
A FULL IMPLEMENTATION OF STANDARD FORTH

A C C E L E R A T E D S O F T W A R E INC.

enhanced
FORTH

THE POWER OF MACHINE CODE ... THE EASE OF BASIC
Features: An assem bler, screen editor, floa ting point

instructions, and an easy to use m anual.

TABLE OF CONTENTS

Page

I. INTRODUCTION 2

II. OVERVIEW 3

- The Stack 3
- Reverse Polish Notation 4
- Definitions 5
- Dictionary and Vocabularies 6
- Screens 6
- Floating and Fixed Point 7

III. ASI-FORTH 8

- Standard Definitions 9
- Editor 34
- Assembler Implementation 35
- Floating Point Definitions 37
- Graphics Definitions 40
- Music Definitions 44

APPENDIX A - STARTING UP 46

APPENDIX B - DISK NOTES 48

COPYRIGHT NOTICE © 1984

The ASI-FORTH Computer program is copyrighted and all

rights are reserved by ACCELERATED SOFTWARE INC. Only you,

as an original purchaser, may use the ASI-FORTH program and

only on one computer system. Except for the limited purpose

of system back-up, any copying, duplicating, selling, or

otherwise distributing the ASI-FORTH computer program, is a

violation of the law.

- 2 -

Welcome to the world of FORTH!!

By choosing ASI-FORTH you have given yourself the advantages of a fast

and efficient FORTH interpreter/compiler without losing the ease of BASIC.

This version of ASI-FORTH comes with a full screen editor, an
assembler, floating point routines, and routines that allow you to use the
full sound and graphics capabilities of your COMMODORE 64. Also included on
the distribution disk are utilities that allow you to back-up FORTH data

disks, decode word definitions and create application versions of ASI-FORTH.
Please refer to APPENDIX A for further information on these utilities.

This manual is not intended to be an introduction to the FORTH lan­
guage, but a reference manual that lists all the definitions available in
this FORTH. If you are unfamiliar with the FORTH language, we would suggest
"Starting Forth" by Leo Brodie, FORTH INC., published by Prentice-Hall.
This is an excellent guide for the beginning FORTH user.

I. INTRODUCTION

ACKNOWLEDGEMENT

This publication and the ASI-FORTH computer program are based in part
on the fig-FORTH model made available by

THE FORTH INTEREST GROUP
P.O. BOX 1105

SAN CARLOS
CALIFORNIA 94070

- 3 -

Forth is a stack based, reverse Polish notational, self defining lang­
uage. DON'T PANIC, in this chapter we will explain all the terms used
above, as well as other important concepts in FORTH.

THE STACK

A stack is like a pile of cards from which you can only add or remove
one card at a time to/from the top of the pile.

That is, if you place, in the following order, the nine-of-hearts,
queen-of-diamonds and the ace-of-spades on the pile, the only way to
retrieve them is in the opposite order in which they were placed, i.e.

Ace-of-spades, queen-of-diamonds, nine-of-spades.

Forth has two different stacks, the parameter and return stacks. The
most important to the novice Forth user is the parameter stack. Whenever

you type a number in Forth, the value is placed on the parameter stack and
most functions use the parameter stack for both input and output of values.

II. OVERVIEW

FUNCTION YOU TYPE COMPUTER STACK
RESPONDS

(number) 2 <CR> OK 2
(number) 3 <CR> OK 3 2
(number) 5 <CR> OK 5 3 2
add top two + <CR> OK 8 2
number on stack
subtract top two - <CR> OK -6
numbers on stack
Print top of stack . <CR> -6 OK Emp tv

NOTE: The stack is read from left to right; thus the top of
leftmost value.

There
examples:

are many functions that play with the stack. Here are some

FUNCTION YOU TYPE COMPUTER
RESPONDS

1 <CR> OK
2 <CR> OK

3 <CR> OK
Swap top two SWAP <CR> OK

values in stack
Duplicate first DUP <CR> OK

value in stack
Remove first DROP <CR> OK

value in stack
Rotate top 3 ROT <CR> OK

values in stack
Bring 2nd value OVER <CR> OK

to top of stack

If you want to learn about the return stack, you should acquire a more
advanced book on Forth.

- 4 -

REVERSED POLISH NOTATION:

Reversed Polish notation describes the order in which you enter a

calculation.
For example on a regular calculator you would enter the sequence:

5 * 6 + 3 - 7 = to get an answer, but in reverse Polish you would enter:

(1) 5 6 * 3 + 7 -
or (2) 5 6 * 3 7 - +

In reversed Polish notation the operators (+,-,*,/ •••) perform their
function on that last two values on the stack.

E XAMPLE:

(1) STACK (2) STACK

5 5 5 5
6 6 5 6 6 5
* 30 * 30

3 3 30 3 3
+ 33 7 7 3
7 7 33 - -4 30
- 26 + 26

Here are some examples of regular equations and their reversed Polish
notation equivalences:

Regular Reversed Polish

4 + 6 4 6 +
5 / 9 5 9 /

(4 + 5) / (6 + 7) 4 5 + 6 7 + /
6 * (3 — 5 / (7 — 2)) 6 3 5 7 2 - / - *

Lets solve the last equation.
The answer is 12. (Right?)

(6 * (3 - 5 / 5) — > 6 * (3 - 1) — > 6 * 2 = 12)

Stack
b 6

3 3 6
5 5 3 6
7 7 5 3 6
2 2 7 5 3 6
- 5 5 3 6 (7 - 2)
/ 1 3 6 (5 / 5)
- 2 6 (3 - 1)
* 12 (2 * 6)

- 5 -

DEFINITIONS:

A self-defining language is a language where new definitions are based
upon the existing language and they themselves become part of the language.

In Forth the symbol (Colon) means - Create a new definition, and
the symbol (Semi-colon) means end the definition. Thus if we wanted to
create a definition that found the square of a number, called SQUARE, the

Forth code would like like this:

: SQUARE DUP * ;

Create Call it Duplicate top Multiply top two End
Definition SQUARE number on stack numbers on stack Definition

To find the square of 7, we would now merely type 7 SQUARE <CR>. This would
then leave 49 on the stack.

Let us see what the computer actually does when we type 7 SQUARE:

Typed in Machine executes Stack
7 7 7

SQUARE

DUP 7 7
* 49

Now if we wanted a definition to sum the squares of two numbers we can
use the already defined rout ine SQUARE within this new definition. Let's

call this SUM-SQUARE

SUM-SQUARE SQUARE SWAP SQUARE + ;

Create Call it Square Number Swap top 2 Square Number
Definition SUM-SQUARE on top of stack numbers on stack on top of stack

and add top two
values

Therefore 5 7 SUM-SQUARE would leave 74 on the stack. Let us see what the

computer actually does:

Typed in Computer executes Stack

5 5 5

7 7 5 7

SUM-SQUARE
SQUARE

DUP 5 5 7
* 25 7

SWAP
’

7 25

SQUARE

DUP 7 7 25
* 49 25

+
’

74

- 6 -

A definition that you create or one that already exists in Forth can be
used by any number of other definitions. Since any definition can be based

upon any existing definition, there is no practical limit to the number of
levels of definitions a new definition can be built on.

DICTIONARY AND VOCABULARIES:

The dictionary is the list of the defined "words" in the language,
including system definitions, user definitions, code, variables, and other

types of definitions. The dictionary resides in memory, in compiled form.

A "word” in FORTH is any string of up to 31 characters bounded by
spaces. Any printable character, other than space, backspace and carriage
return, may be used in a word.

Words are added to the dictionary by "defining words", examples of
which are: VARIABLE, CONSTANT, : ("colon"), CREATE, etc.

A vocabulary is an independent sub-list of the dictionary. You can
have several different vocabularies in your dictionary.

S CREENS:

Forth code written by a user is stored on disk in blocks of 1024

characters. These blocks are called screens. In this Forth screen text is
arranged in 32 lines of 32 characters.

You refer to a specific screen by its number, thus 4 LIST <CR> pulls
the 4th block of 1024 characters into a memory buffer and lists it on the
current output device.

Here are some commands that work with screens:

Command Effect

n LIST Load screen n into memory and list screen on output
device.

n LOAD Load screen n into memory and compile code in screen

into the Forth dictionary.

(Dictionary - name of the collection of all known
definitions).

n EDIT Load screen n into memory and allow you to edit it
using the full screen editor,

nl n2 INDEX Does NOT load any screens into memory, but lists the
first line of screens nl to n2 on the current output
device.
Can be terminated by hitting the return key.

n BLOCK Loads screen n into memory and returns, on the stack,

the address in memory of the buffer that holds screen
n.
(If screen n is already in memory it just returns the
address of the buffer).

