LINE

150 GETKEY K$ :REM WAIT FOR KEY

160 SCREEN CLOSE 1 :REM END GRAPHICS

178



PIXEL
Token: $CE $0C

Format: PIXEL(x, y)

Usage: Returns the colour of a pixel at the given position.

x absolute screen coordinate.

y absolute screen coordinate.

179



PLAY
Token: $FE $04

Format: PLAY [{string1, string2, string3, string4, string5, string6}]

Usage: PLAY without any arguments will cause all voices to be silenced, and all
of BASIC’s music-system variables to be reset (E.g. TEMPO).

PLAY can be followed by up to six comma-separated string arguments,
where each argument provides the sequence of notes and directives to
be played on a specific voice on the two available SID chips, allowing
for up to 6-channel polyphony.

Note that PLAYmakes use of SID1 (for voices 1 to 3) and SID3 (for voices
4 to 6) of the 4 SID chips of the system. Also note that, by default, SID1
and SID2 are slightly right-biased and SID3 and SID4 are slightly left-
biased (in terms of stereo sound).

A musical note is a character (A, B, C, D, E, F, or G), which may be pre-
ceded by an optional modifier.

Possible modifiers are:

Character Effect
# Sharp
$ Flat
. Dotted
H Half Note
I Eighth Note
Q Quarter Note
R Pause (rest)
S Sixteenth Note
W Whole Note

Embedded directives consist of a letter, followed by a digit:

Char Directive Argument Range
O Octave 0 - 6
T Instrument Envelope 0 - 9
U Volume 0 - 9
X Filter 0 - 1
M Modulation 0 - 9
P Portamento 0 - 9
L Loop N/A

180



The modulation directive will modulate your note by the magnitude you
specify (1-9), or use 0 to not use it.

Similarly, the portamento directive will gently slide between consecutive
notes at the speed you specify (1-9), or use 0 to not use it. Note that
the gate-off behaviour of notes is disabled while portamento is enabled,
and to re-enable it, you must disable portamento (P0).

Add an L directive (no argument needed) at the end of your string if you
would like it to loop back to the beginning of your string upon completion.

You have a lot of flexibility on which voice channels you choose to play
your melodies on. For instance, you may decide to use only voice 1 and
voice 4 for your melody, and spare the other channels for melody-based
sound effects (for simple one-shot sound effects, consider the SOUND
command instead). Just skip the voices you’re not using with PLAY, by
leaving those arguments empty:

PLAY "O4EDCDEEERL",,,"O2CGEGCGEGL"

You can even call PLAY again to use the aforementioned unused chan-
nels, to play another melody alongside your first melody. For example,
using voice 2 and voice 5 this time:

PLAY ,"O5T2IGAGFEDCEGO6.QCL",,,"O3T2.QG.B O4ICO3GE.QCL"

If you wish to assess whether a melody is playing on a voice channel, you
can find out by checking the value returned from RPLAY(voice), where
the voice parameter is a value from 1 to 6, indicating the voice channel.
It will return either 1 (playing), or 0 (not playing).

One caveat to be aware of is that BASIC strings have a maximum length
of 255 bytes. If your melody needs to exceed this length, consider break-
ing up your melody into several strings, then use RPLAY(voice) to assess
when your first string has finished and then play the next string.

Instrument envelope slots may be modified by using the ENVELOPE state-
ment. The default settings for the envelopes are on page 97.

Remarks: The PLAY statement makes use of an interrupt driven routine that starts
parsing the string and playing the melody. Program execution continues
with the next statement, and will not block until the melody has finished.

The 6 voice channels used by the PLAY command (on SID1+SID3) are
distinct to the 6 channels used by the SOUND command (on SID2+SID4).

181



Example: Using PLAY

5 REM *** SIMPLE LOOPING EXAMPLE ***

10 ENVELOPE 9,10,5,10,5,0,300

20 VOL 8

30 TEMPO 30

40 PLAY "O5T9HCIDCDEHCG IGAGFEFDEWCL", "O2T0QCGEGCGEG DBGB CGEGL"

5 REM *** MODULATION + PORTAMENTO EXAMPLE ***

10 TEMPO 20

20 M$ = "M5 T2O5P0QD P5FP0RP5QG .AI#AQA HGQE.C IDQE HFQD .DI#CQD HEQ#CQO4HA"

30 M$ = M$ + "O5QDHFQG.AI#AQA HGQE.C IDQEFED#CO4BO5#C DO4AFD P0R L"

40 B$ = "T0QRO2H.D.F.CO1.A.#A.G.A QAIO2AGFE H.D.F.CO1.A.#A.AO2 .D DL"

50 PLAY M$,B$

182



POINTER
Token: $CE $0A

Format: POINTER(variable)

Usage: Returns the current address of a variable or an array element as a 32-
bit pointer. For string variables, it is the address of the string descriptor,
not the string itself. The string descriptor consists of three bytes (length,
string address low, string address high).

Remarks: The address values of arrays and their elements are constant while the
program is executing.
However, the addresses of strings (not their descriptors) may change at
any time due to ”garbage collection”.

Example: Using POINTER

10 BANK 0 :REM SCALARS ARE IN BANK 0

20 H$="HELLO" :REM ASSIGN STRING TO H$

30 P=POINTER(H$) :REM GET DESCRIPTOR ADDRESS

40 PRINT "DESCRIPTOR AT: $";HEX$(P)

50 L=PEEK(P):SP=PEEKW(P+1) :REM LENGTH & STRING POINTER

60 PRINT "LENGTH = ";L :REM PRINT LENGTH

70 BANK 1 :REM STRINGS ARE IN BANK 1

80 FOR I%=0 TOL-1:PRINT PEEK(SP+I%);:NEXT:PRINT

90 FOR I%=0 TOL-1:PRINT CHR$(PEEK(SP+I%));:NEXT:PRINT

RUN

DESCRIPTOR AT: $FD75

LENGTH = 5

72 69 76 76 79

HELLO

183



POKE
Token: $97

Format: POKE address, byte [, byte ...]

Usage: Writes one or more bytes into memory or memory mapped I/O, starting
at address.

If the address is in the range of $0000 to $FFFF (0-65535), the memory
bank set by BANK is used.

Addresses greater than or equal to $10000 (decimal 65536) are as-
sumed to be flat memory addresses and used as such, ignoring the BANK
setting.

byte a value in the range of 0-255.

Remarks: The address is incremented for each data byte, so a memory range can
be written to with a single POKE.

Banks greater than 127 are used to access I/O, and the underlying sys-
tem hardware such as the VIC, SID, FDC, etc.

Example: Using POKE

10 BANK 128 :REM SELECT SYSTEM BANK

20 POKE $02F8,0,24 :REM SET USR VECTOR TO $1800

184



POKEW
Token: $97 ’W’

Format: POKEW address, word [, word ...]

Usage: Writes one or more words into memory or memory mapped I/O, starting
at address.

If the address is in the range of $0000 to $FFFF (0-65535), the memory
bank set by BANK is used.

Addresses greater than or equal to $10000 (decimal 65536) are as-
sumed to be flat memory addresses and used as such, ignoring the BANK
setting.

word a value from 0-65535. The first word is stored at address (low
byte) and address+1 (high byte). The second word is stored at address+2
(low byte) and address+3 (high byte), etc.

Remarks: The address is increased by two for each data word, so a memory range
can be written to with a single POKEW.

Banks greater than 127 are used to access I/O, and the underlying sys-
tem hardware such as the VIC, SID, FDC, etc.

Example: Using POKEW

10 BANK 128 :REM SELECT SYSTEM BANK

20 POKEW $02F8,$1800 :REM SET USR VECTOR TO $1800

185



POLYGON
Token: $FE $2F

Format: POLYGON x, y, xrad, yrad, sides [{, drawsides, subtend, angle, solid}]

Usage: Draws a regular n-sided polygon. The polygon is drawn using the current
drawing context set with SCREEN, PALETTE, and PEN.

x,y centre coordinates.

xrad,yrad radius in x- and y-direction.

sides number of polygon sides.

drawsides sides to draw.

subtend draw line from centre to start (1).

angle start angle.

solid fill (1) or outline (0).

Remarks: A regular polygon is both isogonal and isotoxal, meaning all sides and
angles are alike.

Example: Using POLYGON

100 SCREEN 320,200,1 :REM OPEN 320 x 200 SCREEN

110 POLYGON 160,100,40,40,6 :REM DRAW HONEYCOMB

120 GETKEY A$ :REM WAIT FOR KEY

130 SCREEN CLOSE :REM CLOSE GRAPHICS SCREEN

Results in:

186



POS
Token: $B9

Format: POS(dummy)

Usage: Returns the cursor column relative to the currently used window.

dummy a numeric value, which is ignored.

Remarks: POS gives the column position for the screen cursor. It will not work for
redirected output.

Example: Using POS

10 IF POS(0) > 72 THEN PRINT :REM INSERT RETURN

187



POT
Token: $CE $02

Format: POT(paddle)

Usage: Returns the position of a paddle.

paddle paddle number (1-4).

The low byte of the return value is the paddle value, with 0 at the clock-
wise limit and 255 at the anticlockwise limit.

A value greater than 255 indicates that the fire button is also being
pressed.

Remarks: Analogue paddles are noisy and inexact. The range may be less than
0-255 and there could be some jitter in the values returned from POT.

Example: Using POT

10 X = POT(1) : REM READ PADDLE #1

20 B = X > 255 : REM TRUE (-1) IF FIRE BUTTON IS PRESSED

30 V = X AND 255 : REM PADDLE #1 VALUE

188



PRINT
Token: $99

Format: PRINT arguments

Usage: Evaluates the argument list, and prints the values formatted to the cur-
rent screen window. Standard formatting is used, depending on the ar-
gument type. For user controlled formatting, see PRINT USING.

The following argument types are evaluated:

• numeric the printout starts with a space for positive and zero val-
ues, or a minus sign for negative values. Integer values are printed
with the necessary number of digits. Real values are printed in ei-
ther fixed point form (typically 9 digits), or scientific form if the value
is outside the range of 0.01 to 999999999.

• string the string may consist of printable characters and control
codes. Printable characters are printed at the cursor position, while
control codes are executed.

• , a comma acts as a tabulator.

• ; a semicolon acts as a separator between arguments of the list.
Other than the comma character, it does not insert any additional
characters. A semicolon at the end of the argument list suppresses
the automatic return (carriage return) character.

Remarks: The SPC and TAB functions may be used in the argument list for posi-
tioning. CMD can be used for redirection.

Example: Using PRINT

10 FOR I=1 TO 10 : REM START LOOP

20 PRINT I,I*I,SQR(I)

30 NEXT

189



PRINT#
Token: $98

Format: PRINT# channel, arguments

Usage: Evaluates the argument list, and prints the formatted values to the device
assigned to channel. Standard formatting is used, depending on the
argument type. For user controlled formatting, see PRINT# USING.

channel number, which was given to a previous call to commands such
as APPEND, DOPEN, or OPEN.

The following argument types are evaluated:

• numeric the printout starts with a space for positive and zero val-
ues, or a minus sign for negative values. Integer values are printed
with the necessary number of digits. Real values are printed in ei-
ther fixed point form (typically 9 digits), or scientific form if the value
is outside the range of 0.01 to 999999999.

• stringmay consist of printable characters and control codes. Print-
able characters are printed at the cursor position, while control
codes are executed.

• , a comma acts as a tabulator.

• ; a semicolon acts as a separator between arguments of the list.
Other than the comma character, it does not insert any additional
characters. A semicolon at the end of the argument list suppresses
the automatic return (carriage return) character.

Remarks: The SPC and TAB functions are not suitable for devices other than the
screen.

Example: Using PRINT# to write a file to drive 8:

10 DOPEN#2,"TABLE",W,U8

20 FOR I=1 TO 10 : REM START LOOP

30 PRINT#2,I,I*I,SQR(I)

40 NEXT

50 DCLOSE#2

You can confirm that the file ’TABLE’ has been written by typing DIR "TA*",
and then view the contents of the file by typing TYPE "TABLE".

190



PRINT USING
Token: $98 $FB or $99 $FB

Format: PRINT[# channel,] USING format; argument

Usage: Parses the format string and evaluates the argument. The argument can
be either a string or a numeric value. The format of the resulting output
is directed by the format string.

channel number, which was given to a previous call to commands such
as APPEND, DOPEN, or OPEN. If no channel is specified, the output goes
to the screen.

format string variable or a string constant which defines the rules for
formatting. When using a number as the argument, formatting can be
done in either CBM style, providing a pattern such as ###.## or in C style
using a <width.precision> specifier, such as %3D %7.2F %4X .

argument the number to be formatted. If the argument does not fit into
the format e.g. trying to print a 4 digit variable into a series of three
hashes (###), asterisks will be used instead.

Remarks: The format string is applied for one argument only, but it is possible to
append more with USING format;argument sequences.

argument may consist of printable characters and control codes. Print-
able characters are printed to the cursor position, while control codes
are executed. The number of # characters sets the width of the output. If
the first character of the format string is an equals ’=’ sign, the argument
string is centered. If the first character of the format string is a greater
than ’>’ sign, the argument string is right justified.

191



Examples: Using PRINT# USING

PRINT USING "##.##";~, USING " [%6.4F] ";SQR(2)

3.14 [1.4142]

PRINT USING " < # # # > ";12*31

< 3 7 2 >

PRINT USING "###"; "ABCDE"

ABC

PRINT USING ">###"; "ABCDE"

CDE

PRINT USING "ADDRESS:$%4X";65000

ADDRESS:$FDE8

A$="###,###,###.#":PRINT USING A$;1E8/3

33,333,333.3

192



RCOLOR
Token: $CD

Format: RCOLOR(colour source)

Usage: Returns the current colour index for the selected colour source.

Colour sources are:

• 0 background colour (VIC $D021).

• 1 text colour ($F1).

• 2 highlight colour ($2D8).

• 3 border colour (VIC $D020).

Example: Using RCOLOR

10 C = RCOLOR(3) : REM C = colour index of border colour

193



RCURSOR
Token: $FE $42

Format: RCURSOR {colvar, rowvar}

Usage: Returns the current cursor column and row.

Remarks: The row and column values start at zero, where the left-most column is
zero, and the top row is zero.

Example: Using RCURSOR

100 CURSOR ON,20,10

110 PRINT "[HERE]";

120 RCURSOR X,Y

130 PRINT " COL:";X;" ROW:";Y

RUN

[HERE] COL: 26 ROW: 10

194



READ
Token: $87

Format: READ variable [, variable ...]

Usage: Reads values from program source into variables.

variable list Any legal variables.

All types of constants (integer, real, and strings) can be read, but not ex-
pressions. Items are separated by commas. Strings containing commas,
colons or spaces must be put in quotes.

RUN initialises the data pointer to the first item of the first DATA state-
ment and advances it for every read item. It is the programmer’s re-
sponsibility that the type of the constant and the variable in the READ
statement match. Empty items with no constant between commas are
allowed and will be interpreted as zero for numeric variables and an
empty string for string variables.