Note: The first line of a screen should be a comment line describing the
definitions on the screen. Comment lines start with a left bracket
separated by spaces " (" and end with a right bracket followed by a

space) ". '

FLOATING AND FIXED P O I N T :

A fixed point number is an integer value, that is, there is NO frac­

tional part. A floating point number can have a fractional part.

Fixed Floating

- 7 -

0 0.1
-31767 -32767.0

234 2.34552E+12

In Forth there are four types of fixed numbers:
unsigned-single; unsigned-double; signed-single and signed-double.

Type Lower Bound Upper Bound Memory requirements

Unsigned-Single 0 65535 2 Bytes (Characters)
Unsigned-Double 0 4,294,967,295 4 Bytes
Signed-Single -32768 32767 2 Bytes
Double-Signed -2,147,483,648 2,147,483,647 4 Bytes

In most cases in Forth, fixed-point double precision numbers are not used.

Floating point numbers are not usually available in Forth, but by load­
ing screen ^5 this Forth allows you to use them. To use the floating point
facility all floating point numbers and functions have to be preceeded by a
pound sign " £ ".

NOTE: Floating point numbers take 6 bytes of memory.

Examples:

£ 3.4 Enter floating point number 3.4 on stack. (Note the space between
and 3.4).

■£+ Add the top two floating point numbers on the stack. (Note: No
space between and "+").

£. Print-out top floating point value on stack.

IMPORTANT NOTE: In standard Forth and in this Forth the method for entering
a double precision number is to place a decimal point any­
where within the number. Do NOT confuse this with floating
point numbers as they are preceeded by a pound sign (£) .

Number Type of Number

34 Single (Signed or Unsigned)
-56 Single Signed
7.8 Double (Signed or Unsigned)
-78. Double Signed

£ -6.7 Floating
* 0.1E-34 Floating

- 9 -

III. ASI-FORTH

In this chapter we present a list of all words available in ASI-FORTH.

The chapter is divided into six sections:

1. Standard definitions
2. The Editor
3. Assembler implementation

4. Floating point routines
5. Graphics definitions
6. Music definitions.

Within each section, the words are arranged in alphanumeric order.

KEY:

stack notation: before after; top of stack on RIGHT

addr, addrl
fl, f2,

sp

n, n l ,
d, dl,

u, u l ,
ud, u d 1,
b,

c
f ,

16-bit signed numbers
32-bit signed numbers
16-bit unsigned numbers
32-bit unsigned numbers
8-bit signed numbers
boolean flag
ascii character value
address
floating-point number 48-bit.
16-bit number in the range 0-7 indicates
sprite number.

- 10 -

! CSP

//

#>

#BUF

if S

(

(. ")

(;CODE)

(+LOOP)

.CPU

STANDARD DEFINITIONS

n addr ---
Store 16 bits of n at address. Pronounced "store".

Save the stack position in CSP as part of the compiler security,

dl --- d2
Generate from a double number dl, the next ascii character which
is placed in an output string. Result d2 is the quotient after
division by BASE, and is maintained for further processing. Used
between <# and #>.

d --- addr count
Terminates numeric output conversion by dropping d, leaving the
text address and character count suitable for TYPE.

--- n
A constant returning the number of disk buffers allocated.(3)

dl --- d2
Generates ascii text in the text output buffer, by the use of #,
until a zero double number d2 results. Used between <# and :t> .

--- addr
Used in the form:

' nnnn
Leaves the parameter field address of dictionary word nnnn. As a
compiler directive, executes in a colon-definition to compile the
address as a literal. If the word is not found after a search of
CONTEXT and CURRENT, an appropriate error message is given. Pro­
nounced "tick".

Used in the form:

(cccc)
Ignore a comment that will be delimited by a right parenthesis on
the same line. May occur during execution or in a colon-

definition. A blank after the leading parenthesis is required.

The run-time procedure, compiled by ." which transmits the
following inline text to the selected output device. See .”

The run-time procedure, compiled by ;CODE, that rewrites the code
field of the most recently defined word to point to the following
machine code sequence. See ;C0DE.

n ---
The run-time procedure compiled by +L00P, which increments the
loop index by n and tests for loop completion. See +LOOP.

Prints the processor name (ie. 6502) from $22 +ORIGIN encoded as a
32 bit, base 36 integer.

- 11 -

(ABORT)

(DO)

(FIND)

(LINE)

(LOOP)

(NUMBER)

(OPEN)

*

* /

*/MOD

Executes after an error when WARNING is -1 . This word normally
executes ABORT, but may be altered (with care) to a user's alter­

native procedure.

The run-time procedure compiled by DO which moves the loop control
parameters to the return stack. See DO.

addrl addr2 --- pfa b tf (ok)
addrl addr2 --- ff (bad)

Searches the dictionary starting at the name field address addr2,
matching to the text at addrl. Returns parameter field address,

length byte of name field and boolean true for a good match. If
no match is found, only a boolean false is left.

nl n2 ----------- addr count
Convert the line number nl and the screen n2 to the disc buffer

address containing the data. A count of 32 indicates the full

line text length.

The run-time procedure compiled by LOOP which increments the loop
index and tests for loop completion. See LOOP.

dl addrl --- d2 addr2
Convert the ascii text beginning at addrl+1 with regard to BASE.
The new value is accumulated into double number dl, being left as
d2. Addr2 is the address of the first unconvertible digit. Used
by NUMBER.

nl n2 n3 -----
The run-time procedure, compiled by OPEN, that opens the file
contained in the in-line text on logical unit n l , device n2 and

channel n3. See OPEN.

nl n2 --- prod
Leave the signed product of two signed numbers.

nl n2 n3 ----- n4
Leave the ratio n4 = nl*n2/n3 where all are signed numbers.
Retention of an intermediate 31 bit product permits greater accur­

acy than would be available with the sequence:
nl n2 * n3 /

nl n2 n3 ----- n4 n5
Leave the quotient n5 and remainder n4 of the operation nl*n2/n3 a
31 bit intermediate product is used as for */ .

nl n2 ----- sum
Leave the sum of nl+n2.

nl n2 ----- n3
Apply the sign of n2 to nl, which is left as n3.

- 12 -

+LOOP

+ORIGIN

— >

-DUP

n addr ---
Add n to contents of location addr.

addrl --- addr2 f
Advance the disc buffer address addrl to the address of the next

buffer addr2. Boolean f is false when addr2 is the buffer

presently pointed to by variable P R E V .

nl --- (run)
addr n2 --- (compile)

Used in a colon-definition in the form:
DO ... nl +LOOP

At run-time, +LOOP selectively controls branching back to the
corresponding DO based on n l , the loop index and the loop limit.
The signed increment nl is added to the index and the total
compared to the limit. The branch back to DO occurs until the new
index is equal to or greaer than the limit (nl>0), or until the
new index is equal to or less than the limit (nl<0). Upon exiting
the loop, the parameters are discarded and execution continues
ahead.

At compile time, +LOOP compiles the run-time word (+LOOP) and the
branch offset computed from HERE to the address left on the stack
by DO. n2 is used for compile time error checking.

n --- addr
Leave the memory address relative by n bytes to the origin para­

meter area. This definition is used to access or modify the boot­
up parameters at the origin area.

n ---
Store n into the next available dictionary memory cell, advancing

the dictionary pointer. (comma).

nl n2 --- diff
Leave the difference of nl-n2.

Continue interpretation with the next disc screen. (pronounced
next-screen).

nl — nl (if zero)
nl — nl nl (non-zero)

Reproduce nl only if it is non-zero. This is usually used to copy
a value just before IF, to eliminate the need for an ELSE part to

drop it.

--- pfa b tf (found)
--- ff (not found)

Accepts the next text word (delimited by blanks) in the input
stream to HERE, and searches the CONTEXT and then CURRENT vocabu­
laries for a matching entry. If found, the dictionary entry's
parameter field address, its length byte, and a boolean true is

left. Otherwise, only a boolean false is left.

- 13 -

-TRAILING addr nl --- addr n2
Adjusts the character count nl of a text string beginning address

to suppress the output of trailing blanks. i.e. the characters at
addr+nl to addr+n2 are blanks.

n ---
Print a number from a signed 16 bit t wo’s complement value,
converted according to the numeric BASE. A trailing blank fol­

lows. Pronounced "dot".

Used in the form:
." cccc"

Compiles an in-line string cccc (delimited by the trailing ") with

an execution procedure to transmit the text to the selected output
device. If executed outside a definition, ." will immediately
print the text until the final form ".

.LINE line scr ---
Print on the terminal device, a line of text from the disc by its
line and screen number. Trailing blanks are suppressed.

.R nl n2 ----
Print the number nl right aligned in a field whose width is n2.

No following blank is printed.

/ nl n2 ---- quot
Leave the signed quotient of nl/n2.

/MOD nl n2 ---- rem quot
Leave the remainder and signed quotient of nl/n2. The remainder
has the sign of the dividend.

0 1 2 3

<£>
0<

These small numbers are used so often that is attractive to define
them by name in the dictionary as constants.

n --- f
Leave a true flag if the number is less than zero (negative),

otherwise leave a false flag.

Leave a true flag if the number is equal to zero, otherwise leave

a false flag.

0 BRANCH
The run-time procedure to conditionally branch. If f is false
(zero), the following in-line parameter is added to the interpre­

tive pointer to branch ahead or back. Compiled by IF, UNTIL, and

WHILE.

1 + nl --- n2
Increment nl by 1.

2+ nl --- n2
Leave nl incremented by 2.

21

2@

2DUP

2LIST

; CODE

nlow nbigh addr ---
32 bit store, nhigh is stored at addr; nlow is stored at addr+2.

addr --- nlow nhigh
32 bit fetch. nhigh is fetched from addr; nlow is fetched from
a d dr+2.

n2 nl --- n2 nl n2 nl
Duplicate the top two values on the stack. Equivalent to OVER
OVER.

n ---
Displays on the selected output device screens n & n +1. Output is
suitable for source text record, and includes a reference line at
the bottom taken from line 31 of screen 4.

Used in the form called a colon-definition:
cccc ... ;

Creates a dictionary entry defining cccc as equivalent to the
following sequence of Forth word definitions '...' until the next

or ';CODE'. The compiling process is done by the text inter­
preter as long as STATE is non-zero. Other details are that the
CONTEXT vocabulary is set to the CURRENT vocabulary and that words

with the precedence bit set (P) are executed rather than being
compiled.

Terminate a colon-definition and stop further compilation.
Compiles the run-time ;S.

Used in the form;

: cccc ... ;CODE
assembly mnemonics

Stop compilation and terminate a new defining word cccc by compil­

ing (;CODE). Set the CONTEXT vocabulary to ASSEMBLER, assembling
to machine code the following mnemonics.

When cccc later executes in the form:
cccc nnnn

the word nnnn will be created with its execution proceedure given
by the machine code following cccc. That is, when nnnn is execu­
ted, it does so by jumping to the code after nnnn. An existing
defining word must exist in cccc prior to ;CODE.

Stop interpretation of a screen. ;S is also the run-time word
compiled at the end of a colon-definition which returns execution
to the calling procedure.

- 15 -

nl n2 --- f
Leave a true flag if nl is less than n2; otherwise leave a false

flag.

Setup for pictured numeric output formatting using the words:

<// // #S SIGN //>
The conversion is done on a double number producing text at PAD.

<BUILDS
Used within a colon-definition:

: cccc <BUILDS ...
DOES> ... ;

Each time cccc is executed, <BUILDS defines a new word with a
high-level execution proceedure. Executing cccc in the form:

cccc nnnn
uses <BUILDS to create a dictionary entry for nnnn with a call to
the DOES> part for nnnn. When nnnn is later executed, it has the

address of its parameter area on the stack and executes the words
after DOES> in cccc. <BUILDS and DOES> allow run-time procedures
to written in highlevel rather than in assembler code (as required

by ;CODE).

nl n2 ---f
Leave a true flag if nl = n 2 ; otherwise leave a false flag,

nl n2 --- f
Leave a true flag if nl is greater than n2; otherwise a false

flag.

>R n ---
Remove a number from the computation stack and place as the most

accessable on the return stack. Use should be balanced with R> in
the same definition.

addr —
Print the value contained at the address in free format according
to the current base.

?COMP
Issue error message if not compiling.

Issue error message if stack position differs from value saved in
CSP.

TERROR f n ---
Issue an error message number n, if the boolean flag is true.

?EXEC
Issue an error message if not executing.

- 16 -

7L0ADING

?PAIRS

?STACK

?TERMINAL

ABORT

ABS

AGAIN

ALLOT

AND

B/BUF

B/SCR

BACK

Issue an error message if not loading,

nl n2 ---
Issue an error message if nl does not equal n2. The message indi­

cates that compiled conditionals do not match.

Issue an error message if the stack is out of bounds.

--- f
Perform a test of the terminal keyboard for actuation any key. A
true flag indicates actuation.

addr --- n
Leave the 16 bit contents of address.

Clear the stacks and enter the execution state. Return control to
the operators terminal, printing a message appropriate to the
installation.

n --- u
Leave the absolute value of n as u.

addr n --- (compiling)
Used in a colon-definition in the form:

BEGIN ... AGAIN
At run-time, AGAIN forces execution to return to corresponding
BEGIN. There is no effect on the stack. Execution cannot leave
this loop (unless R> DROP is executed one level below).

At compile time, AGAIN compiles BRANCH with an offset from HERE to
addr. n is used for compile-time error checking.

n ---
Add the signed number to the dictionary pointer DP. May be used

to reserve dictionary space or re-origin memory, n is in bytes.

nl n2 --- n3
Leave the bitwise logical and of nl and n2 as n3.

--- n
This constant leaves the number of bytes per disk buffer, the byte
count read from disk by BLOCK.

--- n
This constant leaves the number of blocks per editing screen. By
convention, an editing screen is 1024 bytes organized as 32 lines
of 32 characters each.

addr ---
Calculate the backward branch offset from HERE to addr and compile
into the next available dictionary memory address.

BASE -- addr

A user variable containing the current number base used for input
and output conversion.

BEGIN --- addr n (compiling)
Occurs in a colon-definition in form:

BEGIN ... UNTIL
BEGIN ... AGAIN
BEGIN ... WHILE ... REPEAT

At run-time, BEGIN marks the start of a sequence that may be
repetitively executed. It serves as a return point from the cor­
responding UNTIL, AGAIN or REPEAT. When executing UNTIL, a return

to BEGIN will occur if the top of the stack is false; for AGAIN
and REPEAT a return to BEGIN always occurs.

At compile time BEGIN leaves its return address and n for compiler
error checking.

BL --- c
A constant that leaves the ascii value for "blank".

BLANKS addr count ---
Fill an area of memory beginning at addr with blanks.

A user variable containing the block number being interpreted. If
zero, input is being taken from the terminal input buffer.

n --- addr
Leave the memory address of the block buffer containing block n.

If the block is not already in memory, it is transferred from disk
to which ever buffer was least recently written. If the block
occupying that buffer has been marked as updated, it is rewritten

to disk before block n is read into the buffer. See also BUFFER,

R/W UPDATE FLUSH.

The run-time procedure to unconditionally branch. As in-line
offset is added to the interpretive pointer IP to banch ahead or
back. BRANCH is compiled by ELSE, AGAIN, REPEAT.

BUFF-COMMAND
Prints out
device.

the disk command "B-P: 9 0" on the current output

n --- addr
Obtain the next memory buffer, assigning it to block n. If the
contents of the buffer is marked as updated, it is written to the
disk. The block is not read from the disc. The address left is
the first cell within the buffer for data storage.

Returns control back to Basic.

b addr ---
Store 8 bits at address.

- 18 -

C,

C/L

C@

CFA

CKEY

CLOSE

CLOSEALL

CMD

COLD

COMPILE

CONSTANT

CONTEXT

b ---
Store 8 bits of b into the next available dictionary byte, advanc­
ing the dictionary pointer.

--- n
Constant leaving the number of characters per line; used by the
editor. (32)

addr --- b
Leave the 8 bit contents of memory address.

pfa --- cfa
Convert the parameter field address of a definition to its code

field address.

--- n
Leaves the ascii value of the next terminal key struck if default
input is the keyboard. If input is something else KEY is called.
Note: A cursor IS displayed.

n ---
Close logical file n. Note: an error is given if file is NOT

ope n .

Perform the Kernel routine Close all files,

n ---
Set logical file n as default output device. The screen is
considered as logical file 0. Thus to return to the screen as
being the default output device the command would be: 0 CMD.

The cold start procedure to adjust the dictionary pointer to the
minimum standard and restart via ABORT. May be called from the
terminal to remove application programs and restart.

When the word containing COMPILE executes, the execution address

of the word following COMPILE is copied (compiled) into the dic­
tionary. This allows specific compilation situations to be
handled in addition to simply compiling an execution address
(which the interpreter already does).

n ---
A defining word used in the form:

n CONSTANT cccc
to create word cccc, with its parameter field containing n. When
cccc is later executed, it will push the vale of n to the stack.

--- addr
A user variable containing a pointer to the vocabulary within
which dictionary searches will first begin.

- 19 -

COUNT

CR

CREATE

CSP

CURRENT

CURSOR

D+

D+-

D.