RESTORE may be used to set the data pointer to a specific line for sub-
sequent readings.

Remarks: It is good programming practice to put large amounts of DATA state-
ments at the end of the program, so they don’t slow down the search for
line numbers afterGOTO, and other statements with line number targets.

Example: Using READ

10 READ NA$, VE

20 READ N%:FOR I=2 TO N%:READ GL(I):NEXT I

30 PRINT "PROGRAM:";NA$;" VERSION:";VE

40 PRINT "N-POINT GAUSS-LEGENDRE FACTORS E1":

50 FOR I=2 TO N%:PRINT I;GL(I):NEXT I

30 STOP

80 DATA "MEGA65",1.1

90 DATA 5,0.5120,0.3573,0.2760,0.2252

195



RECORD
Token: $FE $12

Format: RECORD# channel, record [, byte]

Usage: Positions the read/write pointer of a relative file.

channel number, which was given to a previous call of commands such
as DOPEN, or OPEN.

record target record (1-65535).

byte byte position in record.

RECORD can only be used for files of type REL, which are relative files
capable of direct access.

RECORD positions the file pointer to the specified record number. If this
record number does not exist and there is enough space on the disk which
RECORD is writing to, the file is expanded to the requested record count
by adding empty records. When this occurs, the disk status will give the
message RECORD NOT PRESENT, but this is not an error!

After a call of INPUT# or PRINT#, the file pointer will proceed to the next
record position.

Remarks: The Commodore disk drives have a bug in their DOS, which can destroy
data by using relative files. A recommended workaround is to use the
command RECORD twice, before and after the I/O operation.

Example: Using RECORD

196



100 DOPEN#2,"DATA BASE",L240 :REM OPEN OR CREATE

110 FOR I%=1 TO 20 :REM WRITE LOOP

120 PRINT#2,"RECORD #";I% :REM WRITE RECORD

130 NEXT I% :REM END LOOP

140 DCLOSE#2 :REM CLOSE FILE

150 :REM NOW TESTING

160 DOPEN#2,"DATA BASE",L240 :REM REOPEN

170 FOR I%=20 TO 2 STEP -2 :REM READ FILE BACKWARDS

180 RECORD#2,I% :REM POSITION TO RECORD

190 INPUT#2,A$ :REM READ RECORD

200 PRINT A$;:IF I% AND 2 THEN PRINT

210 NEXT I% :REM LOOP

220 DCLOSE#2 :REM CLOSE FILE

RUN

RECORD # 20 RECORD # 18

RECORD # 16 RECORD # 14

RECORD # 12 RECORD # 10

RECORD # 8 RECORD # 6

RECORD # 4 RECORD # 2

197



REM
Token: $8F

Format: REM

Usage: Marks any characters after REM on the same line as a comment.

Characters after REM are never executed, they’re ignored by BASIC.

Example: Using REM

10 REM *** PROGRAM TITLE ***

20 N=1000 :REM NUMBER OF ITEMS

30 DIM NA$(N)

198



RENAME
Token: $F5

Format: RENAME old TO new [,D drive] [,U unit]

Usage: Renames a disk file.

old is either a quoted string, e.g. "DATA" or a string expression in brackets,
e.g. (FI$).

new is either a quoted string, e.g. "BACKUP" or a string expression in brack-
ets, e.g. (FS$)

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units such
as the 1541, 1571, or 1581.

unit device number on the IEC bus. Typically in the range from 8 to 11
for disk units. If a variable is used, it must be placed in brackets. The unit
# defaults to 8.

Remarks: RENAME is executed in the DOS of the disk drive. It can rename all reg-
ular file types (PRG, REL), SEQ, USR. The old file must exist, and the new
file must not exist. Only single files can be renamed, wildcard characters
such as ’*’ and ’?’ are not allowed. The file type cannot be changed.

Example: Using RENAME

RENAME "CODES" TO "BACKUP" :REM RENAME SINGLE FILE

199



RENUMBER
Token: $F8

Format: RENUMBER [{new, inc, range}]

Usage: Used to renumber all, or a range of lines of a BASIC program.

new new starting line of the line range to renumber. The default value
is 10.

inc increment to be used. The default value is 10.

range line range to renumber. The default values are from first to last
line.

RENUMBER executes in either space conserving mode or optimisation
mode. Optimisation mode removes space characters before line num-
bers, thereby reducing code size and decreasing execution time, while
the space conserving leaves spaces untouched. Optimisation mode is
triggered by typing the first argument, (the new starting number), adja-
cent to the keyword RENUMBER with no space in between.

RENUMBER changes all line numbers in the chosen range and also
changes all references in statements that useGOSUB,GOTO, RESTORE,
RUN, TRAP, etc.

RENUMBER can only be executed in direct mode. If it detects a problem
such as memory overflow, unresolved references or line number overflow
(more than than 64000 lines), it will stop with an error message and
leave the program unchanged.

RENUMBERmay be called with 0-3 parameters. Unspecified parameters
use their default values.

Remarks: RENUMBER may need several minutes to execute for large programs.

Examples: Using RENUMBER

200



RENUMBER :REM SPACE CONSERVING, NUMBERS WILL BE 10,20,30,...

RENUMBER 100,5 :REM SPACE CONSERVING, NUMBERS WILL BE 100,105,110,115,...

RENUMBER601,1,500 :REM OPTIMISATION, RENUMBER STARTING AT 500 TO 601,602,...

RENUMBER 100,5,120-180 :REM SPACE CONSERVING RENUMBER LINES 120-180 TO 100,105,...

10 GOTO 20

20 GOTO 10

RENUMBER 100,10 :REM SPACE CONSERVING

100 GOTO 110

110 GOTO 100

RENUMBER100,10 :REM OPTIMISATION

100 GOTO110

110 GOTO100

201



RESTORE
Token: $8C

Format: RESTORE [line]

Usage: Set, or reset the internal pointer for READ from DATA statements.

line new position for the pointer. The default is the first program line.

Remarks: The new pointer target line does not need to contain DATA statements.
Every READ will advance the pointer to the next DATA statement auto-
matically.

Example: Using RESTORE

10 DATA 3,1,4,1,5,9,2,6

20 DATA "MEGA65"

30 DATA 2,7,1,8,2,8,9,5

40 FOR I=1 TO 8:READ P:PRINT P:NEXT

50 RESTORE 30

60 FOR I=1 TO 8:READ P:PRINT P:NEXT

70 RESTORE 20

80 READ A$:PRINT A$

202



RESUME
Token: $D6

Format: RESUME [line | NEXT]

Usage: Used in a TRAP routine to resume normal program execution after han-
dling an error.

RESUME with no parameters attempts to re-execute the statement that
caused the error. The TRAP routine should have examined and corrected
the issue where the error occurred.

line line number to resume program execution at.

NEXT resumes execution following the statement that caused the error.
This could be the next statement on the same line (separated with a colon
’:’), or the statement on the next line.

Remarks: RESUME cannot be used in direct mode.

Example: Using RESUME

10 TRAP 100

20 FOR I=1 TO 100

30 PRINT EXP(I)

40 NEXT

50 PRINT "STOPPED FOR I =";I

60 END

100 PRINT ERR$(ER): RESUME 50

203



RETURN
Token: $8E

Format: RETURN

Usage: Returns control from a subroutine, which was called with GOSUB or an
event handler declared with COLLISION.

The execution continues at the statement following the GOSUB call.

In the case of the COLLISION handler, the execution continues at the
statement where it left from to call the handler.

Example: Using RETURN

10 SCNCLR :REM CLEAR SCREEN

20 FOR I=1 TO 20 :REM DEFINE LOOP

30 GOSUB 100 :REM CALL SUBROUTINE

40 NEXT I :REM LOOP

50 END :REM END OF PROGRAM

100 CURSOR ON,I,I,0 :REM ACTIVATE AND POSITION CURSOR

110 PRINT "X"; :REM PRINT X

120 SLEEP 0.5 :REM WAIT 0.5 SECONDS

130 CURSOR OFF :REM SWITCH BLINKING CURSOR OFF

140 RETURN :REM RETURN TO CALLER

204



RGRAPHIC
Token: $CC

Format: RGRAPHIC(screen, parameter)

Usage: Return graphic screen status and parameters

Parameter Description
0 Open (1), Closed (0), or Invalid (>1)
1 Width (0=320, 1=640)
2 Height (0=200, 1=400)
3 Depth (1-8 Bitplanes)
4 Bitplanes Used (Bitmask)
5 Bank 4 Blocks Used (Bitmask)
6 Bank 5 Blocks Used (Bitmask)
7 Drawscreen # (0-3)
8 Viewscreen # (0-3)
9 Drawmodes (Bitmask)

10 pattern type (bitmask)

Example: Using RGRAPHIC

10 GRAPHIC CLR :REM INITIALISE

20 SCREEN DEF 0,1,0,4 :REM SCREEN 0:640 X 200 X 4

30 SCREEN OPEN 0 :REM OPEN

40 SCREEN SET 0,0 :REM DRAW = VIEW = 0

50 SCNCLR 0 :REM CLEAR

60 PEN 0,1 :REM SELECT COLOUR

70 LINE 0,0,639,199 :REM DRAW LINE

80 FOR I=0 TO 10:A(I)=RGRAPHIC(0,I) :NEXT

90 SCREEN CLOSE 0

100 FOR I=0 TO 6:PRINT I;A(I):NEXT :REM PRINT INFO

RUN

0 1

1 1

2 0

3 4

4 15

5 15

6 15

205



RIGHT$
Token: $C9

Format: RIGHT$(string, n)

Usage: Returns a string containing the last n characters from string. If the length
of string is equal or less than n, the result string will be identical to the
argument string.

string a string expression.

n a numeric expression (0-255).

Remarks: Empty strings and zero lengths are legal values.

Example: Using RIGHT$:

PRINT RIGHT$("MEGA-65",2)

65

206



RMOUSE
Token: $FE $3F

Format: RMOUSE x variable, y variable, button variable

Usage: Reads mouse position and button status.

x variable numeric variable where the x-position will be stored.

y variable numeric variable where the y-position will be stored.

button variable numeric variable receiving button status.
left button sets bit 7, while right button sets bit 0.

Value Status
0 No Button
1 Right Button

128 Left Button
129 Both Buttons

RMOUSE places -1 into all variables if the mouse is not connected or
disabled.

Remarks: Active mice on both ports merge the results.

Example: Using RMOUSE:

10 MOUSE ON, 1, 1 :REM MOUSE ON PORT 1 WITH SPRITE 1

20 RMOUSE XP, YP, BU :REM READ MOUSE STATUS

30 IF XP < 0 THEN PRINT "NO MOUSE ON PORT 1":STOP

40 PRINT "MOUSE:";XP;YP;BU

50 MOUSE OFF :REM DISABLE MOUSE

207



RND
Token: $BB

Format: RND(type)

Usage: Returns a pseudo random number.

This is called a ”pseudo” random number, as the numbers are not re-
ally random. They are derived from another number called a ”seed” that
generates reproducible sequences. type determines which seed is used:

• type = 0 use system clock.

• type < 0 use the value of type as seed.

• type > 0 derive a new random number from previous one.

Remarks: Seeded random number sequences produce the same sequence for
identical seeds.

Example: Using RND:

10 DEF FNDI(X) = INT(RND(0)*6)+1 :REM DICE FUNCTION

20 FOR I=1 TO 10 :REM THROW 10 TIMES

30 PRINT I;FNDI(0) :REM PRINT DICE POINTS

40 NEXT

208



RPALETTE
Token: $CE $0D

Format: RPALETTE(screen, index, rgb)

Usage: Returns the red, green or blue value of a palette colour index.

screen screen number (0-3).

index palette colour index.

rgb (0: red, 1: green, 2:blue).

Example: Using RPALETTE

10 SCREEN 320,200,4 :REM DEFINE AND OPEN SCREEN

20 R = RPALETTE(0,3,0) :REM GET RED

30 G = RPALETTE(0,3,1) :REM GET GREEN

40 B = RPALETTE(0,3,2) :REM GET BLUE

50 SCREEN CLOSE :REM CLOSE SCREEN

60 PRINT "PALETTE INDEX 3 RGB =";R;G;B

RUN

PALETTE INDEX 3 RGB = 0 15 15

209



RPEN
Token: $D0

Format: RPEN(n)

Usage: Returns the colour index of pen n.

n pen number (0-2), where:

• 0 draw pen.

• 1 erase pen.

• 2 outline pen.

Example: Using RPEN

10 GRAPHIC CLR :REM INITIALISE

20 SCREEN DEF 0,1,0,4 :REM SCREEN 0:640 X 200 X 4

30 SCREEN OPEN 0 :REM OPEN

40 SCREEN SET 0,0 :REM DRAW = VIEW = 0

50 SCNCLR 0 :REM CLEAR

60 PEN 0,1 :REM SELECT COLOUR

70 X = RPEN(0)

80 Y = RPEN(1)

90 C = RPEN(2)

100 SCREEN CLOSE 0

110 PRINT "DRAW PEN COLOUR = ";X

RUN

DRAW PEN COLOUR = 1

210



RPLAY
Token: $FE $0F

Format: RPLAY(voice)

Usage: Returns a value of 1 or 0, to indicate whether a melody is playing on the
given voice channel or not.

voice the voice channel to assess, ranging from 1 to 6.

Example: Using RPLAY:

10 PLAY "O4ICDEFGABO5CR","O2QCGEGCO1GCR"

30 IF RPLAY(1) OR RPLAY(2) THEN GOTO 30: REM WAIT FOR END OF SONG

211



RREG
Token: $FE $09

Format: RREG [{areg, xreg, yreg, zreg, sreg}]

Usage: Reads the values that were in the CPU registers after a SYS call, into the
specified variables.

areg gets accumulator value.

xreg gets X register value.

yreg gets Y register value.

zreg gets Z register value.

sreg gets status register value.

Remarks: The register values after a SYS call are stored in system memory. This is
how RREG is able to retrieve them.

Example: Using RREG:

10 BANK 128

20 BLOAD "ML PROG",8192

30 SYS 8192

40 RREG A,X,Y,Z,S

50 PRINT "REGISTER:";A;X;Y;Z;S

212



RSPCOLOR
Token: $CE $07

Format: RSPCOLOR(n)

Usage: Returns multi-colour sprite colours.

n sprite multi-colour number:

• 1 get multi-colour # 1.

• 2 get multi-colour # 2.

Remarks: Refer to SPRITE and SPRCOLOR for more information.

Example: Using RSPCOLOR:

10 SPRITE 1,1 :REM TURN SPRITE 1 ON

20 C1% = RSPCOLOR(1) :REM READ COLOUR #1

30 C2% = RSPCOLOR(2) :REM READ COLOUR #2

213



RSPEED
Token: $CE $0E

Format: RSPEED(n)

Usage: Returns the current CPU clock in MHz.

n numeric dummy argument, which is ignored.