D.R

DABS

DECIMAL

addrl --- addr2 n
Leave the byte address addr2 and byte count n of a message text
beginning at address addrl. It is presumed that the first byte at
addrl contains the text byte count and the actual text starts
with the second byte. Typically COUNT is followed by TYPE.

Transmit a carriage return and line feed to the selected output
device.

A defining word used in the form:
CREATE cccc

by such words as CODE and CONSTANT to create a dictionary header
for a Forth definition. The code field contains the address of
the words parameter field. The new word is created in the CURRENT
vocabulary.

---- addr
A user variable temporarily storing the stack pointer position,
for compilation error checking.

--- addr
A user variable that contains a link to the dictionary which

definitions will be linked to.

Displays a cursor at current screen location as determined by the
Kernel.

dl d2 --- dsum
Leave the double number sum of two double numbers.

dl n --- d2
Apply the sign of n to the double number dl, leaving it as d2.

d ---
Print a signed double number from a 32 bit two's complement value.
The high-order 16 bits are most accessable on the stack. Conver­
sion is performed according to the current BASE. A blank follows.

Pronounced D-dot.

d n ---
Print a signed doubled number d right aligned in a field n
characters wide.

d --- ud
Leave the abolute value ud of a double number.

Set the numeric conversion BASE for decimal input-output.

- 20 -

DEFINITIONS
Used in the form

cccc DEFINITIONS
Set the CURRENT vocabulary to the CONTEXT vocabulary. In the
example, executing vocabulary name cccc made it the CONTEXT
vocabulary and executing DEFINITIONS made both specify vocabulary

DEVIN --- addr
A variable that contains the current default input device.
INP.

A variable that contains the current default output device.

CMD.
See

c nl --- n2 tf (ok)
c nl --- ff (bad)

Convert the ascii character c (using base nl) to its binary
equivalent n 2 , accompanied by a true flag. If the conversion is

invalid, leaves only a false flag.

d --- d (executing)
d --- (compiling)

If compiling, compile a stack double number into a literal.
Later execution of the definition containing the literal will push
it to the stack. If executing, the number will remain on the

stack.

dl d2
Convert dl to its double number t w o’s complement.

nl n 2 --- (execute)
addr n --- (compile) P,C2;L0

Occurs in a colon-definition in form:
DO ... LOOP
DO ... +L00P

At run time, DO begins a sequence with repetitive execution
controlled by a loop limit nl and an index with initial value n2.

DO removes these from the stack. Upon reaching LOOP the index is
incremented by one. Until the new index equals or exceeds the
limit, execution loops back to just after DO; otherwise the loop
parameters are discarded and execution continues ahead. Both nl
and n2 are determined at run-time and may be the result of other
operations. Within a loop 'I' will copy the current value of the

index to the stack. See I, LOOP, +L00P, LEAVE.

When compiling within the colon-definition, DO compiles (DO),
leaves the following address addr and n for later error checking.

- 21 -

DOES>

DOOPEN

DP

DPL

DROP

DUP

ELSE

EMIT

EMPTY-

A word which defines the run-time action within a high-level

defining word. DOES> alters the code field and first parameter of
the new word to execute the sequence of compiled word addresses
following DOES>. Used in combination with <BUILDS. When the
DOES> part executes it begins with the address of the first

p a r a m e t e r of the new wor d on the stack. This allows
interpretation using this area or its contents. Typical uses
include the Forth assembler, multi-dimensional arrays, and

compiler generation.

Call the Kernel routine OPEN.

---- addr
A user variable, the dictionary pointer, which contains the
address of the next free memory above the dictionary. The value

may be read by HERE and altered by ALLOT.

---- addr
A user variable containing the number of digits to the right of
the decimal on double integer input. It may also be used to hold
output column location of a decimal point, in user generated
formatting. The default value on single number input is -1.

n ---
Drop the number from the stack.

n --- n n
Duplicate the value on the stack.

addrl n l ---addr2 n2
(compiling)

Occurs within a colon-definition in the form:
IF ... ELSE ... ENDIF

At run-time, ELSE executes after the true part following IF. ELSE
forces execution to skip over the following false part and resumes
execution after the ENDIF. It has no stack effect.

At compile-time ELSE emplaces BRANCH reserving a branch offset,
leaves the address addr2 and n2 for error testing. ELSE also
resolves the pending forward branch from IF by calculating the

offset from addrl to HERE and storing at addrl.

c ----
Transmit ascii character c to the selected output device. OUT is
incremented for each character output.

BUFFERS
Mark all block-buffers as empty. Updated blocks are not written
to the disk. This is also an initialization procedure before

first use of the disk.

- 22 -

addrl c ----
adrl nl n2 n3

The text scanning primitive used by WORD. From the text address
addrl and an ascii delimiting character c, is determined the byte
offset to the first non-delimiter character n l , the offset to the
first delimiter after the text n2, and the offset to the first
character not included. This procedure will not process past an
ascii 'null1, treating it as an unconditional delimiter.

This is an 'alias’ or duplicate definition for UNTIL.

addr n ---------- (compile)
Occurs in a colon-definition in form:

IF ... ENDIF
IF ... ELSE ... ENDIF

At run-time, ENDIF serves only as the destination of a forward
branch from IF or ELSE. It marks the conclusion of the condi­
tional structure. THEN is another name for ENDIF. Both names are
supported in ASI-FORTH. See also IF and ELSE.

At compile-time, ENDIF computes the forward branch offset from
addr to HERE and stores it at addr. n is used for error tests.

addr n ---
Clear a region of memory to zero from addr over n addresses.

line --- in blk
Execute error notification and restart of system. WARNING is
first examined. If 1, the text of line n, relative to screen 4 of
drive 0 is printed. This line number may be positive or negative,
and beyond just screen 4. If WARNING = 0, n is just printed as a
message number (non disk installation). If WARNING is -1, the
definition (ABORT) is executed, which executes the system ABORT.
The user may cautiously modify this execution by altering (ABORT).
ASI-FORTH saves the contents of IN and BLK to assist in determin­

ing the location of the error. Final action is execution of
QUIT.

addr
Execute the definition whose code field address is on the stack.
The code field address is also called the compilation address.

addr count ---
Transfer characters from the terminal to address, until a "return"
or the count of characters have been received. One or more nulls
are added or the end of the text.

FENCE --- addr
A user variable containing an address below which FORGETting is
trapped. To forget below this point the user must alter the

contents of FENCE.

- 23 -

FILL

FIRST

FLD

FLUSH

FORGET

FORTH

HERE

HEX

HLD

HOLD

I

ID.

addr quan b ---
Fill memory at the address with the specified quantity of bytes

b.

--- n
A constant that leaves the address of the first (lowest) block
buffer.

--- addr
A user variable for control of number output field width.
Presently unused in ASI-FORTH.

Write all UPDATEd disk buffers to disk. Should be used after
editing, before removing a disk, or before exiting FORTH.

Executed in the form:
FORGET cccc

Deletes definition named cccc from the dictionary with all entries
physically following it. In ASI-FORTH, an error message will
occur if the CURRENT and CONTEXT vocabularies are not currently
the same.

The name of the primary vocabulary. Execution makes FORTH the

CONTEXT vocabulary. Until additional user vocabularies are
defined, new user definitions become a part of FORTH. FORTH is
immediate, so it will ex e c u t e du r i n g the creation of a
colon-definition, to select this vocabulary at compile time.

--- addr
Leave the address of the next available dictionary location.

Set the numeric conversion base to sixteen (hexadecimal).

--- addr
A user variable that holds the address of the latest character of
text during numeric output conversion.

c ----
Used between <# and #> to insert an ascii character into a
pictured numeric output string. e.g. 2E HOLD will place a
decimal point.

---n
Used within a DO-LOOP to copy the loop index to the stack. Other

use is implementation dependent. See R.

addr ---
Print a definition's name from its name field address.

f --- (run-time)
--- addr n (compile)

Occurs is a colon-definition in form:

IF (tp) ... ENDIF
IF (tp) ... ELSE (fp) ... ENDIF

At run-time, IF selects execution based on a boolean flag. If f
is true (non-zero), execution continues ahead thru the true part.
If f is false (zero), execution skips till just after ELSE to
execute the false part. After either part, execution resumes
after ENDIF. ELSE and its false part are optional.; if missing,
false execution skips to just after ENDIF.

At compile-time IF compiles 0BRANCH and reserves space for an
offset at addr. addr and n are used later for resolution of the
offset and error testing.

- 24 -

Mark the most recently made definition so that when encountered at
compile time, it will be executed rather than being compiled,
i.e. the precedence bit in its header is set. This method allows
definitions to handle unusual compiling situations, rather than

build them into the fundamental compiler. The user may force
compilation of an immediate definition by preceding it with
[COMPILE] .