Remarks: RSPEED(n) will not return the correct value if POKE 0,65 has previously been
used to enable the highest speed (40MHz).

Refer to the SPEED command for more information.

Example: Using RSPEED:

10 X=RSPEED(0) :REM GET CLOCK

20 IF X=1 THEN PRINT "1 MHZ" :GOTO 50

30 IF X=3 THEN PRINT "3.5 MHZ" :GOTO 50

40 IF X=40 THEN PRINT "40 MHZ"

50 END

214



RSPPOS
Token: $CE $05

Format: RSPPOS(sprite, n)

Usage: Returns a sprite’s position and speed

sprite sprite number.

n sprite parameter to retrieve:

• 0 X position.

• 1 Y position.

• 2 speed.

Remarks: Refer to the MOVSPR and SPRITE commands for more information.

Example: Using RSPPOS:

10 SPRITE 1,1 :REM TURN SPRITE 1 ON

20 XP = RSPPOS(1,0) :REM GET X OF SPRITE 1

30 YP = RSPPOS(1,1) :REM GET Y OF SPRITE 1

30 SP = RSPPOS(1,2) :REM GET SPEED OF SPRITE 1

215



RSPRITE
Token: $CE $06

Format: RSPRITE(sprite, n)

Usage: Returns a sprite’s parameter.

sprite sprite number (0-7).

n the sprite parameter to return (0-5):

• 0 turned on (0 or 1) A 0 means the sprite is off.

• 1 foreground colour (0-15).

• 2 background priority (0 or 1).

• 3 x-expanded (0 or 1). 0 means it’s not expanded.

• 4 y-expanded (0 or 1). 0 means it’s not expanded.

• 5 multi-colour (0 or 1). 0 means it’s not multi-colour.

Remarks: Refer to the MOVSPR and SPRITE commands for more information.

Example: Using RSPRITE:

10 SPRITE 1,1 :REM TURN SPRITE 1 ON

20 EN = RSPRITE(1,0) :REM SPRITE 1 ENABLED ?

30 FG = RSPRITE(1,1) :REM SPRITE 1 FOREGROUND COLOUR INDEX

40 BP = RSPRITE(1,2) :REM SPRITE 1 BACKGROUND PRIORITY

50 XE = RSPRITE(1,3) :REM SPRITE 1 X EXPANDED ?

60 YE = RSPRITE(1,4) :REM SPRITE 1 Y EXPANDED ?

70 MC = RSPRITE(1,5) :REM SPRITE 1 MULTI-COLOUR ?

216



RUN
Token: $8A

Format: RUN [line number]
RUN filename [,D drive] [,U unit]

Usage: Run a BASIC program.

If a filename is given, the program file is loaded into memory and run,
otherwise the program that is currently in memory will be used instead.

line number an existing line number of the program in memory to run
from.

filename either a quoted string, e.g. "PROG" or a string expression in brack-
ets, e.g. (PR$). The filetype must be PRG.

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units such
as the 1541, 1571, or 1581.

unit device number on the IEC bus. Typically in the range from 8 to 11
for disk units. If a variable is used, it must be placed in brackets. The unit
# defaults to 8.

RUN first resets all internal pointers to their default values. Therefore,
there will be no variables, arrays or strings defined. The run-time stack is
also reset, and the table of open files is cleared.

Remarks: To start or continue program execution without resetting everything, use
GOTO instead.

Examples: Using RUN

RUN "FLIGHTSIM" :REM LOAD AND RUN PROGRAM FLIGHTSIM

RUN 1000 :REM RUN PROGRAM IN MEMORY, START AT LINE# 1000

RUN :REM RUN PROGRAM IN MEMORY

217



RWINDOW
Token: $CE $09

Format: RWINDOW(n)

Usage: Returns information regarding the current text window.

n the screen parameter to retrieve:

• 0 width of current text window.

• 1 height of current text window.

• 2 number of columns on screen (40 or 80).

Remarks: Older versions of RWINDOW reported the width - 1 and the height - 1
for arguments 0 and 1.

Refer to the WINDOW command for more information.

Example: Using RWINDOW:

10 W = RWINDOW(2) :REM GET SCREEN WIDTH

20 IF W=80 THEN BEGIN :REM IS 80 COLUMNS MODE ACTIVE?

30 PRINT CHR$(27)+"X"; :REM YES, SWITCH TO 40COLUMNS

40 BEND

218



SAVE
Token: $94

Format: SAVE filename [, unit]
← filename [, unit]

Usage: Saves a BASIC program to a file of type PRG.

filename is either a quoted string such as "DATA", or a string expression in
brackets such as (FI$).

The maximum length of the filename is 16 characters, not counting the
optional save and replace character ’@’ and the in-file drive definition. If
the first character of the filename is an at sign ’@’, it is interpreted as a
”save and replace” operation. It is not recommended to use this option
on 1541 and 1571 drives, as they contain a ”save and replace bug” in
their DOS. The filename may be preceded by the drive number definition
”0:” or ”1:”, which is only relevant for dual drive disk units.

unit device number on the IEC bus. Typically in the range from 8 to 11
for disk units. If a variable is used, it must be placed in brackets. The unit
# defaults to 8.

Remarks: SAVE is obsolete, implemented only for backwards compatibility. DSAVE
should be used instead. The shortcut symbol ← is next to 1 . Can
only be used in direct mode.

Examples: Using SAVE

SAVE "ADVENTURE"

SAVE "ZORK-I",8

SAVE "1:DUNGEON",9

219



SAVEIFF
Token: $FE $44

Format: SAVEIFF filename [,D drive] [,U unit]

Usage: Saves a picture from memory to a disk file in IFF format. The IFF (In-
terchange File Format) is supported by many different applications and
operating systems. SAVEIFF saves the image, the palette and resolution
parameters.

filename is either a quoted string such as "DATA", or a string expression in
brackets such as (FI$). The maximum length of the filename is 16 charac-
ters. If the first character of the filename is an at sign ’@’ it is interpreted
as a ”save and replace” operation. It is not recommended to use this
option on 1541 and 1571 drives, as they contain a ”save and replace
bug” in their DOS.

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units such
as the 1541, 1571, or 1581.

unit device number on the IEC bus. Typically in the range from 8 to 11
for disk units. If a variable is used, it must be placed in brackets. The unit
# defaults to 8.

Remarks: Files saved with SAVEIFF can be loaded with LOADIFF. Tools are avail-
able to convert popular image formats to IFF. These tools are available
on several operating systems, such as AMIGA OS, macOS, Linux, and
Windows. For example, ImageMagick is a free graphics package that
includes a tool called convert, which can be used to create IFF files in
conjunction with the ppmtoilbm tool from the Netbpm package.

Example: Using SAVEIFF

10 SCREEN 320,200,2 :REM SCREEN #0 320 X 200 X 2

20 PEN 1 :REM DRAWING PEN COLOR 1 (WHITE)

30 LINE 25,25,295,175 :REM DRAW LINE

40 SAVEIFF "LINE-EXAMPLE",U8 :REM SAVE CURRENT VIEW TO FILE

50 SCREEN CLOSE :REM CLOSE SCREEN AND RESTORE PALETTE

220



SCNCLR
Token: $E8

Format: SCNCLR [colour]

Usage: Clears a text window or screen.

SCNCLR (with no arguments) clears the current text window. The default
window occupies the whole screen.

SCNCLR colour clears the graphic screen by filling it with the given
colour.

Example: Using SCNCLR:

1 REM SCREEN EXAMPLE 2

10 GRAPHIC CLR :REM INITIALIZE

20 SCREEN DEF 1,0,0,2 :REM SCREEN #1 320 X 200 X 2

30 SCREEN OPEN 1 :REM OPEN SCREEN 1

40 SCREEN SET 1,1 :REM USE SCREEN 1 FOR RENDERING AND VIEWING

50 SCREEN CLR 0 :REM CLEAR SCREEN

60 PALETTE 1,1,15,15,15 :REM DEFINE COLOUR 1 AS WHITE

70 PEN 0,1 :REM DRAWING PEN

80 LINE 25,25,295,175 :REM DRAW LINE

90 SLEEP 10 :REM WAIT FOR 10 SECONDS

100 SCREEN CLOSE 1 :REM CLOSE SCREEN AND RESTORE PALETTE

221



SCRATCH
Token: $F2

Format: SCRATCH filename [,D drive] [,U unit] [,R]

Usage: Used to erase a disk file.

filename is either a quoted string such as "DATA", or a string expression in
brackets such as (FI$).

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units such
as the 1541, 1571, or 1581.

unit device number on the IEC bus. Typically in the range from 8 to 11
for disk units. If a variable is used, it must be placed in brackets. The unit
# defaults to 8.

R Recover a previously erased file. This will only work if there were no
write operations between erasure and recovery, which may have altered
the contents of the disk.

Remarks: SCRATCH filename is a synonym of ERASE filename and DELETE file-
name.

In direct mode the success and the number of erased files is printed.
The second to last number from the message contains the number of
successfully erased files,

Examples: Using SCRATCH

SCRATCH "DRM",U9 :REM ERASE FILE DRM ON UNIT 9

01, FILES SCRATCHED,01,00

SCRATCH "OLD*" :REM ERASE ALL FILES BEGINNING WITH "OLD"

01, FILES SCRATCHED,04,00

SCRATCH "R*=PRG" :REM ERASE PROGRAM FILES STARTING WITH 'R'

01, FILES SCRATCHED,09,00

222



SCREEN
Token: $FE $2E

Format: SCREEN [screen,] width, height, depth
SCREEN CLR colour
SCREEN DEF width flag, height flag, depth
SCREEN SET drawscreen, viewscreen
SCREEN OPEN [screen]
SCREEN CLOSE [screen]

Usage: There are two approaches available when preparing the screen for the
drawing of graphics: a simplified approach, and a detailed approach.

Simplified approach:

The first version of SCREEN (which has pixel units for width and height) is
the easiest way to start a graphics screen, and is the preferred method
if only a single screen is needed (i.e., a second screen isn’t needed for
double buffering). This does all of the preparatory work for you, and
will call commands such as GRAPHIC CLR, SCREEN CLR, SCREEN DEF,
SCREEN OPEN and, SCREEN SET on your behalf. It takes the following
parameters:

SCREEN [screen,] width, height, depth

• screen the screen number (0-3) is optional. If no screen number is
given, screen 0 is used. To keep this approach as simple as possible,
it is suggested to use the default screen 0.

• width 320 or 640 (default 320)

• height 200 or 400 (default = 200)

• depth 1..8 (default = 8), colours = 2 ^depth.

The argument parser is error tolerant and uses default values for width
(320) and height (200) if the parsed argument is not valid.

This version of SCREEN starts with a predefined palette and sets the
background to black, and the pen to white, so drawing can start imme-
diately using the default values.

On the other hand, the detailed approach will require the setting of
palette colours and pen colour before any drawing can be done.

223



The colour value must be in the range of 0 to 15. Refer to the colour
table under BACKGROUND on page 23 for the colour values and their
corresponding colours.

When you are finished with your graphics screen, simply call SCREEN
CLOSE [screen] to return to the text screen.

Detailed approach:

The other versions ofSCREEN perform special actions, used for advanced
graphics programs that open multiple screens, or require ”double buffer-
ing”. If you have chosen the simplified approach, you will not require any
of these versions below, apart from SCREEN CLOSE.

SCREEN CLR colour (or SCNCLR colour)
Clears the active graphics screen by filling it with colour.

SCREEN DEF screen, width flag, height flag, depth
Defines resolution parameters for the chosen screen. The width flag and
height flag indicate whether high resolution (1) or low resolution (0) is
chosen.

• screen screen number 0-3

• width flag 0-1 (0:320, 1:640 pixel)

• height flag 0-1 (0:200, 1:400 pixel)

• depth 1-8 (2 - 256 colours)

Note that the width and height values here are flags, and not pixel units.

SCREEN SET drawscreen, viewscreen
Sets screen numbers ( 0-3 ) for the drawing and the viewing screen, i.e.,
while one screen is being viewed, you can draw on a separate screen and
then later flip between them. This is what’s known as double buffering.

SCREEN OPEN screen
Allocates resources and initialises the graphics context for the selected
screen (0-3). An optional variable name as a further argument, gets the
result of the command that can be tested afterwards for success.

SCREEN CLOSE [screen]
Closes screen (0-3) and frees resources. If no value is given, it will de-
fault to 0. Also note that upon closing a screen, PALETTE RESTORE is
automatically performed for you.

Examples: Using SCREEN:

224



5 REM *** SIMPLIFIED APPROACH ***

10 SCREEN 320,200,2 :REM SCREEN #0: 320 X 200 X 2

20 PEN 1 :REM DRAWING PEN COLOUR = 1 (WHITE)

30 LINE 25,25,295,175 :REM DRAW LINE

40 GETKEY A$ :REM WAIT KEYPRESS

50 SCREEN CLOSE :REM CLOSE SCREEN 0 (RESTORE PALETTE)

5 REM *** DETAILED APPROACH ***

10 GRAPHIC CLR :REM INITIALISE

20 SCREEN DEF 1,0,0,2 :REM SCREEN #1: 320 X 200 X 2

30 SCREEN OPEN 1 :REM OPEN SCREEN 1

40 SCREEN SET 1,1 :REM USE SCREEN 1 FOR RENDERING AND VIEWING

50 SCREEN CLR 0 :REM CLEAR SCREEN

60 PALETTE 1,1,15,15,15:REM DEFINE COLOUR 1 AS WHITE

70 PEN 0,1 :REM DRAWING PEN

80 LINE 25,25,295,175 :REM DRAW LINE

90 SLEEP 10 :REM WAIT 10 SECONDS

100 SCREEN CLOSE 1 :REM CLOSE SCREEN 1 (RESTORE PALETTE)

225



SET
Token: $FE $2D

Format: SET DEF unit
SET DISK old TO new
SET VERIFY <ON | OFF>

Usage: SET DEF redefines the default unit for disk access, which is initialised to
8 by the DOS. Commands that do not explicitly specify a unit will use this
default unit.

SET DISK is used to change the unit number of a disk drive temporarily.

SET VERIFY enables or disables the DOS verify-after-write mode for 3.5
drives.

Remarks: These settings are valid until a reset or shutdown.

Examples: Using SET:

DIR :REM SHOW DIRECTORY OF UNIT 8

SET DEF 11 :REM UNIT 11 BECOMES DEFAULT

DIR :REM SHOW DIRECTORY OF UNIT 11

DLOAD "*" :REM LOAD FIRST FILE FROM UNIT 11

SET DISK 8 TO 9 :REM CHANGE UNIT# OF DISK DRIVE 8 TO 9

DIR U9 :REM SHOW DIRECTORY OF UNIT 9 (FORMER 8)

SET VERIFY ON :REM ACTIVATE VERIFY-AFTER-WTITE MODE

226



SETBIT
Token: $FE $2D $FE $4E

Format: SETBIT address, bit number

Usage: Sets a single bit at the address.