--- addr
A user variable containing the byte offset within the current

input text buffer (terminal or disk) from which the next text will
be accepted. WORD uses and moves the value of IN.

from to ---
Print the first line of each screen over the range from, to. This

is used to view the comment lines of an area of text on disk
screens.

Set logical file n as default input device. The keyboard is
considered as logical file 0. Thus to return to the keyboard as
being the default input device the command would be: 0 INP.

The outer text interpreter which sequentially executes or compiles
text from the input stream (terminal or disk) depending on STATE.
If the word name cannot be found after a search of CONTEXT and
then CURRENT it is converted to a number according to the current

base. That also failing, an error message echoing the name with a
"?" will be given. Text input will be taken according to the
convention for WORD. If a decimal point is found as part of a
number, a double number value will be left. The decimal point has
no other purpose than to force this action. See NUMBER.

- 25 -

LATEST

LEAVE

LFA

LIMIT

LIST

LIT

LITERAL

--- c
Leaves the ascii value of the character in the input stream. If
default input device is the keyboard KEY will wait for a terminal

key to be struck and return with that value. Note: No cursor is
displayed.

--- addr
Leave the name field address of the topmost word in the CURRENT

vocabulary.

Force termination of a DO-LOOP at the next opportunity by setting

the loop limit equal to the current value of the index. The index
itself remains unchanged, and execution proceeds normally until

LOOP or +LOOP is encountered.

pfa --- lfa
Convert the parameter field address of a dictionary definition to

its link field address.

---- addr
A constant leaving the address just above the highest memory
available for a disk buffer. Usually this is the highest system

memory.

n ---
Display the ascii text of screen n on the selected output device.
SCR contains the screen number during and after this process.

--- n
Within a colon-definition, LIT is automatically compiled before
each 16 bit literal number encountered in input text. Later

execution of LIT causes the contents of the next dictionary

address to be pushed to the stack.

n --- (compiling)
If compiling, then compile the stack value n as a 16 bit literal.
This definition is immediate so that it will execute during a

colon definition. The intended use is:

xxx [calculate] LITERAL :
Compilation is suspended for the compile time calculation of a
value. Compilation is resumed and LITERAL compiles this value.

n ---
Begin interpretation of screen n. Loading will terminate at the

end of the screen or at ;S. See ;S and — >.

- 26 -

addr n --- (compiling)
Occurs in a colon-definition in form:

DO ... LOOP
At run-time, LOOP selectively controls branching back to the cor­
responding DO based on the loop index and limit. The loop index
is incremented by one and compared to the limit. The branch back
to DO occurs until the index equals or exceeds the limit; at that
time, the parameters are discarded and execution continues ahead.

At compile-time,
an offset to DO.

LOOP compiles (LOOP) and uses addr to calculate
n is used for error testing.

M* nl n2 --- d
A mixed magnitude math operation which leaves the double number
signed product of two signed number.

M/ d nl --- n2 n3
A mixed magnitude math operator which leaves the signed remainder
n2 and signed quotient n3, from a double number dividend and
divisor nl. The remainder takes its sign from the dividend.

M/MOD udl u2 ---- u3 ud4
An unsigned mixed magnitude math operation which leaves a double
quotient ud4 and remainder u3, from a double dividend udl and

single divisor u2.

MAX nl n2 ---- max
Leave the greater of the two numbers.

Print on the selected output device the text of line n relative to
screen 4 of drive 0. n may be positive or negative. MESSAGE may
be used to print incidental text such as report headers. If WARN­

ING is zero, the message will simply be printed as a number (disc

un-available).

nl n2 --------- min
Leave the smaller of two numbers.

nl --- n2
Leave the two's complement of a number.

nl n2 --------- mod
Leave the remainder of nl/n2, with the same sign as n l .

pfa --- nfa
Convert the parameter field address of a definition to its name
field.

A Forth 'no operation'.

Prints a trailing <CR>, set output to the screen and closes the

printer channel.

- 27 -

addr --- d
Convert a character using string left at addr with a preceeding

count, to a signed double number, using the current numeric base.
If a decimal point is encountered in the text, its position will
be given in DPL, but no other efect occurs. If numeric conversion
is not possible, an error message will be given.

--- addr
A user variable that currently is not used in this version of

ASI-Forth.

nl n2 n3 ---
Use: nl n2 n3 OPEN "file-spec". Open the logical file nl for
device n2 using channel n3. The file name appears after the OPEN

enclosed by quotes. Note: " - A single blank filename is
convert to a NULL file specification.

nl n2 — or
Leave the bit-wise logical or of two 16 bit values.

A user variable that contains a value incremented by EMIT. The
user may alter and examine OUT to control display formating.

nl n2 ----- nl n2 nl
Copy the second stack value, placing it as the new top.

--- addr
Leave the address of the text output buffer, which is a fixed

offset above HERE.

nfa --- pfa
Convert the name field address of a compiled definition to its
parameter field address.

---- addr
A variable containing the address of the disk buffer most recently
referenced. The UPDATE command marks this buffer to be later

written to disk.

Open the printer logical channel 4 and set output the that device.
Note: Printer is opened for upper-case only. See OPEN.

QUERY
Input 80 characters of text (or until a "return") from the opera­
tors terminal. Text is positioned at the address contained in TIB

with IN set to zero.

QUIT
Clear the return stack, stop compilation, and return control to
the operators terminal. No message is given.

- 28 -

R

R#

R/W

R>

R0

REPEAT

ROT

RP!

RP@

S->D

S0

SCR

SEC/BLK

--- n
Copy the top of the return stack to the computation stack.

---addr
A user variable which is unused in ASI-forth.

addr blk f ---
The ASI-FORTH standard disk read-write linkage. addr specifies

the source or destination block buffer. blk is the sequential
number of the referenced block; and f is a flag for f=0 write and
f=l read. R/W determines the location on mass storage, performs
the read-write and performs any error checking.

 n
Remove the top value from the return stack and leave it on the
computation stack. See <R and R.

 addr
A user variable containing the initial location of the return
stack. Pronounced R-zero. See R P !

addr n --- (compiling)
Used within a colon-definition in the form:

BEGIN ... WHILE ... REPEAT
At run-time, REPEAT forces an unconditional branch back to just

after the corresponding BEGIN.

At compile-time, REPEAT compiles BRANCH and the offset from HERE
to addr. n is used for error testing.

nl n2 n3 ----- n2 n3 nl
Rotate the top three values on the stack, bringing the third to

the top.

A computer dependent procedure to initialize the return stack
pointer from user variable R 0 .

--- addr
Leaves the current value in the return stack pointer register,

n --- d
Sign extend a single number of form a double number.

--- addr
A user variable that contains the initial value for the stack
pointer. Pronounced S-zero. See S P !

--- addr
A user variable that containing the screen number most recently
reference by LIST.

--- n
A constant that contains the number of sectors used per block.

- 29 -

SEC

SEC-READ

SEC-WRITE

SET-DRIVE

SET-10

SETLFS

SETNAM

SIGN

SMUDGE

SP!

SP@

SPACE

SPACES

--- addr
A variable used by the disk interface, containing the sector

number last read or written.

Reads one sector into memory. All parameters must have been set
by SET-DRIVE and SET-10. The status on completion is stored in

DISK-ERROR.

Writes one sector from memory. All parameters must have been set
by SET-DRIVE and SET-10. The status on completion is stored in

DISK-ERROR.

Updates the DISK-COMMAND, that is sent to the drive, with the
value stored in DISK-DRIVE and Initializes correct drive to power-

on state.

Updates the DISK-COMMAND, that is sent to the drive, with track

and sector stored in variables TRACK & SEC.

nl n2 n3 ---
Calls the Kernel routine SETLFS with the logical unit nl, device

n2 and channel n3. See OPEN.

addr count ---
Calls the Kernel routine SETNAM with the name defined by addr and

count. See OPEN.

n d --- d
Stores an ascii sign just before a converted numeric output
string in the text output buffer when n is negative. n is discar­
ded, but double number d is maintained. Must be used betweeen <#

and #>.

Used during word definition to toggle the "smudge bit" in a defi­

nitions’ name field. This prevents an uncompleted definition from
being found during dictionary searches, until compiling is comple­

ted without error.

Initialize the stack pointer from S0.

--- addr
Return the address of the stack position to the top of the stack,

as it was before SP@ was executed.

Transmit an ascii blank to the output device,

n ---
Transmit n ascii blanks to the output device.