If the address is in the range of $0000 to $FFFF (0-65535), the memory
bank set by BANK is used.

Addresses greater than or equal to $10000 (decimal 65536) are as-
sumed to be flat memory addresses and used as such, ignoring the BANK
setting.

The bit number is a value in the range of 0-7.

A bank value > 127 is used to access I/O, and the underlying system
hardware such as the VIC, SID, FDC, etc.

Example: Using SETBIT

10 BANK 128 :REM SELECT SYSTEM MAPPING

20 SETBIT $D011,6 :REM ENABLE EXTENDED BACKGROUND MODE

30 SETBIT $D01B,0 :REM SET BACKGROUND PRIORITY FOR SPRITE 0

227



SGN
Token: $B4

Format: SGN(numeric expression)

Usage: Extracts the sign from the argument and returns it as a number:

• -1 negative argument.

• -0 zero.

• 1 positive, non-zero argument.

Example: Using SGN

10 ON SGN(X)+2 GOTO 100,200,300 :REM TARGETS FOR MINUS,ZERO,PLUS

20 Z = SGN(X) * ABS(Y) : REM COMBINE SIGN OF X WITH VALUE OF Y

228



SIN
Token: $BF

Format: SIN(numeric expression)

Usage: Returns the sine of the numeric expression. The argument is expected
in units of radians. The result is in the range (-1.0 to +1.0)

Remarks: An argument in units of degrees can be converted to radians by multi-
plying it with π/180.

Examples: Using SIN

PRINT SIN(0.7)

.644217687

X=30:PRINT SIN(X * ~ / 180)

.5

229



SLEEP
Token: $FE $0B

Format: SLEEP seconds

Usage: Pauses execution for the given duration. The argument is a positive float-
ing point number. The precision is 1 microsecond.

Remarks: Pressing RUN
STOP interrupts the sleep.

Example: Using SLEEP

20 SLEEP 10 :REM WAIT 10 SECONDS

40 SLEEP 0.0005 :REM SLEEP 500 MICRO SECONDS

50 SLEEP 0.01 :REM SLEEP 10 MILLI SECONDS

60 SLEEP DD :REM TAKE SLEEP TIME FROM VARIABLE DD

70 SLEEP 600 :REM SLEEP 10 MINUTES

230



SOUND
Token: $DA

Format: SOUND voice, freq, dur [{, dir, min, sweep, wave , pulse}]

Usage: Plays a sound effect.

voice voice number (1-6).

freq frequency (0-65535).

dur duration in jiffies (0-32767). The duration of a jiffy depends on the
display standard. There are 50 jiffies per second with PAL, 60 per second
with NTSC.

dir direction (0:up, 1:down, 2:oscillate).

min minimum frequency (0-65535).

sweep sweep range (0-65535).

wave waveform (0:triangle, 1:sawtooth, 2:square, 3:noise).

pulse pulse width (0-5095).

Remarks: SOUND starts playing the sound effect and immediately continues with
the execution of the next BASIC statement while the sound effect is
played. This enables the showing of graphics or text and playing sounds
simultaneously.

Note that SOUND makes use of SID2 (for voices 1 to 3) and SID4 (for
voices 4 to 6) of the 4 SID chips of the system. Also note that, by default,
SID1 and SID2 are slightly right-biased and SID3 and SID4 are slightly
left-biased (in terms of stereo sound).

The 6 voice channels used by the SOUND command (on SID2+SID4) are
distinct to the 6 channels used by the PLAY command (on SID1+SID3).

Examples: Using SOUND

IF PEEK($D06F) AND $80 THEN J = 60: ELSE J = 50 :REM J IS JIFFIES PER SECOND

SOUND 1, 7382, J :REM PLAY SQUARE WAVE ON VOICE 1 FOR 1 SECOND

SOUND 2, 800, J*60 :REM PLAY SQUARE WAVE ON VOICE 2 FOR 1 MINUTE

SOUND 3, 4000, 120, 2, 2000, 400, 1 :REM PLAY SWEEPING SAWTOOTH WAVE ON VOICE 3

231



SPC
Token: $A6

Format: SPC(columns)

Usage: Skips columns.
The effect is similar to pressing → <column> times.

Remarks: The name of this function is derived from SPACES, which is misleading.
The function prints cursor right characters, not spaces. The contents
of those character cells that are skipped will not be changed.

Example: Using SPC

10 FOR I=8 TO 12

20 PRINT SPC(-(I<10));I :REM TRUE = -1, FALSE = 0

30 NEXT I

RUN

8

9

10

11

12

232



SPEED
Token: $FE $26

Format: SPEED [speed]

Usage: Set CPU clock to 1MHz, 3.5MHz or 40MHz.

speed CPU clock speed where:

• 1 sets CPU to 1MHz.

• 3 sets CPU to 3MHz.

• Anything other than 1 or 3 sets the CPU to 40MHz.

Remarks: Although it’s possible to call SPEED with any real number, the precision
part (the decimal point and any digits after it), will be ignored.

SPEED is a synonym of FAST.

SPEED has no effect if POKE 0,65 has previously been used to set the CPU
to 40MHz.

Example: Using SPEED

10 SPEED :REM SET SPEED TO MAXIMUM (40 MHZ)

20 SPEED 1 :REM SET SPEED TO 1 MHZ

30 SPEED 3 :REM SET SPEED TO 3.5 MHZ

40 SPEED 3.5 :REM SET SPEED TO 3.5 MHZ

233



SPRCOLOR
Token: $FE $08

Format: SPRCOLOR [{mc1, mc2}]

Usage: Sets multi-colour sprite colours.

SPRITE, which sets the attributes of a sprite, only sets the foreground
colour. For setting the additional two colours of multi-colour sprites, use
SPRCOLOR instead.

Remarks: The colours used with SPRCOLOR will affect all sprites. Refer to the
SPRITE command for more information.

Example: Using SPRCOLOR:

10 SPRITE 1,1,2,,,,1 :REM TURN SPRITE 1 ON (FG = 2)

20 SPRCOLOR 4,5 :REM MC1 = 4, MC2 = 5

234



SPRITE
Token: $FE $07

Format: SPRITE CLR
SPRITE LOAD filename [,D drive] [,U unit]
SPRITE SAVE filename [,D drive] [,U unit]
SPRITE num [{, switch, colour, prio, expx, expy, mode}]

Usage: SPRITE CLR clears all sprite data and sets all pointers and attributes to
their default values.

SPRITE LOAD loads sprite data from filename to sprite memory.

SPRITE SAVE saves sprite data from sprite memory to filename.

filename is either a quoted string such as "DATA", or a string expression in
brackets such as (FI$).

The last form switches a sprite on or off and sets its attributes:

num sprite number

switch 1:on, 0:off

colour sprite foreground colour

prio sprite (1) or screen (0) priority

expx 1:sprite X expansion

expy 1:sprite Y expansion

mode 1:multi-colour sprite

Remarks: SPRCOLORmust be used to set additional colours for multi-colour sprites
(mode = 1).

Example: Using SPRITE:

2290 CLR:SCNCLR:SPRITE CLR

2300 SPRITE LOAD "DEMOSPRITES1"

2320 FORI=0TO7: C=I: IFC=6THENC=8

2330 MOVSPR I, 60+30*I,0 TO 60+30*I,65+20*I, 3:SPRITE I,1,C,,1,1:NEXT: SLEEP3

2340 FORI=0TO7: SPRITE I,,,,0,0 :NEXT: SLEEP3: SPRITE CLR

2350 FORI=0TO7: MOVSPR I,45*I#5 :NEXT: FORI=0TO7: SPRITE I,1: NEXT

2360 FORI=0TO7:X=60+30*I:Y=65+20*I:DO

2370 LOOPUNTIL(X=RSPPOS(I,.))AND(Y=RSPPOS(I,1)):MOVSPRI,.#.:NEXT

235



SPRSAV
Token: $FE $16

Format: SPRSAV source, destination

Usage: Copies sprite data.

source sprite number or string variable.

destination sprite number or string variable.

Remarks: Source and destination can either be a sprite number or a string variable,

SPRSAV can be used with the basic form of sprites (C64 compatible)
only. These sprites occupy 64 bytes of memory, and create strings of
length 64, if the destination parameter is a string variable.

Extended sprites and variable height sprites cannot be used with
SPRSAV.

A string array of sprite data can be used to store many shapes and copy
them fast to the sprite memory with the command SPRSAV.

It’s also a convenient method to read or write shapes of single sprites
from or to a disk file.

Example: Using SPRSAV:

10 SPRITE LOAD "SPRITEDATA" :REM LOAD DATA FOR 8 SPRITES

20 SPRITE 1,1 :REM TURN SPRITE 1 ON

30 SPRSAV 1,2 :REM COPY SPRITE 1 DATA TO SPRITE 2

40 SPRITE 2,1 :REM TURN SPRITE 2 ON

50 SPRSAV 1,A$ :REM SAVE SPRITE 1 DATA IN STRING A$

236



SQR
Token: $BA

Format: SQR(numeric expression)

Usage: Returns the square root of the numeric expression.

Remarks: The argument must not be negative.

Example: Using SQR

PRINT SQR(2)

1.41421356

237



ST
Format: ST

Usage: ST holds the status of the last I/O operation. If ST is zero, there was no
error, otherwise it is set to a device dependent error code.

Remarks: ST is a reserved system variable.

Example: Using ST

100 MX=100:DIM T$(MX) :REM DATA ARRAY

110 DOPEN#1,"DATA" :REM OPEN FILE

120 IF DS THEN PRINT"COULD NOT OPEN":STOP

130 LINE INPUT#1,T$(N):N=N+1 :REM READ ONE RECORD

140 IF N>MX THEN PRINT "TOO MANY DATA":GOTO 160

150 IF ST=0 THEN 130 :REM ST = 64 FOR END-OF-FILE

160 DCLOSE#1

170 PRINT "READ";N;" RECORDS"

238



STEP
Token: $A9

Format: FOR index = start TO end [STEP step] ... NEXT [index]

Usage: STEP is an optional part of a FOR loop.

The index variable may be incremented or decremented by a constant
value after each iteration. The default is to increment the variable by 1.
The index variable must be a real variable.

start initial value of the index.

end is checked at the end of an iteration, and determines whether an-
other iteration will be performed, or if the loop will exit.

step defines the change applied to to the index at the end of a loop iter-
ation. Positive step values increment it, while negative values decrement
it. It defaults to 1.0 if not specified.

Remarks: For positive increments, end must be greater than or equal to start. For
negative increments, end must be less than or equal to start.

It is bad programming practice to change the value of the index variable
inside the loop or to jump into or out of a loop body with GOTO.

Example: Using STEP

10 FOR D=0 TO 360 STEP 30

20 R = D * ~ / 180

30 PRINT D;R;SIN(R);COS(R);TAN(R)

40 NEXT D

239



STOP
Token: $90

Format: STOP

Usage: Stops the execution of the BASIC program. A message will be displayed
showing the line number where the program stopped. The READY. prompt
appears and the computer goes into direct mode, waiting for keyboard
input.

Remarks: All variable definitions are still valid after STOP. They may be inspected
or altered, and the program may be continued with CONT. However, any
editing of the program source will disallow any further continuation.

Program execution can be resumed with CONT.

Example: Using STOP

10 IF V < 0 THEN STOP : REM NEGATIVE NUMBERS STOP THE PROGRAM

20 PRINT SQR(V) : REM PRINT SQUARE ROOT

240



STR$
Token: $C4

Format: STR$(numeric expression)

Usage: Returns a string containing the formatted value of the argument, as if it
were PRINTed to the string.

Example: Using STR$:

A$ = "THE VALUE OF PI IS " + STR$(~)

PRINT A$

THE VALUE OF PI IS 3.14159265

241



SYS
Token: $9E

Format: SYS address [{, areg, xreg, yreg, zreg, sreg}]

Usage: Calls a machine language subroutine. This can be a ROM-resident kernal
routine or any other routine which has previously been loaded or POKEd
to RAM.

The CPU registers are loaded with the arguments (if they’re specified),
then a subroutine call (JSR address) is performed. JSR is an assembly
language instruction that is short for Jump to SubRoutine. The called
routine should exit with an RTS instruction. RTS is another assembly lan-
guage instruction that is short for Return from Subroutine. After the sub-
routine has returned, the register contents will be saved, and the execu-
tion of the BASIC program will continue.

address start address of the subroutine.

If the address value is 16 bit ($0000 - $FFFF), the bank value, that is cur-
rently valid (see BANK) is examined. A bank value of 128 lets the current
mapping persist. That is: RAM is only available at the address range
($0000 - $1FFF), while BASIC ROM, KERNAL and I/O occupy the rest.
Short machine language programs may use the address range ($1800 -
$1FFF) which is only used by BASIC while a graphics screen is open.

If the address is higher than $FFFF, it is interpreted as a linear 24 bit
address and the value of BANK is ignored. The initial mapping is shown
in the following table:

Range Content
0000 - 1FFF bank 0 with direct page, stack, vectors

and interface routines
2000 - BFFF selected RAM bank:address bits 16-23
C000 - CFFF kernal ROM
D000 - DFFF I/O
E000 - EFFF editor ROM
F000 - FFFF kernal ROM and jump table

The RAM banks 0, 1, 4 and 5 may be used on a MEGA65 with the
SYS command. The attic RAM cannot be used for this purpose, because
the 24 bit address of the SYS command is limited to the lower 16MB of
the address range.

areg CPU accumulator value.

242



xreg CPU X register value.

yreg CPU Y register value.

zreg CPU Z register value.

sreg Status register value.

Remarks: The register values after a SYS call are stored in system memory. RREG
can be used to retrieve these values.

The SYS instruction on the MEGA65 is completely different to the well
known SYS command on the C64. It is not possible to have the BASIC
ROM and a BASIC program, in the same mapping because they occupy
the same address range.

Using SYS properly (i.e. without corrupting the system), requires some
technical skill, which is out of scope of the User’s Guide. However, if you
would like to learn more, there is a lot more information and examples in
the MEGA65 Developer’s Guide.

Example: Using SYS:

10 REM DEMO FOR SYS:CHANGING THE BORDER COLOUR

20 BANK 0

30 POKE $4000,$EE,$20,$D0,$60 :REM INC $D020:RTS

40 SYS $4000 :REM CALL SUBROUTINE AT $4000 / BANK $00

50 GETKEY A$:IF A$ <> "Q" THEN 40

243



TAB
Token: $A3

Format: TAB(column)

Usage: Positions the cursor at column.
This is only done if the target column is right of the current cursor column,
otherwise the cursor will not move. The column count starts with 0 being
the left-most column.

Remarks: This function shouldn’t be confused with TAB , which advances the cur-
sor to the next tab-stop.

Example: Using TAB

10 FOR I=1 TO 5

20 READ A$

30 PRINT "* " A$ TAB(10) " *"

40 NEXT I

50 END

60 DATA ONE,TWO,THREE,FOUR,FIVE

RUN

* ONE *

* TWO *

* THREE *

* FOUR *

* FIVE *

244



TAN
Token: $C0

Format: TAN(numeric expression)

Usage: Returns the tangent of the argument. The argument is expected in units
of radians. The result is in the range (-1.0 to +1.0)

Remarks: An argument in units of degrees can be converted to radians by multi-
plying it with π/180.

Example: Using TAN

PRINT TAN(0.7)

.84228838

X=45:PRINT TAN(X * ~ / 180)

.999999999

245



TEMPO
Token: $FE $05

Format: TEMPO speed

Usage: Sets the playback speed for PLAY.

speed 1-255.

The duration (in seconds) of a whole note is computed with duration =
24/speed.

Example: Using TEMPO

10 VOL 8

20 FOR T = 24 TO 18 STEP -2

30 TEMPO T

40 PLAY "T0M3O4QGAGFED","T2O4M5P0H.DP5GB","T5O3IGAGAGAABABAB"

50 IF RPLAY(1) THEN GOTO 50

60 NEXT T

70 PLAY "T0O5QCO4GEH.C","T2O5IEFEDEDCEGO6P8CP0R","T5O3ICDCDEFEDCO4C"

246



THEN
Token: $A7

Format: IF expression THEN true clause [ELSE false clause]

Usage: THEN is part of an IF statement.

expression is a logical or numeric expression. A numeric expression is
evaluated as FALSE if the value is zero and TRUE for any non-zero value.

true clause one or more statements starting directly after THEN on the
same line. A line number after THEN performs a GOTO to that line in-
stead.

false clause one or more statements starting directly after ELSE on the
same line. A linenumber after ELSE performs aGOTO to that line instead.

Remarks: The standard IF ... THEN ... ELSE structure is restricted to a single line.
But the true clause and false clause may be expanded to several lines
using a compound statement surrounded with BEGIN and BEND.

Example: Using THEN

1 REM THEN

10 RED$=CHR$(28) : BLACK$=CHR$(144) : WHITE$=CHR$(5)

20 INPUT "ENTER A NUMBER";V

30 IF V<0 THEN PRINT RED$; : ELSE PRINT BLACK$;

40 PRINT V : REM PRINT NEGATIVE NUMBERS IN RED

50 PRINT WHITE$

60 INPUT "END PROGRAM: (Y/N)"; A$

70 IF A$="Y" THEN END

80 IF A$="N" THEN 20 : ELSE 60

247



TI
Format: TI

Usage: TI is a high precision timer with a resolution of 1 micro second.

It is started or reset with CLR TI, and can be accessed in the same way
as any other variable in expressions.

Remarks: TI is a reserved system variable. The value in TI is the number of seconds
(to 6 decimal places) since it was last cleared or started.

Example: Using TI

100 CLR TI :REM START TIMER

110 FOR I%=1 TO 10000:NEXT :REM DO SOMETHING

120 ET = TI :REM STORE ELAPSED TIME IN ET

130 PRINT "EXECUTION TIME:";ET;" SECONDS"

248



TI$
Format: TI$

Usage: TI$ stores the time information of the RTC (Real-Time Clock) in text form,
using the format: ”hh:mm:ss”. It is updated with every use.

TI$ is a read-only variable, which reads the registers of the RTC and
formats the values to a string.

Remarks: TI$ is a reserved system variable.

It is possible to access the RTC registers directly via PEEK. The start ad-
dress of the registers is at $FFD7110.

For more information on how to set the Real-Time Clock, refer to the
Configuration Utility section on page ??.

100 REM ****** READ RTC ****** ALL VALUES ARE BCD ENCODED

110 RT = $FFD7110 :REM ADDRESS OF RTC

120 FOR I=0 TO 5 :REM SS,MM,HH,DD,MO,YY

130 T(I)=PEEK(RT+I) :REM READ REGISTERS

140 NEXT I :REM USE ONLY LAST TWO DIGITS

150 T(2) = T(2) AND 127 :REM REMOVE 24H MODE FLAG

160 T(5) = T(5) + $2000 :REM ADD YEAR 2000

170 FOR I=2 TO 0 STEP -1 :REM TIME INFO

180 PRINT USING ">## ";HEX$(T(I));

190 NEXT I

RUN

12 52 36

Example: Using TI$

PRINT DT$;TI$

05-APR-2021 15:10:00

249



TO
Token: $A4

Format: keyword TO

Usage: TO is a secondary keyword used in combination with primary keywords,
such as BACKUP, BSAVE, CHANGE, CONCAT, COPY, FOR, GO, RE-
NAME, and SET DISK

Remarks: TO cannot be used on its own.

Example: Using TO

10 GO TO 1000 :REM AS GOTO 1000

20 GOTO 1000 :REM SHORTER AND FASTER

30 FOR I=1 TO 10 :REM TO IS PART OF THE LOOP

40 PRINT I:NEXT :REM LOOP END

50 COPY "CODES" TO "BACKUP" :REM COPY SINGLE FILE

250



TRAP
Token: $D7

Format: TRAP [line number]

Usage: TRAP with a valid line number registers the BASIC error handler. When a
program has an error handler, the run-time behaviour changes. Normally,
BASIC will exit the program and display an error message.

However, if a BASIC error handler has been registered, BASIC will instead
save the execution pointer and line number, place the error number into
the system variable ER, andGOTO the line number of TRAP. The trapping
routine can examine ER and process the error. From this, the TRAP error
handler can then decide whether to STOP or RESUME execution.

TRAP with no argument disables the error handler, and errors will then
be handled by the normal system routines.

Example: Using TRAP

10 TRAP 100

20 FOR I=1 TO 100

30 PRINT EXP(I)

40 NEXT

50 PRINT "STOPPED FOR I =";I

60 END

100 PRINT ERR$(ER): RESUME 50

251



TROFF
Token: $D9

Format: TROFF

Usage: Turns off trace mode (switched on by TRON).

Example: Using TROFF

10 TRON :REM ACTIVATE TRACE MODE

20 FOR I=85 TO 100

30 PRINT I;EXP(I)

40 NEXT

50 TROFF :REM DEACTIVATE TRACE MODE

RUN

[10][20][30] 85 8.22301268E+36

[40][30] 86 2.2352466E+37

[40][30] 87 6.0760302E+37

[40][30] 88 1.65163625E+38

[40][30] 89

?OVERFLOW ERROR IN 30

READY.

252



TRON
Token: $D8

Format: TRON

Usage: Turns on trace mode.

Example: Using TRON

10 TRON :REM ACTIVATE TRACE MODE

20 FOR I=85 TO 100

30 PRINT I;EXP(I)

40 NEXT

50 TROFF :REM DEACTIVATE TRACE MODE

RUN

[10][20][30] 85 8.22301268E+36

[40][30] 86 2.2352466E+37

[40][30] 87 6.0760302E+37

[40][30] 88 1.65163625E+38

[40][30] 89

?OVERFLOW ERROR IN 30

READY.

253



TYPE
Token: $FE $27

Format: TYPE filename [,D drive] [,U unit]

Usage: Prints the contents of a file containing text encoded as PETSCII.

filename is either a quoted string such as "DATA", or a string expression in
brackets such as (FI$).

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units such
as the 1541, 1571, or 1581.

unit device number on the IEC bus. Typically in the range from 8 to 11
for disk units. If a variable is used, it must be placed in brackets. The unit
# defaults to 8.

Remarks: TYPE cannot be used to print BASIC programs. Use LIST for programs
instead. TYPE can only process SEQ or USR files containing records of
PETSCII text, delimited by the CR character.

The CR character is also knows as carriage return, and can be created
by using CHR$(13) .

Example: Using TYPE

TYPE "README"

TYPE "README 1ST",U9

254



UNLOCK
Token: $FE $4F

Format: UNLOCK filename/pattern [,D drive] [,U unit]

Usage: Used to unlock files. The specified file or a set of files, that matches the
pattern, is unlocked and nomore protected. It can be deleted afterwards
with the commands DELETE, ERASE or SCRATCH

The command LOCK applies the lock.

filename is either a quoted string such as "DATA", or a string expression in
brackets such as (FI$).

drive drive # in dual drive disk units.
The drive # defaults to 0 and can be omitted on single drive units such
as the 1541, 1571, or 1581.

unit device number on the IEC bus. Typically in the range from 8 to 11
for disk units. If a variable is used, it must be placed in brackets. The unit
# defaults to 8.

Remarks: Unlocking a file, that is already unlocked, has no effect.

In direct mode the number of unlocked files is printed. The second to last
number from the message contains the number of unlocked files,

Examples: Using UNLOCK

UNLOCK "SNOOPY",U9 :REM UNLOCK FILE SNOOPY ON UNIT 9

03,FILES UNLOCKED,01,00

UNLOCK "BS*" :REM UNLOCK ALL FILES BEGINNING WITH "BS"

03,FILES UNLOCKED,04,00

255



UNTIL
Token: $FC

Format: DO ... LOOP
DO [<UNTIL | WHILE> logical expression]
. . . statements [EXIT]
LOOP [<UNTIL | WHILE> logical expression]

Usage: DO and LOOP define the start of a BASIC loop. Using DO and LOOP
alone without any modifiers creates an infinite loop, which can only be
exited by the EXIT statement. The loop can be controlled by adding
UNTIL or WHILE after the DO or LOOP.

Remarks: DO loops may be nested. An EXIT statement exits the current loop only.

Examples: Using DO and LOOP.

10 PW$="":DO

20 GET A$:PW$=PW$+A$

30 LOOP UNTIL LEN(PW$)>7 OR A$=CHR$(13)

10 DO : REM WAIT FOR USER DECISION

20 GET A$

30 LOOP UNTIL A$="Y" OR A$="N" OR A$="y" OR A$="n"

10 DO WHILE ABS(EPS) > 0.001

20 GOSUB 2000 : REM ITERATION SUBROUTINE

30 LOOP

10 I%=0 : REM INTEGER LOOP 1-100

20 DO I%=I%+1

30 LOOP WHILE I% < 101

256



USING
Token: $FB

Format: PRINT[# channel,] USING format; argument

Usage: Parses the format string and evaluates the argument. The argument can
be either a string or a numeric value. The format of the resulting output
is directed by the format string.

channel number, which was given to a previous call to commands such
as APPEND, DOPEN, or OPEN. If no channel is specified, the output goes
to the screen.

format string variable or a string constant which defines the rules for
formatting. When using a number as the argument, formatting can be
done in either CBM style, providing a pattern such as ###.## or in C style
using a <width.precision> specifier, such as %3D %7.2F %4X .

argument the number to be formatted. If the argument does not fit into
the format e.g. trying to print a 4 digit variable into a series of three
hashes (###), asterisks will be used instead.

Remarks: The format string is only applied for one argument, but it is possible to
append more than one USING format;argument sequences.

argument may consist of printable characters and control codes. Print-
able characters are printed to the cursor position, while control codes
are executed. The number of # characters sets the width of the output. If
the first character of the format string is an equals ’=’ sign, the argument
string is centered. If the first character of the format string is a greater
than ’>’ sign, the argument string is right justified.

257



Example: USING with a corresponding PRINT#

PRINT USING "##.##";~, USING " [%6.4F] ";SQR(2)

3.14 [1.4142]

PRINT USING " < # # # > ";12*31

< 3 7 2 >

PRINT USING "###"; "ABCDE"

ABC

PRINT USING ">###"; "ABCDE"

CDE

PRINT USING "ADDRESS:$%4X";65000

ADDRESS:$FDE8

A$="###,###,###.#":PRINT USING A$;1E8/3

33,333,333.3

258



USR
Token: $B7

Format: USR(numeric expression)

Usage: Invokes an assembly language routine whose memory address is stored
at $02F8 - $02F9. The result of the numeric expression is written to
floating point accumulator 1.

After executing the assembly routine, BASIC returns the contents of the
floating point accumulator 1.

Remarks: Banks 0-127 give access to RAM or ROM banks. Banks greater than 127
are used to access I/O, and the underlying system hardware such as the
VIC, SID, FDC, etc.

If you would like to learn more, there is a lot more information and exam-
ples in the MEGA65 Developer’s Guide.

Example: Using USR

10 UX = DEC("7F00") :REM ADDRESS OF USER ROUTINE

20 BANK 128 :REM SELECT SYSTEM BANK

30 BLOAD "ML-PROG",P(UX) :REM LOAD USER ROUTINE

40 POKE (DEC("2F8")),UX AND 255 :REM USR JUMP TARGET LOW

50 POKE (DEC("2F9")),UX / 256 :REM USR JUMP TARGET HIGH

60 PRINT USR(~) :REM PRINT RESULT FOR ARGUMENT PI

259



VAL
Token: $C5

Format: VAL(string expression)

Usage: Converts a string to a floating point value.

This function acts in the same way as reading from a string.

Remarks: A string containing an invalid number will not produce an error, but return
0 as the result instead.

Example: Using VAL

PRINT VAL("78E2")

7800

PRINT VAL("7+5")

7

PRINT VAL("1.256")

1.256

PRINT VAL("$FFFF")

0

260



VERIFY
Token: $95

Format: VERIFY filename [, unit [, binflag]]

Usage: VERIFY with no binflag compares a BASIC program in memory with a
disk file of type PRG. It does the same as DVERIFY, but the syntax is
different.

VERIFY with binflag compares a binary file in memory with a disk file of
type PRG. It does the same as BVERIFY, but the syntax is different.

filename is either a quoted string, e.g. "PROG" or a string expression.

unit device number on the IEC bus. Typically in the range from 8 to 11
for disk units. If a variable is used, it must be placed in brackets. The unit
# defaults to 8.

Remarks: VERIFY can only test for equality. It gives no information about the num-
ber or position of different valued bytes. VERIFY exits with either the
message OK or with VERIFY ERROR.

VERIFY is obsolete in BASIC 65. It is only here for backwards compati-
bility. It is recommended to use DVERIFY and BVERIFY instead.

Examples: Using VERIFY

VERIFY "ADVENTURE"

VERIFY "ZORK-I",9

VERIFY "1:DUNGEON",10

261



VIEWPORT
Token: $FE $31

Format: VIEWPORT CLR
VIEWPORT DEF x, y, width, height

Usage: VIEWPORT DEF defines a clipping region with the origin (upper left po-
sition) set to x, y and the width and height. All following graphics com-
mands are limited to the VIEWPORT region.

VIEWPORT CLR fills the clipping region with the color of the drawing
pen.

Remarks: The clipping region can be reset to full screen by the command
VIEWPORT DEF 0,0,WIDTH,HEIGHT using the same values for WIDHTH and HEIGHT as
in the SCREEN command.

Example: Using VIEWPORT

10 SCREEN 320,200,2

20 VIEWPORT DEF 20,30,100,120 :REM REGION 20->119, 30->149

30 PEN 1 :REM SELECT COLOUR 1

40 VIEWPORT CLR :REM FILL REGION WITH COLOUR OF PEN

50 GETKEY A$ :REM WAIT FOR KEYPRESS

60 SCREEN CLOSE

262



VOL
Token: $DB

Format: VOL volume

Usage: Sets the volume for sound output with SOUND or PLAY.

volume 0 (off) to 15 (loudest).

Remarks: This volume setting affects all voices.

Example: Using VOL

10 TEMPO 22

20 FOR V = 2 TO 8 STEP 2

30 VOL V

40 PLAY "T0M3O4QGAGFED","T2O4M5P0H.DP5GB","T5O3IGAGAGAABABAB"

50 IF RPLAY(1) THEN GOTO 50

60 NEXT V

70 PLAY "T0O5QCO4GEH.C","T2O5IEFEDEDCEGO6P9CP0R","T5O3ICDCDEFEDCO4C"

263



WAIT
Token: $92

Format: WAIT address, andmask [, xormask]

Usage: Pauses the BASIC program until a requested bit pattern is read from the
given address.

address the address at the current memory bank, which is read.

andmask AND mask applied.

xormask XOR mask applied.

WAIT reads the byte value from address and applies the masks:
result = PEEK(address) AND andmask XOR xormask.

The pause ends if the result is non-zero, otherwise reading is repeated.
This may hang the computer indefinitely if the condition is never met.

Remarks: WAIT is typically used to examine hardware registers or system variables
and wait for an event, e.g. joystick event, mouse event, keyboard press
or a specific raster line is about to be drawn to the screen.

Example: Using WAIT

10 BANK 128

20 WAIT 211,1 :REM WAIT FOR SHIFT KEY BEING PRESSED

264



WHILE
Token: $ED

Format: DO ... LOOP
DO [<UNTIL | WHILE> logical expression]
. . . statements [EXIT]
LOOP [<UNTIL | WHILE> logical expression]

Usage: DO and LOOP define the start of a BASIC loop. Using DO and LOOP
alone without any modifiers creates an infinite loop, which can only be
exited by the EXIT statement. The loop can be controlled by adding
UNTIL or WHILE after the DO or LOOP.

Remarks: DO loops may be nested. An EXIT statement exits the current loop only.

Examples: Using DO and LOOP

10 PW$="":DO

20 GET A$:PW$=PW$+A$

30 LOOP UNTIL LEN(PW$)>7 OR A$=CHR$(13)

10 DO : REM WAIT FOR USER DECISION

20 GET A$

30 LOOP UNTIL A$="Y" OR A$="N" OR A$="y" OR A$="n"

10 DO WHILE ABS(EPS) > 0.001

20 GOSUB 2000 : REM ITERATION SUBROUTINE

30 LOOP

10 I%=0 : REM INTEGER LOOP 1-100

20 DO I%=I%+1

30 LOOP WHILE I% < 101

265



WINDOW
Token: $FE $1A

Format: WINDOW left, top, right, bottom [, clear]

Usage: Sets the text screen window.

left left column

top top row

right right column

bottom bottom row

clear clear text window flag

Remarks: The row values range from 0 to 24. The column values range from 0 to
either 39 or 79. This depends on the screen mode.

There can be only one window on the screen. Pressing CLR
HOME twice or

PRINTing CHR$(19)CHR$(19) will reset the window to the default (full
screen).

Example: Using WINDOW

10 WINDOW 0,1,79,24 :REM SCREEN WITHOUT TOP ROW

20 WINDOW 0,0,79,24,1 :REM FULL SCREEN WINDOW CLEARED

30 WINDOW 0,12,79,24 :REM LOWER HALF OF SCREEN

40 WINDOW 20,5,59,15 :REM SMALL CENTRED WINDOW

266



XOR
Token: $E9

Format: operand XOR operand

Usage: The Boolean XOR operator performs a bit-wise logical exclusive OR op-
eration on two 16-bit values. Integer operands are used as they are.
Real operands are converted to a signed 16-bit integer (losing preci-
sion). Logical operands are converted to 16-bit integer using $FFFF,
(decimal -1) for TRUE, and $0000 (decimal 0) for FALSE.

Expression Result
0 XOR 0 0

0 XOR 1 1

1 XOR 0 1

1 XOR 1 0

Remarks: The result is of type integer. If the result is used in a logical context,
the value of 0 is regarded as FALSE, and all other non-zero values are
regarded as TRUE.

Example: Using XOR

FOR I = 0 TO 8: PRINT I XOR 5;: NEXT I

5 4 7 6 1 0 3 2 13

267



268



CHAPTER 3
Special Keyboard Controls and

Sequences
• PETSCII Codes and CHR$

• Control codes

• Shifted codes

• Escape Sequences



270



PETSCII CODES AND CHR$
In BASIC, PRINT CHR$(X) can be used to print a character from a PETSCII code. Below is the
full table of PETSCII codes you can print by index. For example, while in the default
uppercase/graphics mode, by using index 65 from the table below as: PRINT CHR$(65) you
will print the letter A. You can read more about CHR$ on page 45.

You can also do the reverse with the ASC statement. For example: PRINT ASC("A") will
output 65, which matches the code in the table.

Note: Function key (F1-F14 + HELP) values in this table are not intended to be printed
via CHR$(), but rather to allow function-key input to be assessed in BASIC programs via
the GET / GETKEY commands.

0

1

2 UNDERLINE ON

3

4

5 WHITE

6

7 BELL

8

9 TAB

10 LINEFEED

11 DISABLE
SHIFT

`

12 ENABLE
SHIFT

`

13 RETURN

14 LOWER CASE

15 BLINK/FLASH ON

16 F9

17 ↓

18 RVS ON

19 CLR
HOME

20 INST
DEL

21 F10 / BACK WORD

22 F11

23 F12 / NEXT WORD

24 SET/CLEAR TAB

25 F13

26 F14 / BACK TAB

27 ESCAPE

28 RED

29 →

30 GREEN

31 BLUE

32 SPACE

33 !

34 ”

35 #

36 $

37 %

38 &

39 ’

40 (

41 )

42 *

43 +

44 ,

45 -

46 .

47 /

48 0

49 1

50 2

51 3

52 4

53 5

54 6

55 7

56 8

57 9

58 :

59 ;

60 <

61 =

62 >

63 ?

64 @

65 A

66 B

67 C

68 D

69 E

70 F

71 G

72 H

73 I

74 J

75 K

76 L

271



77 M

78 N

79 O

80 P

81 Q

82 R

83 S

84 T

85 U

86 V

87 W

88 X

89 Y

90 Z

91 [

92 £

93 ]

94 ↑

95 ←

96 C

97 A

98 B

99 C

100 D

101 E

102 F

103 G

104 H

105 I

106 J

107 K

108 L

109 M

110 N

111 O

112 P

113 Q

114 R

115 S

116 T

117 U

118 V

119 W

120 X

121 Y

122 Z

123 +

124 -

125 B

126 \

127 ]

128

129 ORANGE

130 UNDERLINE OFF

131

132 HELP

133 F1

134 F3

135 F5

136 F7

137 F2

138 F4

139 F6

140 F8

141 SHIFT RETURN

142 UPPERCASE

143 BLINK/FLASH OFF

144 BLACK

145 ↑

146 RVS
OFF

147 SHIFT CLR
HOME

148 SHIFT INST
DEL

149 BROWN

150 LT. RED

151 DK. GRAY

152 GRAY

153 LT. GREEN

154 LT. BLUE

155 LT. GRAY

156 PURPLE

157 ←

158 YELLOW

159 CYAN

160 SPACE

161 k

162 i

163 t

164 [

165 g

166 =

167 m

168 /

169 ?

170 v

171 q

172 d

173 z

174 s

175 n

176 a

177 e

178 r

179 w

180 h

181 j

182 l

183 y

184 u

185 p

186 {

187 f

188 c

189 x

190 v

191 b

272



Note 1: Codes from 192 to 223 are the equal to 96 to 127. Codes from 224 to 254
are equal to 160 to 190, and code 255 is equal to 126.

Note 2: While using lowercase/uppercase mode (by pressing ` + SHIFT ), be aware
that:

• The uppercase letters in region 65-90 of the above table are replaced with
lowercase letters.

• The graphical characters in region 97-122 of the above table are replaced with
uppercase letters.

• PETSCII’s lowercase (65-90) and uppercase (97-122) letters are in ASCII’s up-
percase (65-90) and lowercase (97-122) letter regions.

CONTROL CODES

Keyboard Control Function

Colours

CTRL + 1 to 8

Choose from the first range of
colours. More information on the
colours available is under the BASIC
BACKGROUND command on page
23.

` + 1 to 8 Choose from the second range of
colours.

CTRL + E Restores the colour of the cursor
back to the default (white).

CTRL + D

Switches the VIC-IV to colour range
0-15 (default colours). These
colours can be accessed with CTRL

and keys 1 to 8 (for the first 8

colours), or ` and keys 1 to

8 (for the remaining 8 colours).

273



Keyboard Control Function

CTRL + A

Switches the VIC-IV to colour range
16-31 (alternate/rainbow colours).
These colours can be accessed with
CTRL and keys 1 to 8 (for the

first 8 colours), or ` and keys

1 to 8 (for the remaining 8
colours).

Tabs

CTRL + Z

Tabs the cursor to the left. If there
are no tab positions remaining, the
cursor will remain at the start of the
line.

CTRL + I

Tabs the cursor to the right. If there
are no tab positions remaining, the
cursor will remain at the end of the
line.

CTRL + X

Sets or clears the current screen
column as a tab position. Use CTRL

+ Z and I to jump back and

forth to all positions set with X .

Movement

CTRL + Q Moves the cursor down one line at a
time. Equivalent to ↓ .

CTRL + J

Moves the cursor down a position. If
you are on a long line of BASIC
code that has extended to two lines,
then the cursor will move down two
rows to be on the next line.

CTRL + ] Equivalent to → .

274



Keyboard Control Function

CTRL + T

Backspace the character
immediately to the left and to shift
all rightmost characters one position
to the left. This is equivalent to
INST
DEL .

CTRL + M Performs a carriage return,

equivalent to RETURN .

Word movement

CTRL + U

Moves the cursor back to the start
of the previous word. If there are no
words between the current cursor
position and the start of the line, the
cursor will move to the first column
of the current line.

CTRL + W

Advances the cursor forward to the
start of the next word. If there are
no words between the cursor and
the end of the line, the cursor will
move to the first column of the next
line.

Scrolling

CTRL + P Scroll BASIC listing down one line.
Equivalent to F9 .

CTRL + V Scroll BASIC listing up one line.
Equivalent to F11 .

CTRL + S Equivalent to NO
SCROLL .

Formatting

CTRL + B
Enables underline text mode. You
can disable underline mode by

pressing ESC , then O .

275



Keyboard Control Function

CTRL + O
Enables flashing text mode. You can
disable flashing mode by pressing
ESC , then O .

Casing

CTRL + N Changes the text case mode from
uppercase to lowercase.

CTRL + K
Locks the uppercase/lowercase
mode switch usually performed with
` + SHIFT .

CTRL + L
Enables the uppercase/lowercase
mode switch that is performed with

the ` + SHIFT .

Miscellaneous

CTRL + G Produces a bell tone.
CTRL + [ Equivalent to pressing ESC .
CTRL + * Enters the Matrix Mode Debugger.

SHIFTED CODES

Keyboard Control Function

SHIFT + INST
DEL

Insert a character at the current
cursor position and move all
characters to the right by one
position.

SHIFT + HOME
Clear home, clear the entire screen,
and move the cursor to the home
position.

276



ESCAPE SEQUENCES
To perform an Escape Sequence, press and release ESC , then press one of the fol-
lowing keys to perform the sequence:

Key Sequence

Editor behaviour

ESC X Clears the screen and toggles
between 40 and 80-column modes.

ESC 4 Clears the screen and switches to
40 column mode.

ESC 8 Clears the screen and switches to
80 column mode.

ESC @
Clears a region of the screen,
starting from the current cursor
position, to the end of the screen.

ESC O Cancels the quote, reverse,
underline, and flash modes.

Scrolling

ESC V Scrolls the entire screen up one line.

ESC W Scrolls the entire screen down one
line.

ESC L Enables scrolling when ↓ is
pressed at the bottom of the screen.

ESC M

Disables scrolling. When pressing
↓ at the bottom of the screen,

the cursor will move to the top of
the screen. However, when pressing
↑ at the top of the screen, the

cursor will remain on the first line.

Insertion and deletion

277



Key Sequence

ESC I
Inserts an empty line at the current
cursor position and moves all
subsequent lines down one position.

ESC D
Deletes the current line and moves
lines below the cursor up one
position.

ESC P Erases all characters from the cursor
to the start of the current line.

ESC Q Erases all characters from the cursor
to the end of the current line.

Movement

ESC J Moves the cursor to the start of the
current line.

ESC K
Moves the cursor to the last
non-whitespace character on the
current line.

ESC ↑

Saves the current cursor position.

Use ESC ← (next to 1 ) to
move it back to the saved position.
Note that the ↑ used here is next

to RESTORE .

ESC ←

Restores the cursor position to the
position stored via a prior a press of

the ESC ↑ (next to RESTORE ) key

sequence. Note that the ← used

here is next to 1 .

Windowing

278



Key Sequence

ESC T

Sets the top-left corner of the
windowed area. All typed
characters and screen activity will
be restricted to the area. Also see
ESC B . Windowed mode can be

disabled by pressing CLR
HOME twice.

ESC B

Sets the bottom right corner of the
windowed area. All typed
characters and screen activity will
be restricted to the area. Also see
ESC T . Windowed mode can be

disabled by pressing CLR
HOME twice.

Cursor behaviour

ESC A

Enables auto-insert mode. Any keys
pressed will be inserted at the
current cursor position, shifting all
characters on the current line after
the cursor to the right by one
position.

ESC C Disables auto-insert mode, reverting
back to overwrite mode.

ESC E Sets the cursor to non-flashing
mode.

ESC F Sets the cursor to regular flashing
mode.

Bell behaviour

ESC G Enables the bell which can be
sounded using CTRL and G .

ESC H Disable the bell so that pressing
CTRL and G will have no effect.

Colours

279



Key Sequence

ESC U

Switches the VIC-IV to colour range
0-15 (default colours). These
colours can be accessed with CTRL

and keys 1 to 8 (for the first 8

colours), or ` and keys 1 to

8 (for the remaining colours).

ESC S

Switches the VIC-IV to colour range
16-31 (alternate/rainbow colours).
These colours can be accessed with
CTRL and keys 1 to 8 (for the

first 8 colours), or ` and keys

1 to 8 (for the remaining
colours).

Tabs

ESC Y Set the default tab stops (every 8
spaces) for the entire screen.

ESC Z
Clears all tab stops. Any tabbing

with CTRL and I will move the
cursor to the end of the line.

280



CHAPTER 4
Supporters & Donors

• Organisations

• Contributors

• Supporters



282



The MEGA65 would not have been possible to create without the generous support
of many organisations and individuals.

We are still compiling these lists, so apologies if we haven’t included you yet. If you
know anyone we have left out, please let us know, so that we can recognise the con-
tribution of everyone who has made the MEGA65 possible, and into the great retro-
computing project that it has become.

ORGANISATIONS
The MEGA Museum of Electronic Games & Art e.V. Germany
EVERYTHING

Trenz Electronik, Germany
MOTHERBOARD

Hintsteiner, Austria
CASE

GMK, Germany
KEYBOARD

283



CONTRIBUTORS
Andreas Liebeskind Dr. Canan Hastik
(libi in paradize) (indica)
CFO MEGA eV Chairwoman MEGA eV

Thomas Hertzler Simon Jameson
(grumpyninja) (Shallan)
USA Spokesman Platform Enhancements

Russell Peake Stephan Kleinert
(rdpeake) (ubik)
Bug Herding Destroyer of BASIC 10

Alexander Nik Petra Wayne Johnson
(n0d) (sausage)
Early Case Design Manual Additions

Ralph Egas Lukas Kleiss
(0-limits) (LAK132)
Business Advisor MegaWAT Presentation Software

Lucas Moss Maurice van Gils
(Maurice)

MEGAphone PCB Design BASIC 65 example programs

Daren Klamer Andrew Owen
(Impakt) (Cheveron)
Manual proof-reading Keyboard, Sinclair Support

284



SUPPORTERS
@11110110100 Arne Neumann Christian Gräfe
3c74ce64 Arne Richard Tyarks Christian Heffner
8-Bit Classics Axel Klahr Christian Kersting
Aaron Smith Balaz Ondrej Christian Schiller
Achim Mrotzek Barry Thompson Christian Streck
Adolf Nefischer Bartol Filipovic Christian Weyer
Adrian Esdaile Benjamin Maas Christian Wyk
Adrien Guichard Bernard Alaiz Christoph Haug
Ahmed Kablaoui Bernhard Zorn Christoph Huck
Alan Bastian Witkowski Bieno Marti-Braitmaier Christoph Pross
Alan Field Bigby Christopher Christopher
Alastair Paulin-Campbell Bill LaGrue Christopher Kalk
Alberto Mercuri Bjoerg Stojalowski Christopher Kohlert
Alexander Haering Björn Johannesson Christopher Nelson
Alexander Kaufmann Bjørn Melbøe Christopher Taylor
Alexander Niedermeier Bo Goeran Kvamme Christopher Whillock
Alexander Soppart Boerge Noest Claudio Piccinini
Alfonso Ardire Bolko Beutner Claus Skrepek
Amiga On The Lake Brett Hallen Collen Blijenberg
André Kudra Brian Gajewski Constantine Lignos
André Simeit Brian Green Crnjaninja
André Wösten Brian Juul Nielsen Daniel Auger
Andrea Farolfi Brian Reiter Daniel Julien
Andrea Minutello Bryan Pope Daniel Lobitz
Andreas Behr Burkhard Franke Daniel O’Connor
Andreas Freier Byron Goodman Daniel Teicher
Andreas Grabski Cameron Roberton (KONG) Daniel Tootill
Andreas Millinger Carl Angervall Daniel Wedin
Andreas Nopper Carl Danowski Daniele Benetti
Andreas Ochs Carl Stock Daniele Gaetano Capursi
Andreas Wendel Manufaktur Carl Wall Dariusz Szczesniak
Andreas Zschunke Carlo Pastore Darrell Westbury
Andrew Bingham Carlos Silva David Asenjo Raposo
Andrew Dixon Carsten Sørensen David Dillard
Andrew Mondt Cenk Miroglu Miroglu David Gorgon
Andrzej Hłuchyj Chang sik Park David Norwood
Andrzej Sawiniec Charles A. Hutchins Jr. David Raulo
Andrzej Śliwa Chris Guthrey David Ross
Anthony W. Leal Chris Hooper de voughn accooe
Arkadiusz Bronowicki Chris Stringer Dean Scully
Arkadiusz Kwasny Christian Boettcher Dennis Jeschke
Arnaud Léandre Christian Eick Dennis Schaffers
Arne Drews Christian Gleinser Dennis Schierholz

285



Dennis Schneck Frank Haaland Hendrik Fensch
denti Frank Hempel Henning Harperath
Dick van Ginkel Frank Koschel Henri Parfait
Diego Barzon Frank Linhares Henrik Kühn
Dierk Schneider Frank Sleeuwaert Holger Burmester
Dietmar Krueger Frank Wolf Holger Sturk
Dietmar Schinnerl FranticFreddie Howard Knibbs
Dirk Becker Fredrik Ramsberg Hubert de Hollain
Dirk Wouters Fridun Nazaradeh Huberto Kusters
Domingo Fivoli Friedel Kropp Hugo Maria Gerardus v.d. Aa
DonChaos Garrick West Humberto Castaneda
Donn Lasher Gary Lake-Schaal Ian Cross
Douglas Johnson Gary Pearson IDE64 Staff
Dr. Leopold Winter Gavin Jones Igor Ianov
Dusan Sobotka Geir Sigmund Straume Immo Beutler
Earl Woodman Gerd Mitlaender Ingo Katte
Ed Reilly Giampietro Albiero Ingo Keck
Edoardo Auteri Giancarlo Valente Insanely Interested Publishing
Eduardo Gallardo Gianluca Girelli IT-Dienstleistungen Obsieger
Eduardo Luis Arana Giovanni Medina Ivan Elwood
Eirik Juliussen Olsen Glen Fraser Jaap HUIJSMAN
Emilio Monelli Glen R Perye III Jace Courville
EP Technical Services Glenn Main Jack Wattenhofer
Epic Sound Gordon Rimac Jakob Schönpflug
Erasmus Kuhlmann GRANT BYERS Jakub Tyszko
ergoGnomik Grant Louth James Hart
Eric Hilaire Gregor Bubek James Marshburn
Eric Hildebrandt Gregor Gramlich James McClanahan
Eric Hill Guido Ling James Sutcliffe
Eric Jutrzenka Guido von Gösseln Jan Bitruff
Erwin Reichel Guillaume Serge Jan Hildebrandt
Espen Skog Gunnar Hemmerling Jan Iemhoff
Evangelos Mpouras Günter Hummel Jan Kösters
Ewan Curtis Guy Simmons Jan Peter Borsje
Fabio Zanicotti Guybrush Threepwood Jan Schulze
Fabrizio Di Dio Hakan Blomqvist Jan Stoltenberg-Lerche
Fabrizio Lodi Hans Pronk Janne Tompuri
FARA Gießen GmbH Hans-Jörg Nett Jannis Schulte
FeralChild Hans-Martin Zedlitz Jari Loukasmäki
First Choice Auto’s Harald Dosch Jason Smith
Florian Rienhardt Harri Salokorpi Javier Gonzalez Gonzalez
Forum64. de Harry Culpan Jean-Paul Lauque
Francesco Baldassarri Heath Gallimore Jeffrey van der Schilden
Frank Fechner Heinz Roesner Jens Schneider
Frank Glaush Heinz Stampfli Jens-Uwe Wessling
Frank Gulasch Helge Förster Jesse DiSimone

286



Jett Adams Kevin Thomasson Marco van de Water
Johan Arneklev Kim Jorgensen Marcus Gerards
Johan Berntsson Kim Rene Jensen Marcus Herbert
Johan Svensson Kimmo Hamalainen Marcus Linkert
Johannes Fitz Konrad Buryło Marek Pernicky
John Cook Kosmas Einbrodt Mario Esposito
John Deane Kurt Klemm Mario Fetka
John Dupuis Lachlan Glaskin Mario Teschke
John Nagi Large bits collider Mariusz Tymków
John Rorland Lars Becker Mark Adams
John Sargeant Lars Edelmann Mark Anderson
John Traeholt Lars Slivsgaard Mark Green
Jon Sandelin Lasse Lambrecht Mark Hucker
Jonas Bernemann Lau Olivier Mark Leitiger
Jonathan Prosise Lee Chatt Mark Spezzano
Joost Honig Loan Leray Mark Watkin
Jordi Pakey-Rodriguez Lorenzo Quadri Marko Rizvic
Jöre Weber Lorenzo Travagli Markus Bieler
Jörg Jungermann Lorin Millsap Markus Bonet
Jörg Schaeffer Lothar James Foss Markus Dauberschmidt
Jörg Weese Lothar Serra Mari Markus Fehr
Josef Hesse Luca Papinutti Markus Fuchs
Josef Soucek Ludek Smetana Markus Guenther-Hirn
Josef Stohwasser Lukas Burger Markus Liukka
Joseph Clifford Lutz-Peter Buchholz Markus Merz
Joseph Gerth Luuk Spaetgens Markus Roesgen
Jovan Crnjanin Mad Web Skills Markus Uttenweiler
Juan Pablo Schisano MaDCz Martin Bauhuber
Juan S. Cardona Iguina Magnus Wiklander Martin Benke
JudgeBeeb Maik Diekmann Martin Gendera
Juliussen Olsen Malte Mundt Martin Groß
Juna Luis Fernandez Garcia Manfred Wittemann Martin Gutenbrunner
Jürgen Endras Manuel Beckmann Martin Johansen
Jürgen Herm Stapelberg Manzano Mérida Martin Marbach
Jyrki Laurila Marc ”3D-vice” Schmitt Martin Sonnleitner
Kai Pernau Marc Bartel Martin Steffen
Kalle Pöyhönen Marc Jensen Marvin Hardy
Karl Lamford Marc Schmidt Massimo Villani
Karl-Heinz Blum Marc Theunissen Mathias Dellacherie
Karsten Engstler Marc Tutor Mathieu Chouinard
Karsten Westebbe Marc Wink Matthew Adams
katarakt Marcel Buchtmann Matthew Browne
Keith McComb Marcel Kante Matthew Carnevale
Kenneth Dyke Marco Beckers Matthew Palmer
Kenneth Joensson Marco Cappellari Matthew Santos
Kevin Edwards Marco Rivela Matthias Barthel

287



Matthias Dolenc Mikael Lund Paul Kuhnast (mindrail)
Matthias Fischer Mike Betz Paul Massay
Matthias Frey Mike Kastrantas Paul Westlake
Matthias Grandis Mike Pikowski Paul Wögerer
Matthias Guth Mikko Hämäläinen Pauline Brasch
Matthias Lampe Mikko Suontausta Paulo Apolonia
Matthias Meier Mirko Roller Pete Collin
Matthias Mueller Miroslav Karkus Pete of Retrohax.net
Matthias Nofer Morgan Antonsson Peter Eliades
Matthias Schonder Moritz Peter Gries
Maurice Al-Khaliedy Morten Nielsen Peter Habura
Max Ihlenfeldt MUBIQUO APPS,SL Peter Herklotz
Meeso Kim Myles Cameron-Smith Peter Huyoff
Michael Dailly Neil Moore Peter Knörzer
Michael Dötsch Nelson Peter Leswell
Michael Dreßel neoman Peter Weile
Michael Fichtner Nicholas Melnick Petri Alvinen
Michael Fong Nikolaj Brinch Jørgensen Philip Marien
Michael Geoffrey Stone Nils Andreas Philip Timmermann
Michael Gertner Nils Eilers Philipp Rudin
Michael Grün Nils Hammerich Pierre Kressmann
Michael Habel Nils77 Pieter Labie
Michael Härtig Norah Smith Piotr Kmiecik
Michael Haynes Norman King Power-on.at
Michael J Burkett Normen Zoch Przemysław Safonow
Michael Jensen Olaf Grunert Que Labs
Michael Jurisch Ole Eitels R Welbourn
Michael Kappelgaard Oliver Boerner R-Flux
Michael Kleinschmidt Oliver Brüggmann Rafał Michno
Michael Lorenz Oliver Graf Rainer Kappler
Michael Mayerhofer Oliver Smith Rainer Kopp
Michael Nurney Olivier Bori Rainer Weninger
Michael Rasmussen ONEPSI LLC Ralf Griewel
Michael Richmond oRdYNe Ralf Pöscha
Michael Sachse Osaühing Trioflex Ralf Reinhardt
Michael Sarbak OSHA-PROS USA Ralf Schenden
Michael Schneider Padawer Ralf Smolarek
Michael Scholz Patrick Becher Ralf Zenker
Michael Timm Patrick Bürckstümmer Ralph Bauer
Michael Traynor Patrick de Zoete Ralph Wernecke
Michael Whipp Patrick Toal Rédl Károly
Michal Ursiny Patrick Vogt Reiner Lanowski
Michele Chiti Paul Alexander Warren Remi Veilleux
Michele Perini Paul Gerhardt (KONG) Riccardo Bianchi
Michele Porcu Paul Jackson Richard Englert
Miguel Angel Rodriguez Jodar Paul Johnson Richard Good

288



Richard Menedetter Simon Lawrence Thomas Schilling
Richard Sopuch Simon Wolf Thomas Tahsin-Bey
Rick Reynolds spreen.digital Thomas Walter
Rico Gruninger Stefan Haberl Thomas Wirtzmann
Rob Dean Stefan Kramperth Thorsten Knoll
Robert Bernardo Stefan Richter Thorsten Nolte
Robert Eaglestone Stefan Schultze Tim Krome
Robert Grasböck Stefan Sonnek Tim Waite
Robert Miles Stefan Theil Timo Weirich
Robert Schwan Stefan Vrampe Timothy Blanks
Robert Shively Stefano Canali Timothy Henson
Robert Tangmar Stefano Mozzi Timothy Prater
Robert Trangmar Steffen Reiersen Tobias Butter
Rodney Xerri Stephan Bielmann Tobias Heim
Roger Olsen Stephen Jones Tobias Köck
Roger Pugh Stephen Kew Tobias Lüthi
Roland Attila Kett Steve Gray Tommi Vasarainen
Roland Evers Steve Kurlin Toni Ammer
Roland Schatz Steve Lemieux Tore Olsen
Rolf Hass Steven Combs Torleif Strand
Ronald Cooper Stewart Dunn Torsten Schröder
Ronald Hunn Stuart Marsh Tuan Nguyen
Ronny Hamida Sven Neumann Uffe Jakobsen
Ronny Preiß Sven Stache Ulrich Hintermeier
Roy van Zundert Sven Sternberger Ulrich Nieland
Rüdiger Wohlfromm Sven Wiegand Ulrik Kruse
Ruediger Schlenter Szabolcs Bence Ursula Förstle
Rutger WIllemsen Tantrumedia Limited Uwe Anfang
Sampo Peltonen Techvana Operations Ltd. Uwe Boschanski
Sarmad Gilani Teddy Turmeaux Vedran Vrbanc
SAS74 Teemu Korvenpää Verm Project
Sascha Hesse The Games Foundation Wayne Rittimann, Jr.
Scott Halman Thierry Supplisson Wayne Sander
Scott Hollier Thieu-Duy Thai Wayne Steele
Scott Robison Thomas Bierschenk Who Knows
Sebastian Baranski Thomas Edmister Winfried Falkenhahn
Sebastian Bölling Thomas Frauenknecht Wolfgang Becker
Sebastian Felzmann Thomas Gitzen Wolfgang Stabla
Sebastian Lipp Thomas Gruber Worblehat
Sebastian Rakel Thomas Haidler www.patop69.net
Şemseddin Moldibi Thomas Jager Yan B
Seth Morabito Thomas Karlsen Zoltan Markus
Shawn McKee Thomas Laskowski Zsolt Zsila
Siegfried Hartmann Thomas Marschall Zytex Online Store
Sigurbjorn Larusson Thomas Niemann
Sigurdur Finnsson Thomas Scheelen

289



290



Bibliography



292



[1] L. Soares and M. Stumm, “Flexsc: Flexible system call scheduling with exception-
less system calls.” in Osdi, vol. 10, 2010, pp. 1–8.

[2] N. Montfort, P. Baudoin, J. Bell, I. Bogost, J. Douglass, M. C. Marino, M. Mateas,
C. Reas, M. Sample, and N. Vawter, 10 PRINT CHR $(205.5+ RND (1));: GOTO 10.
MIT Press, 2012.

[3] Actraiser, “Vic-ii for beginners: Screen modes, cheaper by the
dozen,” 2013. [Online]. Available: http://dustlayer.com/vic-ii/2013/4/26/
vic-ii-for-beginners-screen-modes-cheaper-by-the-dozen

293

http://dustlayer.com/vic-ii/2013/4/26/vic-ii-for-beginners-screen-modes-cheaper-by-the-dozen
http://dustlayer.com/vic-ii/2013/4/26/vic-ii-for-beginners-screen-modes-cheaper-by-the-dozen


294



INDEX



296



BASIC 65 Arrays, 6
BASIC 65 Commands, 240

APPEND, 18
AUTO, 21
BACKGROUND, 22
BACKUP, 24
BANK, 25
BEGIN, 26
BEND, 27
BLOAD, 28
BOOT, 30
BORDER, 31
BOX, 32
BSAVE, 34
BUMP, 36
BVERIFY, 37
CATALOG, 38
CHANGE, 40
CHAR, 41
CHARDEF, 44
CHDIR, 43
CIRCLE, 46
CLOSE, 49
CLR, 50
CMD, 52
COLLECT, 53
COLLISION, 54
COLOR, 55
CONCAT, 56
CONT, 57
COPY, 58
CURSOR, 61
CUT, 62
DATA, 63
DCLEAR, 64
DCLOSE, 65
DEF FN, 67
DELETE, 68
DIM, 69
DIR, 70
Direct Mode, 5
DISK, 72

DLOAD, 73
DMA, 75
DMODE, 76
DO, 77
DOT, 80
DPAT, 81
DSAVE, 84
DVERIFY, 86
EDMA, 89
ELLIPSE, 91
ELSE, 94
END, 96
ENVELOPE, 97
ERASE, 99
EXIT, 101
FAST, 103
FGOSUB, 104
FGOTO, 105
FILTER, 106
FIND, 107
FONT, 109
FOR, 110
FOREGROUND, 111
FORMAT, 112
FREEZER, 115
GCOPY, 117
GET, 118
GET#, 119
GETKEY, 120
GO64, 121
GOSUB, 122
GOTO, 123
GRAPHIC, 124
HEADER, 125
HELP, 126
HIGHLIGHT, 128
IF, 129
IMPORT, 130
INPUT, 131
INPUT#, 132
INSTR, 134
KEY, 137

297



LET, 141
LINE, 142
LINE INPUT#, 143
LIST, 144
LOAD, 145
LOADIFF, 147
LOCK, 149
LOOP, 152
MERGE, 155
MKDIR, 157
MONITOR, 159
MOUNT, 160
MOUSE, 161
MOVSPR, 162
NEW, 164
NEXT, 165
OFF, 167
ON, 168
OPEN, 170
PAINT, 172
PALETTE, 173
PASTE, 175
PEN, 178
PLAY, 180
POLYGON, 186
PRINT, 189
PRINT USING, 191
PRINT#, 190
RCURSOR, 194
READ, 195
RECORD, 196
REM, 198
RENAME, 199
RENUMBER, 200
RESTORE, 202
RESUME, 203
RETURN, 204
RMOUSE, 207
RREG, 212
RUN, 217
SAVE, 219
SAVEIFF, 220

SCNCLR, 221
SCRATCH, 222
SCREEN, 223
SET, 226
SLEEP, 230
SOUND, 231
SPEED, 233
SPRCOLOR, 234
SPRITE, 235
SPRSAV, 236
STEP, 239
SYS, 242
TEMPO, 246
THEN, 247
TO, 250
TRAP, 251
TROFF, 252
TRON, 253
TYPE, 254
UNLOCK, 255
UNTIL, 256
USING, 257
VERIFY, 261
VIEWPORT, 262
VOL, 263
WAIT, 264
WHILE, 265
WINDOW, 266

BASIC 65 Constants, 6
BASIC 65 Examples

ASC, 19
ATN, 20
AUTO, 21
BACKUP, 24
BANK, 25, 51, 176, 183–185,

212, 227, 243, 259, 264
BEGIN, 26, 27, 95, 218
BEND, 26, 27, 95, 218
BLOAD, 29, 163, 212, 259
BORDER, 31, 48
BOX, 32, 33, 62, 80, 117, 175
BVERIFY, 37

298



CHANGE, 40
CHARDEF, 44
CHR, 26, 45, 77, 94, 118, 120,

129, 138, 140, 152, 183,
218, 247, 256, 265

CIRCLE, 48, 93
CLR, 50, 124, 148, 163, 174,

178, 205, 210, 221, 225,
235, 248, 262

CLRBIT, 51
CMD, 52, 170
COLLECT, 53
COS, 60, 67, 108–110, 165,

239
DCLOSE, 65, 114, 116, 122,

123, 133, 143, 190, 197,
238

DIR, 39, 70, 157, 226
DISK, 72, 112, 125, 226
DOT, 80
DVERIFY, 86
ENVELOPE, 97, 182
ERASE, 99
EXIT, 101, 119, 131
EXP, 102, 126, 203, 251–253
FILTER, 106
FRE, 113
FREEZER, 115
FWRITE, 114, 116
GET, 26, 77, 101, 118, 119,

152, 256, 265
GETKEY, 42, 48, 62, 80, 93,

117, 120, 124, 142, 172,
174, 175, 178, 186, 225,
243, 262

GOTO, 26, 57, 104, 106, 118,
120, 122, 123, 131, 133,
136, 143, 169, 201, 211,
214, 228, 238, 246, 250,
263

GRAPHIC, 124, 148, 174, 178,
205, 210, 221, 225

HEADER, 125
HELP, 126
IF, 17, 26, 27, 36, 48, 82, 83,

90, 94–96, 98, 100, 101,
106, 118–120, 122, 123,
129, 131, 133, 136, 143,
166, 169, 171, 187, 197,
207, 211, 214, 218, 231,
238, 240, 243, 246, 247,
263

INPUT, 94, 101, 104, 105, 119,
122, 123, 129, 131, 133,
143, 197, 238, 247

INSTR, 134
INT, 135, 208
LINE, 101, 119, 124, 142, 143,

172, 174, 178, 205, 220,
221, 225, 238

LOCK, 149
LOG10, 151
MERGE, 155
MID, 156
MKDIR, 157
NEXT, 48, 54, 63, 67, 69, 80,

90, 98, 100, 106, 108–110,
114, 116, 133, 143, 148,
158, 163, 165, 183, 189,
190, 195, 197, 202–205,
208, 232, 235, 239, 244,
246, 248–253, 263, 267

NOT, 166
OFF, 21, 61, 132, 138, 161,

167, 204, 207
PAINT, 172, 174
PEEK, 69, 176, 183, 231, 249
PEEKW, 177, 183
PLAY, 97, 106, 181, 182, 211,

246, 263
POKE, 66, 184, 243, 259
POS, 187
PRINT, 4, 5, 16, 17, 19, 20, 26,

27, 36, 45, 49, 50, 52, 54,

299



57, 60, 61, 63, 66, 67, 69,
83, 85, 90, 94–96, 98,
100–102, 104–106,
108–110, 113, 119, 122,
123, 126, 127, 129, 131,
133, 136, 139, 140, 143,
150, 151, 153, 156, 158,
165, 166, 169, 171, 176,
177, 183, 187, 189, 190,
192, 194, 195, 197,
202–210, 212, 214, 218,
229, 232, 237–241, 244,
245, 247–253, 258–260,
267

READ, 63, 69, 195, 202, 244
RENAME, 199
RESTORE, 148, 164, 202
RMOUSE, 207
RREG, 212
RSPCOLOR, 213
SCRATCH, 222
SET, 124, 148, 174, 178, 205,

210, 221, 225, 226
SIN, 67, 108–110, 165, 229,

239
SPC, 232
SPRITE, 54, 213, 215, 216,

234–236
SPRSAV, 236
STEP, 67, 106, 108–110, 165,

197, 239, 246, 249, 263
TAN, 110, 165, 239, 245
TYPE, 133, 254
UNTIL, 77, 118, 122, 123, 131,

152, 256, 265
VAL, 260
VIEWPORT, 80, 262
WHILE, 77, 152, 256, 265

BASIC 65 Functions
ABS, 16
ASC, 19
ATN, 20

CHR$, 45
CLRBIT, 51
COS, 60
DEC, 66
ERR$, 100
EXP, 102
FN, 67, 108
FRE, 113
FREAD, 114
FWRITE, 116
HEX$, 127
INT, 135
JOY, 136
LEFT$, 139
LEN, 140
LOG, 150
LOG10, 151
LPEN, 153
MEM, 154
MID$, 156
MOD, 158
PEEK, 176
PEEKW, 177
PIXEL, 179
POINTER, 183
POKE, 184
POKEW, 185
POS, 187
POT, 188
RCOLOR, 193
RGRAPHIC, 205
RIGHT$, 206
RND, 208
RPALETTE, 209
RPEN, 210
RPLAY, 211
RSPCOLOR, 213
RSPEED, 214
RSPPOS, 215
RSPRITE, 216
RWINDOW, 218
SETBIT, 227

300



SGN, 228
SIN, 229
SPC, 232
SQR, 237
STR$, 241
TAB, 244
TAN, 245
USR, 259
VAL, 260

BASIC 65 Operators, 7
AND, 17
NOT, 166
OR, 171
XOR, 267

BASIC 65 System Commands
EDIT, 87

BASIC 65 System Variables
DS, 82

DS$, 83
DT$, 85
EL, 90
ER, 98
ST, 238
TI, 248
TI$, 249

BASIC 65 Variables, 6

copyright, ii

Keyboard
CTRL, 273
Cursor Keys, 278
Escape Sequences, 277
PETSCII Codes and CHR$, 45,

271
Shift Keys, 276

301


	Introduction
	Welcome to the MEGA65!
	Other Books in this series
	Come Join Us!

	BASIC 65 Command Reference
	Commands, Functions and Operators
	Direct Mode Commands
	Command Format Syntax
	Fonts
	BASIC 65 Constants
	BASIC 65 Variables
	BASIC 65 Arrays
	BASIC 65 Operators
	Assignment Operator
	Unary Mathematical Operators
	Binary Mathematical Operators
	Relational Operators
	Logical Operators
	Boolean Operators
	String Operator
	Operator Precedence
	Keywords And Tokens Part 1
	Keywords And Tokens Part 2
	Tokens And Keywords Part 1
	Tokens And Keywords Part 2

	BASIC Command Reference
	ABS
	AND
	APPEND
	ASC
	ATN
	AUTO
	BACKGROUND
	BACKUP
	BANK
	BEGIN
	BEND
	BLOAD
	BOOT
	BORDER
	BOX
	BSAVE
	BUMP
	BVERIFY
	CATALOG
	CHANGE
	CHAR
	CHDIR
	CHARDEF
	CHR$
	CIRCLE
	CLOSE
	CLR
	CLRBIT
	CMD
	COLLECT
	COLLISION
	COLOR
	CONCAT
	CONT
	COPY
	COS
	CURSOR
	CUT
	DATA
	DCLEAR
	DCLOSE
	DEC
	DEF FN
	DELETE
	DIM
	DIR
	DISK
	DLOAD
	DMA
	DMODE
	DO
	DOPEN
	DOT
	DPAT
	DS
	DS$
	DSAVE
	DT$
	DVERIFY
	EDIT
	EDMA
	EL
	ELLIPSE
	ELSE
	END
	ENVELOPE
	ER
	ERASE
	ERR$
	EXIT
	EXP
	FAST
	FGOSUB
	FGOTO
	FILTER
	FIND
	FN
	FONT
	FOR
	FOREGROUND
	FORMAT
	FRE
	FREAD
	FREEZER
	FWRITE
	GCOPY
	GET
	GET#
	GETKEY
	GO64
	GOSUB
	GOTO
	GRAPHIC
	HEADER
	HELP
	HEX$
	HIGHLIGHT
	IF
	IMPORT
	INPUT
	INPUT#
	INSTR
	INT
	JOY
	KEY
	LEFT$
	LEN
	LET
	LINE
	LINE INPUT#
	LIST
	LOAD
	LOADIFF
	LOCK
	LOG
	LOG10
	LOOP
	LPEN
	MEM
	MERGE
	MID$
	MKDIR
	MOD
	MONITOR
	MOUNT
	MOUSE
	MOVSPR
	NEW
	NEXT
	NOT
	OFF
	ON
	OPEN
	OR
	PAINT
	PALETTE
	PASTE
	PEEK
	PEEKW
	PEN
	PIXEL
	PLAY
	POINTER
	POKE
	POKEW
	POLYGON
	POS
	POT
	PRINT
	PRINT#
	PRINT USING
	RCOLOR
	RCURSOR
	READ
	RECORD
	REM
	RENAME
	RENUMBER
	RESTORE
	RESUME
	RETURN
	RGRAPHIC
	RIGHT$
	RMOUSE
	RND
	RPALETTE
	RPEN
	RPLAY
	RREG
	RSPCOLOR
	RSPEED
	RSPPOS
	RSPRITE
	RUN
	RWINDOW
	SAVE
	SAVEIFF
	SCNCLR
	SCRATCH
	SCREEN
	SET
	SETBIT
	SGN
	SIN
	SLEEP
	SOUND
	SPC
	SPEED
	SPRCOLOR
	SPRITE
	SPRSAV
	SQR
	ST
	STEP
	STOP
	STR$
	SYS
	TAB
	TAN
	TEMPO
	THEN
	TI
	TI$
	TO
	TRAP
	TROFF
	TRON
	TYPE
	UNLOCK
	UNTIL
	USING
	USR
	VAL
	VERIFY
	VIEWPORT
	VOL
	WAIT
	WHILE
	WINDOW
	XOR


	Special Keyboard Controls and Sequences
	PETSCII Codes and CHR$
	Control codes
	Shifted codes
	Escape Sequences

	Supporters & Donors
	Organisations
	Contributors
	Supporters

	INDEX