- 30 -

STATE

SWAP

T&SCAL

TASK

THEN

TIB

TOGGLE

TRACK

TRAVERSE

TYPE

U<

U*

--- addr
A user variable containing the compilation state. A non-zero

value indicates compilation.

nl n2 --- n2 nl
Exchange the top two values on the stack.

n ---
Track & Sector calculation for disk 10. n is the total sector

count derived by:
n = block// * SEC/BLK

The corresponding track and sector are calculated.
The track number is stored in SEC. T&SCALC is usually executed
before SET-10.

A no-operation word which can mark the boundary between applica­
tions. By forgetting TASK and re-compiling, an application can be

discarded in its entirety.

An alias for ENDIF.

--- addr
A user variable containing the address of the terminal input buf­
fer.

addr b ---
Complement the contents of addr by the bit person b.

--- addr
A variable used by disk 10. Contains the track number last read
or written.

addrl n -:— addr2
Move across the name field of a ASI-FORTH variable length name

field. addrl is the address of either the length byte or the last
letter. If n =l, the motion is toward hi memory; if n=-l , the
motion is toward low memory. The addr2 resulting is address of

the other end of the name.

addr count ---
Transmit count characters from addr to the selected output
device.

ul u2 --- f
Leave the boolean value of an unsigned less-than comparison.
Leaves f = 1 for ul < u2; otherwise it leaves 0. This function
must be used when comparing memory addresses. ul and u2 are
unsigned 16 bit integers.

ul u2 --- ud
Leave the unsigned double number product of two unsigned numbers.

- 31 -

Print a number from an unsigned 16 bit value, converted according
to the numeric BASE. A trailing blank follows.

U / ud ul ---- u2 u3
Leave the unsigned remainder u2 nd unsigned quotient u3 from the

unsigned double dividend ud and unsigned divisor u l .

UNTIL f --- (run-time)
addr n --- (compile)

Occurs within a colon-definition in the form:
BEGIN ... UNTIL

At run-time, UNTIL controls the conditional branch back to the
corresponding BEGIN. If f is false, execution returns to just

after BEGIN; if true, execution continues ahead.

At compile-time. UNTIL compiles (0BRANCH) and an offset from HERE
to addr. n is used for error tests.

Marks the most recently referenced block (pointed to by PREV) as
altered. The block will subsequently be transferred automatically
to disk should its buffer be required for storage of a different

block.

--- addr
A variable containing the address of the block buffer to use next,
as the least recently written.

n ---
A defining word used in the form:

n USER cccc
which creates a user variable cccc. The parameter field of cccc
contains n as a fixed offset relative to the user pointer register
UP for this user variable. When cccc is later executed, it places
the sum of its offset and the user area base address on the stack
as the storage address of that particular variable.

A defining word used in the form;
n VARIABLE cccc

When VARIABLE is executed, it creates the definition cccc with its
parameter field initialized to n. When cccc is later executed,
the address of its parameter field (containing n) is left on the
stack, so that a fetch or store may access this location.

--- addr
A user variable containing the address of a field in the defini­
tion of the most recently created vocabulary. All vocabulary
names are linked by these fields to allow control for FORGETting
thru multiple vocabularys.

- 32 -

A defining word used in the form:
VOCABULARY cccc

to create a vocabulary definition cccc. Subsequent use of cccc
will make it the CONTEXT vocabulary which is searched "cccc DEFI­
NITIONS" will also make cccc the CURRENT vocabulary into which new

definitions are placed.

In ASI-FORTH, cccc will be so chained as to include all defini­
tions of the vocabulary in which cccc is itself defined. All
vocabularys ultimately chain to Forth. By convention, vocabulary

names are to be declared IMMEDIATE. See VOC-LINK.

VIC-3040
VIC-4040
VIC-B050 --- addr

Track and sector tables for each type of disk drive. (VIC-1541

the same as VIC-4040).
These are used in conunction with DISK-TYPE.

List the names of the definitions in the context vocabulary.
"Return" will terminate the listing.

Warm start routine. Can be called from Basic by doing a SYS to
the start of Forth plus 4. Take a look at the Basic part of Forth
and add 4 to the SYS address.

A user variable containing a value controlling messages. If = 1
disk is present, and screen 4 of drive 0 is the base location for
messages. If = 0, no disk is present and messages will be presen­
ted by number. If = -1, execute (ABORT) for a user specified

procedure. See MESSAGE, ERROR.

WHILE f --- (run-time)
adl nl --- adl nl ad2 n2

Occurs in a colon-definition in the form:
BEGIN ... WHILE (tp) ... REPEAT

At run-time, WHILE selects conditional execution based on boolean
flag f. If f is true (non-zero), WHILE continues execution of the
true part thru to REPEAT, which then branches back to BEGIN, which

then branches back to BEGIN. If f is false (zero), execution
skips to just after REPEAT, exiting the structure.

At compile time, WHILE emplaces (BRANCH) and leaves ad2 of the
reserved offset. The stack values will be resolved by REPEAT.

WIDTH --- addr
In ASI-FORTH, a user variable containing the maximum number of

letters saved in the compilation of a definitions' name. It must

be 1 thru 31, with a default value of 31. The name character
count and its natural characters are saved, up to the value in
WIDTH. The value may be changed at any time within the above

limits.

WORD c
Read the next text characters from the input stream being
interpreted, until a delimiter c is found, storing the packed
character string begining at the dictionary buffer HERE. WORD
leaves the character count in the first byte, the characters, and
ends with two or more blanks. Leading occurances of c are

ignored. If BLK is zero, text is taken from the terminal input
buffer, otherwise from the disk block stored in BLK. See BLK,

IN.

- 33 -

This is pseudonym for the "null” or dictionary entry for a name of
one character of ascii null. It is the execution procedure to
terminate interpretation of a line of text from the terminal or
within a disk buffer, as both buffers always have a null at the

e n d .

XOR nl n2 --- xor
Leave the bitwise logical exclusive or of two values.

Used in a colon-definition in form:
: xxx [words] more ;

Suspend compilation. The words after [are executed, not
compiled. This allows calculation or compilation exceptions

before resuming compilation with [. See LITERAL,].

[COMPILE]
Used in a colon-definition in form:

: xxx [COMPILE] FORTH ;
[COMPILE] will force the compilation of an immediate definition,

that would otherwise execute during compilation. The above
example will select the FORTH vocabulary when xxx executes, rather

then at compile time.

Resume compilation to the completion of a colon-definition. See

[.

- 34 -

EDITOR

The editor is a 32 line by 32 characters per line full screen editor.
There are three ways of invoking it (See following definitions). The arrow
, home , insert and delete keys all work correctly. Insert and delete work

with one line at a time. The function keys are defined as follows:

FI - Exit editor. (Remember to flush and/or update).

F2 - Not Used.

F3 - Edit the next screen. (Remember to update current screen if required).

F4 - Edit the previous screen. (Remember to update current screen if
required).

F5 - Set screen as updated.

F6 - Set screen as NOT updated.

F7 - Insert line at current cursor position. (Can't be used on last line of
screen) .

(Last line in screen MUST be all blanks).

F8 - Delete from cursor to end of line and pull in next line.
(Can't be used on last line of screen) (Next line must be able to fit
in deleted space).

EDITOR DEFINITIONS

EDITOR

Set EDITOR as the context vocabulary. This vocabulary contains
lower level code which the main editor routines use. These
routines are not made for general use and thus are not docu­
mented.

EDIT n ---
Place you into the editor with screen n.

ED ---

Place you into the editor with the last screen edited or loaded.

ERR in b l k ---
Place you into the editor with the screen that when just loaded,
had an error. The cursor will be placed on the last letter of the
offending word. See ERROR.

- 35 -

ASSEMBLER IMPLEMENTATION

The assembler is accessed by loading screen no. 9. The assembler is
based upon ’reverse Pol i s h’ notation. This means that the operand comes
before the operator. Each of a ’li n e’ of assembly code has a symbolic oper­
and, then any address mode modifier, and finally the op-code mnemonic.
(Note that words that generate actual machine code end in a ',’ ; i.e.
L D A ,). Therefore:

And also:

34 ,X LDA,

LDA 34,X

POINTER)Y STA,

STA (POINTER),Y

in FORTH would be:

in usual assembler.

in FORTH would be:

in usual assembler.

It takes a bit of getting used to, but reverse Polish assembler allows
full use of FORTH in evaluation of expressions and the generation of the

equivalent of macros.

GLOSSARY OF FORTH ASSEMBLER

IP address of the Interpretive pointer in zero-page.

W address of the code field pointer in zero-page.

N address of 2 byte scratch area in zero-page.

UP address of User Pointer.

.A specify accumulator addressing mode.

specify immediate mode for machine byte literals.

,X ,Y specify memory indexed addressing mode.

X))Y specify indirect memory addressing mode.

) indirect addressing for JMP, & JSR,

MEM specify direct addressing mode.

???, assemble instruction ???.

PUSHN address of routine to push N on stack and goto NEXT.

PUSHWN address of routine to push W on stack and goto PUSHN.

NEXT address of the inner-interpreter, to which all code routines must
return. NEXT fetches indirectly referred to IP the next compiled
FORTH word address. It then jumps indirectly to pointer machine

code.

BEGIN, save address for branch back at UNTIL,

UNTIL, branch to last use of BEGIN, i.e BEGIN, ... 0= UNTIL,

IF, execute if condition, set-up branch ie. 0= IF, ... ELSE, ...
THEN,

ELSE, set-up jump to THEN, and place offset in branch at IF,

THEN, terminate IF, place address in jump at ELSE,

0= Used before IF, and BEGIN, as BEQ

CS Used before IF, and BEGIN, as BCS

0< Used before IF, and BEGIN, as BMI

>= Used before IF, and BEGIN, as alais CS

NOT Used after (0=,CS,0<,>=) for (B N E ,B C C ,B P L ,BCC)

1X2 INX, I NX,

DX2 DEX, DEX,

L0: - L8: Used to store label addresses. (See LABEL)

LABEL Used to define L0:-L8: ie. LABEL L0: L0: MEM JMP,

BYTE.IN Used to calculate indexes into FORTH variables. 2 BYTE.IN INDEX #
LDA,

REPLACE.BY Change old definition to point to next one. CODE NEW. LABEL
L0: ... NEXT MEM JMP, L0: REPLACE.BY . END-CODE

CODE Start assembler definition. CODE cccc

END-CODE End assembler definition and SMUDGE cccc

SUBROUTINE Start assembler definition that is to be used as a subrou­
tine .

END-SUBROUTINE End assembler definition.

- 36 -

FLOATING POINT ROUTINES

Floating Point routines can be accessed by loading screen 5. All
floating point operations are preceeded by a pound sign (£). Floating point

numbers are 6 bytes long.

For more description of floating point functions see the Basic refer­

ence manual.

FLOAT
Sets FLOAT to the context vocabulary. This vocabulary contains

lower level code which the main floating point routines use.
These routines are not made for general use and thus are not docu­

mented .

£ string --- fl
Convert string to floating point number. The number is either
placed on the stack or compiled into the dictionary, depending on

whether you are compiling or not.

£. fl ---
Print out floating point number using normal Basic format.

- 37 -

U fl f 2 --- f 3

Add fl to f2 giving f3.

£ - fl f 2 --- f 3
Subtract f2 from fl giving f3.

t / fl f 2 --- f 3
Divide fl by f2 giving f3.

£* fl f 2 --- f 3
Multiply fl by f2 giving f3.

fDROP fl ----
Drop a floating point number from the stack.

£SWAP fl f 2 --- f 2 fl
Exchange the top two floating point values on the stak.

£d u p fl ---- fl fl
Duplicate the floating point value on the stack.

iOVER fl f2 ---- fl f 2 fl
Copy the second floating point number, placing it as the new top.

fROT fl f2 f 3 --- f 2 f 3 fl
Rotate the top three floating point numbers on the stack, bringing

the third to the top.

fl addr ---
Store floating point number at address addr. Requires 6 bytes of

storage. See ^VARIABLE.

- 38 -

£@ addr --- fl
Leave the floating point contents of address addr on the stack.

^VARIABLE --- addr
A defining word of the form:

fl ^VARIABLE cccc
When ^VARIABLE is executed, it creates the definition cccc with
its parameter field initialized to fl. When cccc is later executed
the address of its parameter field (containing fl) is left on the
stack, so that a fetch or store may access this location.

^CONSTANT --- fl
A defining word used in the form:

fl ^CONSTANT cccc
to create word cccc, with its parameter field containing fl. When
cccc is later executed, it will push the floating point value of

fl to the stack.

*LOG fl ----- f 2
Perform the Basic function LOG(fl).

fSGN fl ----- f2 (-1 , 0 , 1)
Perform the Basic function SGN(fl).

fABS fl ----- f 2
Perform the Basic function ABS(fl).

<£INT fl ----- f 2
Perform the Basic function INT(fl).

£SQR fl ----- f 2
Perform the Basic function SQR(fl).

ft fl f2 — f 3
Perform the Basic function fl+f2.

*EXP fl ----- f 2
Perform the Basic function EXP(fl).

fRND fl ----- f2 (fl = | - 1 0 1 })
Perform the Basic function RND(fl).

fCOS fl ----- f 2
Perform the Basic function COS(fl) .

*SIN fl ----- f 2
Perform the Basic function SIN(fl).

fTAN fl ----- f 2
Perform the Basic function TAN(fl).

*ATN fl f 2
Perform the Basic function ATN(fl).

S->£ n ---- fl
Convert 16 bit signed integer to floating point number*

£->S fl ---- n

Convert floating point number to 16 bit signed integer*

*< fl f 2 ----f
Leave a true flag if fl is less than f2; otherwise leave a false
flag.

£> fl f2 ---- f

Leave a true flag if fl is greater than f 2; otherwise leave a

false flag.

£- fl f 2 ----f
Leave a true flag if fl is equal to f2; otherwise leave a false
flag.

- 39 -

- 40 -

GRAPHICS DEFINITIONS

Graphics definitions can be accessed by loading screen no. 37 on your

ASI-FORTH disk.

GRAPHICS
Vocabulary that contain primitive graphic definitions.

Turn on high resolution graphics.

Turn off high resolution graphics.

Clear graphics screen.

Set border to colour cl.

clb elf ---
Set Background colour to clb and foreground colour to elf.

Sets mode of plotting for subsequent uses of LINE and PLT.

-1 — Compliment
0 — Clear

1 -- Set

x y ---
Turn pixel at graphics location x,y on.

x y ---
Turn pixel at graphics location x,y off.

x y --- f
Return a boolean value indicating if pixel at location x,y is on.

On = True

Off = False

x y ---
Compliment pixel at graphics location x,y

x y ---
Set pixel at graphics location x,y depending of current mode of

plotting. (See MODE)

xl yl x2 y2 ---
Draw a line of graphics location xl.yl to x2,y2 using the current

mode of plotting. (See MODE)

- 41 -

CSET

SPON

SPOFF

CCSET

SPMCON

SPMCOFF

XEXPON

XEXPOFF

YEXPON

YEXPOFF

SPCOL

SPCOLO

SPCOL1

SPFBKGD

SPBBKGD

SP-SPCOL

x y clb elf ---
Set background colour to clb and foreground colour to elf for the
8 byte area that the graphics pixel x,y falls into.

sp ---
Turn sprite number sp on.

sp ---
Turn sprite number sp off.

x y clb elf ---
Set background colour to clb and foreground colour to elf for the
8 byte area defined by CHARACTER location x,y.

sp ---

Set sprite sp to multi-colour,

sp ---
Set sprite sp to non-multi-colour.

sp ---
Turn on sprite sp X-expand.

sp ---
Turn off sprite sp X-expand.

sp ---
Turn on sprite sp Y-expand.

sp ---
Turn off sprite sp Y-expand.

cl sp ---
Set sprite sp to colour cl.

c l ----
Set multi-colour sprite colour-0 to cl.

cl ---
Set multi-colour sprite colour-1 to cl.

sp ---
Set sprite sp's priority to in-front of background,

sp ---
Set sprite sp's priority to behind background.

Read sprite to sprite collision detect register. Used BEFORE
7SP-SPC0L.

7SP-SPC0L sp --- f
Leaves a boolean flag indicating if sprite sp has collided with
any other sprites. Used AFTER SP-SPCOL

- 42 -

7SP-BC0L

Read sprite to background collision detect register. Used BEFORE

7SP-BC0L.

s p ---f
Leaves a boolean flag indicating if sprite sp has collided with

the background. Used AFTER SP-BCOL

SPPOS x y sp ---
Set sprite sp to position x,y.

XINC , YINC --- addr
Arrays that hold direction vectors to interpret the joystick.

MOVL
MOVR

MOVU
MOVD

n sp ---

Move sprite sp n units in the appropriate direction.

MOVL - Left
MOVR - Right

MOVU - Up
MOVD - Down

Returns the address of sprite bank n. n runs from 0 to 239.

SPLOAD addr n ---
Load sprite bank n with data starting at location

a d d r .
Typical use:

0 VARIABLE SPRITE1 45 , 45 , ... 23 ,

SPRITE1 I SPLOAD

SPTAKE n sp ---

Set bank that sprite sp takes it's information from to n.

Returns a boolean flag indicating if the fire button on control

port 2 is pressed.

Returns the direction of the joystick on port 2 by increments in

the x and y direction.

0 0 = no motion
0 - 1 = move left

- 1 0 = move up

0 1 = move right
1 0 = move down

x y char ---
Place character char in character position x,y on the graphics

screen.

- 43 -

STRING addr c x y ---
Place string starting at location addr for c characters on
graphics screen starting at character position x,y.

- 44 -

MUSIC DEFINITIONS

Music definitions can be accessed by loading screen no. 16 on your

ASCI-FORTH disk.

There are five main definitions required to create music:

(1) RESET - Resets sound registers. (Turns off sound.) After you reset the
computer (RUN/STOP - RESTORE) you must type RESET before nusic

will work.

(2) COMPOSE name - Start a music definition called "name".

(3) FINI - End music definition.

(4) SPEED - A variable that contains the speed of play.

(5) n VOICE - Start definition of music for voice # n. (1 <= n <= 3)

T h e g e n e r a l s t r u c t u r e of a m u s i c c o m p o s i t i o n is as f o l l o w s :

(1) r II I
COMPOSE name (2) VOICE {note octave duration} (note octave duration}

(3)

(1) / I
{note octave duration} ... (2) VOICE (note octave duration}

(3)

(1)
note octave duration} {note octave duration} ... (2) VOICE

(3)

note octave duration} note octave duration! ... FINI

NOTE: All three voices are NOT required.

POSSIBLE NOTES

C
C# (Same as D flat)
D
D// (Same as E flat)
E
F
F# (Same as G flat)

G
G// (Same as A flat)

A
A// (Same as B flat)

B

OCTAVES : 0,1,2,3,4,5,6,7 middle C is octave 4

- 45 -

Q - quarter note
ET - eighth note
Q. - dotted quarter note
H - half note
W - whole note
S - sixteenth note

n ETS - the sum of n eighth notes (0 < n < 32)

n SS - the sum of n sixteenth notes (0 < n < 63)

If a rest is required you can use the definition REST inplace of note and
octave 1.

POSSIBLE DURATIONS

- 46 -

APPENDIX A - STARTING UP

FORTH PROGRAMS:

On the disk you received you will find two programs FORTH and FORTH4.
FORTH is the standard Forth language that the normal user uses, FORTH4 is
for use when BASIC-4 is in use.

To start FORTH, take the following steps:

1. Turn off the computer
2. Insert the "key" that comes with the disk in the cassette part at

the back of the Commodore-64
3. Turn on the computer
4. type: LOAD "FORTH",8

(instead of FORTH you might want FORTH4).
5. After program has located type RUN.

To get a list of the Forth screens on your ASI-FORTH disk type:

4 46 INDEX

The program disk comes with the following screens.

4 LIST Lists the error messages. (You cannot load this screen)

5 LOAD Loads the Floating Point screen. (See instructions)

9 LOAD Loads 6502 assembler for Forth. (See instructions)

14 LOAD Loads utilities.

(1) nl n2 n3 BACKUP

Back's up screens form one disk to another, or to the same
disk but on a different screen. One should always keep a
backup copy of important work in case you erase it.

The command would be: 4 46 4 BACKUP

nl - Starting screen# of source.

n2 - Ending screen# of source.

n3 - Starting screen# of destination.

IMPORTANT: The first thing you should do when you get ASI-FORTH,
is to backup the source programs (by loading and
saving) and then load this screen and backup the
screens on this disk.

(2) SHOW forth-word

Tries to display a "forth-word's" definition. This does not
work with words that are defined in machine language.

- 47 -

16 LOAD Loads Music definitions. (For a description of them see appendix
B)

19 LOAD Loads the music for ODE TO JOY. (Load after 16) Type ODE-TO-JOY
to play it.

21 LOAD Loads the music for GREENSLEEVES. (Load after 16).
Type GREENSLEEVES to play it.

23 LOAD Loads the music for JESU, JOY OF MANS DESIRING. Type JOY to play
it. (Load after 16)

29 LOAD Loads the music for ALSO SPRACH ZARATHUSTRA. Type SPRACH to play
it. (Load after 16)

31 LOAD Loads the music for MOZART'S #40. (Load after 16) Type MOZART-
#40 to play it.

37 LOAD Loads the graphics definitions.

See page 40.

42 LOAD Loads a game using the graphic definitions. Screen 37 has to be
loaded first.

To play just type GAME and use a joystick in control port #2 to

destroy as many ships as possible.

46 LOAD By loading this screen you make all the definitions currently in
Forth as part of the Forth program that can be saved from Basic by

SAVE "prog",8

Example:

To make Forth always have floating point definitions upon boot-up,

the following sequence is performed:

5 LOAD (Load floating point definitions)
46 LOAD (Fudge memory locations)

BYE (Return to Basic)
SAVE "float",8 (Save Forth under new name)

When you load "float" and run it, Forth will boot-up with the
floating point definitions already available.

- 48 -

APPENDIX B - DISK NOTES

Logical unit numbers 8 and 9 are used for disk I/O and should not be
used for regular programming. SET-DRIVE must be executed after changing
which drive you are using. If that disk seems to hang, break Forth by hit­
ting RUN/STOP RESTORE and try executing SET-DRIVE, if this doesn't work you
have a problem with your drive or you have over written the Forth program.

To open a channel with no command or file name enter:

log Dev Chan OPEN

When you get your ASI-FORTH you should copy screens 4 to 46 from the
disk to a fresh disk, using the BACKUP utility contained on screen 14.

FORTH DATA D I S K :

Disks that are used for storing FORTH screens must be initialized
before use. NEVER store regular programs on a FORTH data disk.

DISCLAIMER NOTICE

Much care has been taken in preparing this manual, and the software
programs. However, ACCELERATED SOFTWARE INC. makes no expressed or implied
warranty of any kind with regard to these programs nor the documentation in
these manuals. In no event shall ACCELERATED SOFTWARE INC. be liable for
incidental or consequential damages in connection with or arising out of the

furnishing, performance or use of any of these programs or manuals.
ACCELERATED SOFTWARE INC. reserves the right to alter or update any program,
publication or manual from time to time without obligation to notify any
person of such changes.

Other ASI® products for the Commodore 64®

SPIDER AND THE FLY : The world o f insects is a hard world, where one has to move fast
to stay alive! Weave a web around your elusive prey — but beware
o f the dangers that stalk you!
MULTI-LEVEL, MULTI-PLAYER CAPABILITY.

3D ACTION on a cub ic structure. Bop the cubes to change the ir
colour. Beware! K iller spheres abound. Race the c lock and hit
magic squares for extra points.
MULTI-LEVEL, ARCADE GRAPHICS.

Chomp your way through varieties of fru it w hile being chased by
kille r mushrooms, preying birds and free roaming deadly pump­
kins. Enter and exit through ever changing passages that lead to
new plentifu l gardens.
MULTI-LEVEL, MULTI-MAZE.

E X C IT IN G N E W R E L E A S E S _______________________
For the Commodore 64®

All new, 3D ACTION in the far reaches of OUTER SPACE. Three
com plete ly d ifferent battle scenes. Battle around planets, through
outer space and fina lly in the death tunnel! It's the closest feeling
to being in space itse lf!!
MULTI-LEVEL, ARCADE ACTION.

A revolution in Arcade games! Over 20 d ifferent game concepts
involving a cube and a sphere. Each is multi-level, each is a
com plete challenge. Why buy just one game — buy an arcade!
MULTI-CONCEPT, MULTI-LEVEL, ARCADE ACTION.

First there were word adventure games. Then there were graphics
adventure games. Now, for the firs t time, ASI presents an action
adventure game w ith arcade graphics and arcade speed!
MULTI-SCREENS WITH CONTINUOUS ACTION. THE CHALLENGE
OF A PUZZLE COMBINED WITH THE ACTION OF AN ARCADE!

A game in the sp irit o f THE DUNGEONS OF BA. A com puter
experience w hich com bines the m ystery of an adventure game,
w ith the action o f an arcade. A com pletely new puzzle, filled w ith
new dangers and new challenges!

FINANCIAL FORECASTER : 6 programs in 1 package! A com plete homeuser's aid. Balance
your budget, analyse cash flow, keep track o f your banking,
evaluate d ifferent house purchase scenarios, obtain payment
schedules, am ortization tables and more! All fo r one low price.

ACCELERATED SOFTWARE INC., P.O. Box 129, S tation “ A ” , Scarborough, Ontario M1K 5B9
ASI5 logo is a registered trademark of ACCELERATED SOFTWARE INC./ASI® est une marque deposee

d’Accelerated Software Inc.
©1984 All Rights reserved/Tous dro its reserves.

Printed in Canada/lm prim e au Canada.

SPACE W A R S :

B A L LS :

THE DUNGEONS OF BA :

CASTLE OF JAZOOM :

Q-BOPPER :

C HO M PER:

