

BASIC 128
The complete BASIC compiler

and development system

By Thomas Helbig

1 r. c", ;; tt. ,« U u \oJ--

A Data Becker Product

Published by

Abacus liiHilliHiI Software
P.o. Box 7211

Grand Rapids, MI 49510

Copyright Notice

Abacus Software makes this package available for use on a single
computer only It is unlawful to copy any portion of this software
package onto any medium for any purpose other than backup. It is
unlawful to give away or resell copies of this package. Any
unauthorized distribution of this product deprives the authors of
their deserved royalties. For use on a single multiple computers,
please contact Abacus Software to make such arrangements.

Warranty

Abacus Software makes no warnings, expressed or implied as to
the fitness of this software package for any particular purpose. In
no event will Abacus Software be liable for consequential damages.
Abacus Software will replace any copy of this software which is
unreadable if returned within 30 days of purchase. Thereafter,
there will be a nominal charge for replacement.

Secon Printing, January 1986
Printed in U.S.A.
Copyright © 1985

Copyright © 1985

Data Becker GmbH
Merowingerstr. 30
4000 Dusseldorf, West Germany
ABACUS Software, Inc.
P.O. BOX 7211
Grand Rapids, MI. 49510

ISBN 0-916439-53-4

Preface

BASIC 128 is an optimizing BASIC compiler for the Commodore
128 that makes your programs faster and more efficient. BASIC
128 has all of the options of the well-known BASIC 64 compiler
and contains additional important new features, such as complete
compatibility with BASIC 7.0 and an improved code generator.

The P-code generated by BASIC 128 is up 15 times faster and,
more importantly for longer programs, up to 30% shorter than an
uncompiled program. BASIC 128 can also compile your program
into super-fast machine code for speed increase of up to 35 times.
You can also switch between the two types of code in your
program. In addition to this, BASIC 128 supports the FAST mode
of the Commodore 128, which is used to double the speed of
compiler.

In addition to the efficient optimizing feature of the compiler, the
run-time system contains a function so that programs that cannot be
optimized during the compilation can still be accelerated by four to
ten times. This is noticeable in programs with many floating-point
variables and strings. Programs with integer data are automatically
accelerated by the optimizing function of the compiler.

The floating-point functions TAN, ATN, SIN, COS, A,
SQR, EXP, and LOG were slightly accelerated by other compilers
such as BASIC 64. BASIC 128 uses routines previously used only
by the floating-point processors of considerably more expensive
computers to calculate these functions. These functions are
accelerated on the average by a factor of five (factor of 11,
maximum). This reakes BASIC 128 indispensible for scientific
programs. These functions also speed up complex graphic
operations.

BASIC 128 compiles programs of any size and also allows overlay
packages. The speed of the compiler is about 1-2 Kbytes per
minute, depending on the type of drive. The entire memory space
not occupied by the compiled program can be used for data storage.

iii

Depending on the program size, this leaves data storage of from
60K to over 100K.

BASIC 128 offers you many more features, such as two levels of e
optimization, a variable code starting location, variable memory
usage, automatic linkage or disabling of the floating-point module,
redefinition of the data types of variables, calculation of constant
expressions and strings during compilation, optimization and
transposition of formulas, syntax checking, creation of a
line-address list, data interfaces to assemblers, user-friendly
operation, warnings on errors, restart the compiler without
reloading, etc.

BASIC 128 together with the built-in BASIC 7.0 interpreter forms
an ideal program development system for the Commodore 128.
Fast and efficient programs can be written without programming in
machine language.

Thomas Helbig
October 1985

iv

Table of Contents

e Chapter 1: The BASIC 128 Compiler 1

Chapter 2: Survey of Options 3

2.1 Options 3
2.2 The advanced development package 3
2.3 Compiler directives 4
2.4 A quick example 5

Chapter 3: The optimizer 9

3.1 The general operation of compilation 9
3.2 Optimizing formulas 12
3.3 Processing strings 13
3.4 Integer optimization 14
3.5 The machine code generator 17 e 3.6 Run-time optimizations 19

Chapter 4: Details of the Compiler 21

4.1 The operation of the compiler 21
4.2 Error messages 22
4.3 The Line List 27
4.4 Fast floating-point calculations 28
4.5 Array dimensioning 30
4.6 Direct mode commands 32
4.7 Integer loops 32
4.8 Special handling of certain BASIC 7.0 commands 33
4.9 Loading and saving the compiler settings 36
4.10 Restarting the compiler and compiled programs 36
4.11 The FAST mode 37
4.12 Interrupting compiled programs 38

e

v

Chapter 5: Special commands of BASIC 7.0 39

5.1 Error handling 39
5.2 IF ... THEN ... ELSE, BEGIN ... BEND 39
5.3 Undocumented commands and command options 40
5.4 BASIC extensions 41

Chapter 6: Overlays and Run-time module

6.1 Compiling overlay packages
6.2 The run-time module

Chapter 7: Speed

43

43
46

47

7.1 The optimizing levels 47
7.2 P-code (speed code) and machine language 50
7.3 The integer value-range for the POKE command 53

Chapter 8: Memory addresses and machine language 55

8.1 Memory layout
8.2 Memory addresses
8.3 Special commands
8.4 Symbol tables

Chapter 9: The features of BASIC 128

55
57
59
61

and there use in overview 65

Chapter 10: Differences between BASIC 128 Compiler
and BASIC 64 Compiler 77

Chapter 11: Additional applications 79

11.1 Input/output 79
11.2 High-resolution graphics on the 80-character screen 80

vi

Abacus Software Basic 128 Compiler

Chapter 1: The Basic 128 Compiler

Although BASIC 128 is very easy to use, you should still read this
manual in order to understand the compiler completely. The
operation of the BASIC 128 compiler is quite simple:

• Save your BASIC program on a diskette. The disk need not be
completely empty, but it should have sufficient free space (up
to 400 disk blocks for larger programs). You don't have to
make a backup of your program since BASIC 128 only reads it
and doesn't erase it, but a backup is still a good idea.

• Insert the disk containing BASIC 128 in the drive and start the
compiler with RUN "BASIC 128".

• After the compiler responds with "BASIC 128 Compiler"
and the version number, several options appear on the screen.
Remove the BASIC 128 compiler diskette from the drive and
insert the disk containing the program to be compiled.

• Press the <RETURN> key. This selects option number 1,
which you could also have selected with the <1> key.

• The compiler asks you for the name of the program to be
compiled. Enter the program name and press <RETURN>.

• The compiler then compiles your program into a P-code
program. The screen will show the line number currently being
processed, and following this the compiler outputs some
information about the generated program. If your program
contained errors, the compiler informs your of this with
appropriate error messages. The compiler does not stop when it
encounters an error, but continues in order to find other errors.

• When the compiler is done, it responds with "READY" and an
audible beep. Press the <N> key in order to tell the compiler
that you don't want to compile any more programs. You can
restart the compiler by pressing any other key.

1

Abacus Software Basic 128 Compiler

• If your program contained errors, these must be corrected, the
program resaved and compiled again.

• If your program compiled correctly, the compiled program is .­
on the disk. In order to differentiate it from the BASIC .,
program, the compiler placed a "P-" in front of the program
name. Start the program with RUN IIp -program_name".

• This program will now run considerably faster than a BASIC
program.

• If there are errors in the running program, the corresponding
BASIC error messages are displayed. No line numbers will be
printed. Instead the memory locations at which the errors
occurred is displayed. With the help of the Line List you
can fmd the erroneous section of the original program.

• If the program still isn't fast enough for you, there are other
options for changing this (optimization level 2, generating a
machine language program, using integer variables, etc.). .­
These are explained in the appropriate chapters. .,

• Several compiler settings must be changed from the menus in
order to compile some of the BASIC 7.0 commands (such as
overlay packages). In these cases the compiler will output an
appropriate warning (see 4.2).

2

Abacus Software Basic 128 Compiler

Chapter 2: Survey of Options

e 2.1 Options

After you have started BASIC 128 (with RUN"BASIC 128"), the
main menu appears on the screen. The four options on this menu
are numbered and can be started by pressing the corresponding
numeric key. The most important option of this menu is option 1
which starts the compilation of a program with the specified
optimization level. The difference between the two optimization
levels is described in chapter 7. You can also select this option with
the <RETURN> key instead of <1>.

Option 2 loads all of the compiler settings from a disk file and
displays them in a sub-menu, to which you can also get via option
3. Menu opticn 4 is used for compiling overlay packages. This is
described in chapter 6.

2.2 The advanced development package

For developing programs with special applications, BASIC 128 has
the ability to change most of the attributes of the compiled program.
To do this, select option 3 from the main menu. All of the
changeable values then appear on the screen. All menu options are
lettered in alphabetical order. By pressing the corresponding key
you can change the setting (some options move you to other
menus). Exact descriptions of the individual options of this menu
are found in the appropriate sections of this book and in Chapter 9.
A simple example vf using the advanced development package is
the selection of the code generator.

After you have selected option 3 from the main menu, the type of
code to be generated by the compiler appears under menu option
A. The P-code option is set by default when the compiler is started.
By pressing the <A> key you can instruct the compiler to compile
your program into machine language. Pressing <RETURN> brings
your back to the main menu.

3

Abacus Software Basic 128 Compiler

Changing other default values is just as simple. Naturally, multiple
values can be changed. For the sake of simplicity, the options of
the development package are designated "A" through "0". The
options of the main menu, on the other hand, are designated by e
numbers" 1" to "4". Note that only one of the options appearing on
the screen can be selected at a time.

2.3 Compiler directives

The menu options are selectable only before compilation.

In many cases, you may want to select options during compilation.
You can use compiler directives to do this. These directives are
imbedded within REM statements so that the BASIC interpreter will
ignore them. But the compiler will recognize and process these
directives.

In order to recognize and process the directives, each is preceded a
with the at-sign (@). The format for a directive is as follows: •

REM@ directive

A list of all possible compiler directives is found in Chapter 9. The
most important compiler directive is the following:

REM@I=variable name, variable name

This directive causes all named variables to be interpreted as integer
variables by the compiler. Using integer variables allows the
development of significantly faster programs.

4

e

Abacus Software Basic 128 Compiler

2.4 A quick example

This sample program calculates the prime numbers among the first
10000 numbers. This program is often used as a benchmark for
comparing the speeds of computers, programming languages and
compilers.

10 REM SIEVE OF ERATOSTHENES
20 DIM Z%(10000)
30 FOR I=l TO 10000
40 Z%(I)=l
50 NEXT
60 PRINT Z
70 FOR I=l TO 10000
80 IF Z%(I)=O THEN 150
90 PRINT I*2+1
100 K=l
110 IF I+K*(I*2+1»10000 THEN 150
120 Z%(I+K*(I*2+1»=0
130 K=K+1
140 GOTO 110
150 NEXT

If you run this program and measure the time for it to execute, the
execution time is misleading. Most of the time is spent displaying
the numbers on the screen. Output to the screen is very slow. To
measure the computing speed, make the following change:

90 Q=I*2+1

In spite of this change, the program requires a fairly long time to
run. It will run about 7 times faster if you compile it as described in
Chapter 1. We also mentioned that we can increase the speed of
execution by using several compiler options:

• Rewrite the program so that only integer variables are used.
This is done by appending a "%" character to each variable
name. Note that the BASIC interpreter does not allow integer
variables in FOR/NEXT loops, so the program must be
rewritten without FOR/NEXT loops to increase the speed.

5

Abacus Software Basic 128 Compiler

• You can save yourself this work by using the following
compiler instruction:

5 REM@I=K,Q

This makes sense especially for the loop variable I. Since
integer variables in FOR/NEXT loops are not allowed by the
BASIC interpreter, using the @ I compiler directive
eliminates having to rewrite the program.

• In this special case, even the compiler directive is
unnecessary since the program works exclusively with
integers. You can then compile it with the optimization level
2 (option "0" in the development package).

• In addition you can direct the compiler to create machine
code. This is done with menu option "A".

• You can also use the following compiler directives instead of
the menu settings:

1 REM@M
2 REM@02

After you have selected the generation of machine code and the
optimization level 2, the program runs more than 18 times faster
than the BASIC program. Noting some rules when programming
and compiling pays off.

6

Abacus Software Basic 128 Compiler

Another example of a large speed increase is in sorting data:

1 REM@M
2 REM@02
4 REM QUICKSORT
5 DIM SR%(20),SL%(20)
10 DIM A%(1000)
20 INPUT "NUMBER" ; N
30 FOR I=l TO N:A%(I)=RND(1)*10000:NEXT
40 TI$="OOOOOO":PRINT"START"
50 GOSUB 1000
60 A$=TI$:PRINT "DONE"
70 FOR I=l TO N:PRINT A%(I),:NEXT:

PRINT:PRINT"SORTING TIME=."A$:END
1000 SP=O:L=l:R=N
1010 IF R<=L THEN 1070
1015 X=A%«L+R)/2) :LC=L-l:RC=R+l
1020 LC=LC+l:IF A%(LC)<X THEN 1020
1030 RC=RC-l:IF A%(RC»X
1040 IF LC<=RC THEN HI=A%(RC):

A% (RC)=A% (LC) :A%(LC)=HI:GOTO 1020
1050 IF RC-L<R-LC THEN SL%(SP)=LC:

SR%(SP)=R:SP=SP+l:R=RC:GOTO 1010
1060 SL%(SP)=L:SR%(SP)=RC:SP=SP+l:L=LC:

GOTO 1010
1070 IF SP>=l THEN SP=SP-l:L=SL%(SP):

R=SR%(SP) :GOTO 1010
1080 RETURN

This program runs 36 times faster when compiled and sorts 1000
numbers in 10 seconds or in 5 seconds in the FAST mode.

7

Abacus Software Basic 128 Compiler

Chapter 3: The optimizer

e When writing programs to run at maximum speed, it is useful to
know how the compiler works so that you can adapt time-critical
parts of your program accordingly. Altemativley you can select
optimization level 2 which tries to maximize execution speed. This
is described in chapter 7. On the other hand, programming tricks
which accelerate interpreter programs are unnecessary because the
compiler doesn't require them or performs them automatically. You
should recognize these cases because they can be used to save time.

3.1 The general operation of the compiler

After working with the BASIC interpreter you should notice the
following in regard to the speed of programs:

• A GOTO/GOSUB works slower than a RETURN, although
both accomplish a jump within a program.

• A loop which is programmed using IF ... THEN executes
slower than a FOR/NEXT loop.

• Formulas containing constants run slower than formulas
with variables; this applies to numbers and strings.

• Access to variables is faster if the variable is encountered
earlier in program execution.

• The speed of the GOTO and GOSUB for forward jumps is
dependent on the jump distance. For backward jumps,
speed is dependent on the distance of the jump destination
from the start of the program.

• Integer variables are processed more slowly than are
floating-point variables. Memory can be saved by using
integers only in arrays.

9

Abacus Software Basic 128 Compiler

• For large programs, the GOTOIGOSUB and processing of
variables becomes much slower.

• The program is easier to read, but is much slower, when
you insert spaces in the program.

• Structured programs are usually slower than spaghetti
code.

• If large arrays are dimensioned at the start of the program,
the interpreter pauses several seconds each time a new
variable is used.

All of these characteristics and many others are not true for
compiled programs. If the program is to be compiled you don't
need to adapt it for the BASIC interpreter. There are also operations
for compiled programs which execute faster than the BASIC
interpreter and it is often useful to know how to use these.

This leads to the question: "Why are compiled programs faster than _
those which are not compiled?" The most important points are: •

• The work of interpreting BASIC programs is shifted to
interpreting a type of pseudo machine language (P-code),
which can be done significantly faster. In addition, BASIC 128
has the ability to generate true machine code which eliminates
the interpretation completely.

• Interpreting of formulas is performed by the compiler. The
compiled program calculates formulas using a faster procedure.

• When processing a variable, it doesn't have to be found in a
table, but can be accessed directly.

• It is no longer necessary to locate the destination of a
GOTolGOSUB jump by searching though the entire program
for a specific line number--the jump takes place directly. _
Example: A GOTO in a machine language program takes 3 •
microseconds, while with longer BASIC interpreter programs
it can take up to half a second.

10

Abacus Software Basic 128 Compiler

• Constants must first be converted to binary form by the
interpreter since they are stored in ASCII format in the
program. The same applies for the line numbers of
GOTO/GOSUB. By contrast, constants are stored in binary
format in compiled programs.

This has some important consequences. The following example
substantiates this:

10 FOR I=l TO 1000: NEXT
20 PRINT"DONE WITH FOR LOOP"
30 I=l
40 I=I+1: IF I<=1000 THEN 40
50 PRINT "DONE WITH IF-THEN LOOP"

When you run this program notice that the fIrst loop is considerably
faster than the second. After compiling it, both loops will be about
equally fast. The speed of compiled programs is not dependent on
the number of commands used or the structure of the program, but
only the operations performed themselves. Internally, both loops
are executed in almost the same manner (the management time for
the FOR/NEXT loop is somewhat higher because it is more
flexible).

The compilation procedures mentioned so far are features of most
BASIC compilers. BASIC 128, on the other hand, uses additional
procedures to speed up a program. This included the optimization
of formulas, the use of integer operations, fast string processing,
and the selectable generation of machine code.

11

Abacus Software Basic 128 Compiler

3.2 Optimizing formulas

When calculating complex formulas, temporary results are stored e
on a stack. The compiler transforms the formulas with the goal of
achieving the fewest temporary results possible. This not only
makes the compiled program shorter, it can also be executed faster.
You no longer need to take fast interpretation into account when
writing large formulas. The compiler even changes formulas in
order to allow faster calculation. The multiplication of two
floating-point numbers is faster than division, for instance. In many
cases it is possible to replace floating-point division by
multiplication (inverse). The compiler uses such procedures only
when so doing will preserve the result of the formula, of course.

One thing which can make it easier to write mathematical programs
is the ability of BASIC 128 to calculate formulas which contain
many constants. The following example illustrates this:

10 S=1.414

The assignment is not very accurate, but will be processed faster by
the interpreter than

10 S=SQR(2)

After compilation, both versions will be equally fast, but the second
version is more accurate and easier to program. The compiler also
calculates constant operations when they are contained in larger
formulas. Hidden constant operations can often by discovered by
transforming the formula and these can then be calculated.

One case in which the calculation of a constant before compilation
is not possible is strings. Not all 256 possible character codes can
be represented within the quotation marks. In spite of this, these
codes are required quite often, such as when working with the disk
~. e
The access of a memory location in the disk RAM might look like
this:

12

Abacus Software Basic 128 Compiler

PRINT#2,"M-R"+CHR$(O)+CHR(4)+CHR$(lO)

The calculation of this string is not only very long, it is also slow.
But in compiled programs, it occupies only the required 5 bytes and
need not be computed because the compiler did this already.

The fast math functions of BASIC 128 result in a significant
increase in speed. But this is not an optimization and is explained in
section 4.4.

3.3 Processing strings

Have you ever had a program suddenly stop and appear to do
nothing for several seconds and then the program continues
normally? The reason for this peculiar "behavior" lies in the
memory management of the BASIC interpreter. Each time a string
is assigned to a variable, the previous contents of the variable are
not erased, but remain in memory. When all of the memory is
exhausted, a routine is then started to search for all of the unused
strings in memory and remove them so that the program can
continue (garbage collection). The compiler uses a faster routine to
do this than does the interpreter. Even in extreme cases, the garbage
collection of a compiled program will take no more than one second
and the resulting program delay minimal. If this still takes too long
for you, the garbage collection can be controlled by the program
and can then be executed in the least time-critical sections of the
program. This is done by using the FRE (1) function.

BASIC 128 performs additional optimizations in regard to faster
execution of string operations. This is very effective especially for
complex string formulas, such as:

A$=LEFT$(A$,X%-l)+B$+MID$(A$,X%)

The string B$ is inserted into the string A$ at the x%th place. The
BASIC interpreter would first generate several partial strings and
then append these. The compiled program is optimized so that it
calculates only the resulting string; temporary results do not arise.
The combined formula executes as quickly as a single function.

13

Abacus Software Basic 128 Compiler

3.4 Integer optimization

In Commodore BASIC there are two different data types for e
representing numerical values: floating-point numbers (REAL) and
integers. A floating-point variable can have any name, but only the
first two characters are noted by the interpreter. A variable which
has a "%" as the last character of its name can only accept integers.
Here too the interpreter pays attention only to the first two
characters of the name and the % sign. A variable which is
designated in this manner can accept only the values -32768 to
+32767, without any fractional part. Although such variables are
nonnal1y seldom used, this data type is significantly more important
than the floating-point type. A BASIC programmer normally
doesn't notice this because the BASIC interpreter converts between
both data types when necessary and even often when it isn't.

Below is a list of all commands, operations, and functions for
whose execution the BASIC interpreter requires only integers and
makes a corresponding conversion of the floating-point _
representation: •

ON, GOTO, ON GOSUB, WAIT, LOAD, SAVE, VERIFY,
POKE, CMD, SYS, OPEN, CLOSE, TAB, SPC, NOT,
AND, OR, FRE, POS, PEEK, LEN, ASC, CHR$,
LEFT$, RIGHT$, MIDS$, index of arrays$, all
graphic, sprite, and disk commands or
functions, etc.

For the following operations the interpreter uses the floating-point
representation and converts integers accordingly:

loop counters, INPUT, PRINT, READ, IF,
+, ,*, I, >, <, = <=, >=, <>, SGN,
ABS, USR, SQR, RND, LOG, EXP, COS, SIN,
ATN, STR$, VAL.

DEF,
INT,
TAN,

For the following operations, it is not always necessary to convert
to floating-point fonnat, although the BASIC interpreter does it
anyway:

14

Abacus Software

loop counters,
/, >, <, =, <=,

Basic 128 Compiler

INPUT, PRINT, READ, +, -,
>=, <>, INT.

* ,

In addition, the BASIC interpreter performs all calculations in
floating-point format. If the operation is an integer operation, the
format is converted to floating-point format before the operation
and converted back to integer again aftelWards.

From these lists it becomes apparent that non-mathematical
programs can get by almost entirely without floating-point
variables. Even in mathematical programs, the use of floating-point
variables can be reduced under certain circumstances. In any case,
the majority of all data type conversions of the BASIC interpreter
are unnecessary. In addition, the routines the interpreter used for
conversion are slow and complicated. Furthermore, floating-point
operations are far slower than integer operations. Since the BASIC
interpreter always uses floating-point numbers, you never notice. A
BASIC program could work significantly faster if the floating-point
representation were used only when necessary.

A program compiled with BASIC 128 always makes maximum use
of the integer representation. The compiler does require your
cooperation, however:

• The compiler cannot tell when compiling a program which
data types will be used in which variables during the
run-time.

• The running program can determine this, but this is always
slower than during the compilation of an optimized program.

For this reason, BASIC 128 assumes that all variables are
floating-point variables, which the exception of the following cases:

• Variables which are designated with a percent sign,
corresponding to the designation of the BASIC interpreter.

• Variables which are converted to integer variables by an
appropriate compiler instruction.

15

Abacus Software Basic 128 Compiler

• AU variables in a program compiled with optimization level II
(Chapter 7).

In Chapter 2 you saw that it really pays off to use integer variables. e
An average of 90% of all variables in a program can be replaced by
integer variables. The BASIC interpreter does not allow integer
variables to be used as loop counters in a FOR/NEXT loop. You
can get around this problem with the help of a compiler directive.
Variables which are used often in loops (such as I,J,K) should
therefore be reserved as integer variables with an appropriate
compiler directive and used only for this purpose. There are many
more reasons to use integer variables:

• An integer variable occupies 2 bytes of memory space, while a
floating-point variable occupies 5 bytes. This advantage of
integer variables is especially important for arrays, a feature
which is supported by the BASIC interpreter.

• Many simple integer operations belong to the instruction set of
the 8502 microprocessor. They can therefore by executed in a .­
few microseconds. These include: •

1%+1, I, 1%*2, 1%+J%, 1%-J%

AU programming languages which can be implemented through a
compiler make strong distinctions between integer and
floating-point variables. If you want to move up to a more efficient
programming language like Pascal, it is an advantage to be familiar
with this difference. There are even programming languages which
work only with integers (Forth, assembly language).

16

Abacus Software Basic 128 Compiler

3.5 The machine code generator

Basically compilers can be divided into two different classes
according to the type of code they produce. One often-used method
is the generation of a pseudo code (P-code), which is then
processed by an appropriate interpreter. The advantage of this code
lies in its brevity. Programs compiled to P-code become 50-80%
smaller than the original. This is especially important because the
compiler adds a collection of routines (run-time module) to each
program which the compiled program needs, but which also
lengthens it. The disadvantage of P-code lies in the fact that it is not
as fast as a machine language program. Although the P-code
generated by BASIC 128 was developed especially for the
Commodore 128, it is not as fast as machine code.

An alternative to generating P-code is compiling the program into
machine language. This offers the powerful advantage that the
program runs at maximum speed. But it is also takes up more
memory than a P-code program. Normally only larger computers
have compilers which can generate machine code, because
computing time is costly for these computers and memory space it
plentiful.

Many BASIC programs for the Commodore 128 do not make full
use of the program memory. For this reason, BASIC 128 can
generate either the shorter P-code or the longer machine code or
even mix the two (Chapter 7). When compiling a program to
machine code, it is no longer necessary to interpret the P-code.

The microprocessor of the Commodore 128 (8502) requires
between 1 and 4 microseconds (FAST mode) for the execution of a
single instruction. These instructions are primitive compared to the
BASIC commands, so that several instructions are needed in order
to execute the equivalent of one BASIC command. In many cases,
entire subroutines have to be called and executed. A machine
language program is significantly faster than a P-code program only
when the compilation can be accomplished with few instructions,
since in these cases the interpretation of the P-code slows the
program considerably. BASIC commands can be converted to few
machine language instructions only when it involves simple

17

Abacus Software Basic 128 Compiler

commands. Simple commands are recognized by their high
execution speed, such as all operations with integer variables and
numbers. Most integer operations can be executed with few
machine language instructions. In these cases the program is not -_
only faster because the code is not interpreted, but also because
special capabilities of machine language are used directly.

In summary is can be said that a machine language program is
significantly faster than its P-code counterpart only if the P-code
program itself runs fairly quickly. With programs which use
complex floating-point operations (SIN, SQR, etc.), the generation
of machine code does not result in any speed increase worth
mentioning.

The question of how the optimizing options of BASIC 128 and the
generation of machine code work can naturally be answered only
by trying it out. Most programs can be speeded up through clever
use of all possibilities. You have seen two short examples of this in
Chapter 2.

The machine code generator is turned on via option II A" in the _
advanced development package. After starting the compiler, press
<3> in order to access the advanced development package. With
the <A> you can select the generation of 6502/6510/8502 code and
then return to the main menu with <RETURN> The program
generated by the compiler will have a "M-" before the name instead
of the "p_" for P-code. Otherwise the operation of the compiler is
the same as for the use of the P-code generator.

18

Abacus Software Basic 128 Compiler

3.6 Run-time optimizations

In many programs it is difficult to designate all variables as integers
for the compiler. This occurs when the program was not originally
intended to be compiled or when the use of variables is very
complex. The compiler then can not perform very many
optimizations. So that the program runs with the greatest possible
speed, these optimizations are performed by the run-time system of
BASIC 128. The optimizations are performed while the program is
running. This method of optimization is not as effective as the
direct optimization by the compiler, but run-time optimizations
work on every program, even ones not adapted to the compiler.
Run-time optimizations are not normally performed by a compiler
and are a specialty of BASIC 128.

19

Abacus Software Basic 128 Compiler

Chapter 4: Details of the Compiler

4.1 The operation of the compiler

After selecting the option "I" from the main menu, enter the
program name and press <RETURN>, the compiler starts to
compile the program (Chapter 1). The compiler differentiates
between two phases called pass 1 and pass 2.

Pass 1:

In pass 1 the program is interpreted, optimized, and the
corresponding code created (p-code or machine language). The
compiler outputs the current line number and each command
separator (colon). If the compiler finds a compiler directive
(REM@) it displays an "R" on the screen. Commands or functions
which are not defined in Commodore BASIC (such as BASIC
extensions) display the letter "E".

Pass 2:

In pass 2 the generated code is reprocessed and completed by the
compiler, the run-time module is added and the DATA lines are
inserted in the program. The compiler outputs the following
messages during this process:

-Data code: The data lines of the compiled program are at
this memory address in bank O.

-Object code: The program lies in this range in bank O.

-Strings:

-Extensions:

This area in bank 1 is completely free. The
compiled program uses it for storing strings.

If the program is to use a BASIC extension,
the compiler gives the number of uses.

21

Abacus Software Basic 128 Compiler

-Errors: If errors occurred in the program, the compiler
lists these in the appropriate line and outputs a
list of all lines in which errors occurred after
pass 2.

-Warnings: The compiler can output several types of
warnings. The number of warnings is printed
at the end of pass 2.

4.2 Error messages

The error messages possible in BASIC can be divided into two
groups:

Pro~ram errors:

Errors which result in the inability of the compiler to compile a
command are announced during compilation. The compiler then
outputs the same error message as the BASIC interpreter. The _
following errors are detected by the compiler: •

Syntax -
Same meaning as in BASIC

Redim'd Array -
Same meaning as in BASIC

Type mismatch -
Same meaning as in BASIC

Bad subscript -
An array access has an incorrect index number in contrast to
the dimensioning.

Undef'd statement -
A GOTO/GOSUB command makes reference to a
non-existent line. This error is discovered in pass 2.

22

Abacus Software Basic 128 Compiler

Out of memory -
Program and variables no longer fit in memory. This
normally happens only when the memory limits of the
development package are changed.

Runtime -
The compiler tries to calculate formulas during compilation as
much as possible (mainly for constants). If these formulas
cannot be computed, the compiler outputs this message
because it involves an error which would not normally occur
until the program is running and therefore cannot be
determined more exactly. A example of this is division by
zero:

10 A=1/10

The compiler warns you about some faults and program errors. The
following warnings can be output:

TRACE NOT FOUND
TRACE NOT USED
BEND WITHOUT BEGIN
ILLEGAL BEGIN
ILLEGAL ELSE
ILLEGAL BEND
ILLEGAL OVERLAY
LOAD ONLY IN OVERLAY
POINTER WITHOUT BLANK

System error 1 to
system error 9:

see section 4.8
see section 4.8
see section 5.2
see section 5.2
see section 5.2
see section 5.2
see section 6.1
see section 6.1
see section 8.3

These operating system messages result from turning the disk off
or other obvious operation errors. It is also possible that a disk
error message occur during compilation, such as for a full disk.

23

Abacus Software Basic 128 Compiler

System error 10:

If the C-128 runs out of memory while trying to compiler your
program, this error message appears.

System error 11 to
system error 19:

If the number of errors is too great, this message is printed, such as
when the program being compiled is not a BASIC program.

System error 20:

This message occurs if your BASIC 128 disk is damaged, if your
disk drive is not working correctly, or if you do not start the
compiler from the distribution disk.

In almost all cases the compiler can continue working after
discovering an error and then look for more errors.

Note: A program in which errors are present can naturally only be
executed with limitations. This applies mainly to the material
following an error on a line. You should correct the error and
recompile the program.

Run-time errors:

Many errors cannot be discovered by the compiler because they
depend on running the program. These error messages have the
same meaning as for the BASIC interpreter. The following should
be noted:

Out of memory -
This message means either that the string range cannot accept
all of the strings or that the stack for FOR, GOSUB, and
levels of parentheses is full. The use of too many variables is e
detected by the compiler.

24

Abacus Software Basic 128 Compiler

Bad subscript -
The index of an array access exceeds the array limits; an
incorrect number of indices will be discovered by the
compiler.

Formula too complex -
This message is printed by the interpreter if a string formula
is nested too deeply, which normally does not occur. A
compiled program never outputs this message since deeper
nesting will be processed.

Illegal quantity -
This message is printed by the BASIC interpreter even if it
actually be possible to execute the command, for example:

10 DRAW ,100,100 TO ·50,+50

The interpreter outputs an error message because the third
parameter contains an invalid value. The following command
is allowed:

10 DRAW,100,100 TO +50,+50

Since the interpreter recognizes the end coordinate as a
coordinate relative to the starting point, similar to the
MOVSPR instruction. Negative values also have meaning and
therefore are allowed by the compiler.

When converting floating-point numbers to integer values or in
calculations with integers, the result may exceed the range for an
integer. You should select integer variables only if you are sure that
range overflow will not occur on these calculations. For reasons of
speed, the compiler does not make any range checks during integer
calculations. If a temporary result exceeds the integer range but the
final result is a valid integer, the result will be determined correctly
by the integer operations. You can make use of this for the POKE
command, for instance (Chapter 7).

The input command of BASIC 7.0 has some features which may
appear when the input contains errors:

25

Abacus Software Basic 128 Compiler

Entering a string instead of a number leads to the message "Redo
from start" and the input command is re-issued. The compiled
program behaves in precisely the same manner.

If the input is incomplete, the program requests the additional e
values with two question marks (compiler/interpreter).

If the input is missing, (pressing <RETURN> with no value
entered) the input command is ignored and the variables are not
changed. This is a peculiarity of C 128 and C 64 BASIC which is
not present on the other Commodore computers. BASIC 128 was
developed especially for the Commodore 128 and therefore
supports this often-used option.

If too many values are entered, the interpreter outputs the message
"Extra ignored". A compiled program ignores these values
without printing a message.

Disk errors:

If an error occurs when working with the disk drive, the computeT e
announces the error and ends the compilation. The meanings of the
disk error messages are explained in the disk drive manual.
Messages like "READ ERROR", "WRITE ERROR", "NO
CHANNEL", and "WRITE FILE OPEN" indicate a damaged
disk, which should be replaced.

When working with BASIC 128 and the BASIC interpreter in
general, you may have to correct a BASIC program and res ave it.
This is usually done with the following command:

DSAVE "@:name"

Because of an error in the 1541 disk operating system, this
command will sometimes cause loss of data on the diskette. This is
naturally independent of whether BASIC 128 is used or not. It is _
recommended that the following commands be used instead: w. _

SCRATCH "name": DSAVE "name"

26

Abacus Software Basic 128 Compiler

If you interrupt the compiler with the RESET button or the on/off
switch, it is recommended that you use the COLLECT command on
the current work diskette in order to avoid disk errors.

4.3 The Line List

If errors occur during the execution of a program, an appropriate
message is printed. The program can only output a memory address
at which the error occurred instead of a line number because
compiled programs are no longer organized by lines (exception: see
4.8). A listing containing the memory locations corresponding to
the original line numbers can be printed with the Line List option in
the advanced development package. The Line List is required to
determine the location of the error causing statement. The "D"
option of the advanced development package is used to enable
generation of a Line List. You should always generate a line list for
programs which have never been tried.

e Proceed as follows to use this list:

• Note the memory address at which the error occurred.

• Load the line list with DLOAD "Z-program _name"

• List the list to the desired location with LIS T
memory_address.

• On the right side of the list the corresponding lines which are
assigned to the memory addresses on the left are displayed.
The last line contains the error. Since errors do not always
occur directly at the named memory address, it may be found
at the end of the previous line or the start of the following
line. This applies especially to programs compiled to machine
language.

e · Correct the program and recompile it.

27

Abacus Software Basic 128 Compiler

4.4 Fast floating-point calculations

BASIC 128 uses floating-point routines for the functions TAN, _
ATN, SIN, COS, "', EXP, LOG, SQR which run .,
significantly faster than the routines of the BASIC interpreter. Up
to now such routines were use mainly by the floating-point
coprocessors of more efficient and more expensive 16 or 32-bit
computers. With BASIC 128 these routines are also available for
the Commodore 128.

The calculation accuracy of the compiler functions is slightly higher
than that of the interpreter. The following table lists all functions
and the average number of clock cycles required to execute them as
well as the acceleration over the interpreter. All values refer only to
the function itself and not to the program segments to which they
may belong:

Clock cycles Speed-up Factor

TAN 11600 4.6
ATN 8700 4.9
SIN 16600 1.7
COS 16600 1.7
X"'y 15900 3.5
EXP 9400 2.9
LOG 8600 2.7
SQR 4900 10.8
SIN and COS
together 17000 3.3

As a comparison:

A simple division requires about 3000 clock cycles. The C-128
executes 2 million clock cycles per second in the FAST mode.

The functions S IN and COS are the slowest by a considerable
margin. But in many cases the S IN and COS of the same angle is e
required. In this case there is the option of reading the cosine of the
angle with the USR function after calculating the sine, which is
done in a much shorter time. Naturally, the USR function must not

28

Abacus Software Basic 128 Compiler

have been used for another purpose. No other operations may be
performed between S IN and USR (not even PRINT).

e Example:

S=SIN(X) :C=USR(O):T=S/C

Now S contains the sine, C the cosine, and T the tangent of x.

If such a program is to be tested with the interpreter before
compiling it, USR (0) can be replaced with USR (X) because the
compiler is not interested in the parameter of the USR function in
this case. The following commands must be entered before starting
the program so that the function of the interpreter corresponds to
the function of the compiler:

POKE 4633,9: POKE 4634,148

The floating-point routines occupy about 3K of memory space. The
compiler inserts these routines in programs only if they are actually
used. If, to save memory, you want to prevent the compiler from
using its own routines, it can also use the same routines as the
interpreter. To do this, press the < E > key in the advanced
development package and then <6>. Now the arithmetic module is
disabled. You get back with <RETURN>.

General information about the floatin~-point format of BASIC 7.0:

The interpreter and compiler have a precision of 32 bits which
corresponds to a decimal accuracy of about 9.6 places. Temporary
results are calculated with an accuracy of 40 bits. Numbers are
stored in a binary floating-point format which allows the
greatest-possible computation speed. This representation also has
its disadvantases and you should be aware of these:

• Fractions which are easily representable in the decimal
system (such as 1110) cannot be represented by an exact
fraction in the binary system and therefore lead to calculation
errors.

29

Abacus Software Basic 128 Compiler

• An error arising from rounding off the temporary results
cannot be compared with a decimal rounding since neither the
9th nor the 10th digit is rounded but somewhere in between.
The last two points are of special disadvantage for financial
programs.

• Numbers which are so small that they fall below the
representable value range of the exponents are rounded to
zero. This is a decisive error in many cases, especially when
multiplying by a large number.

• When numbers become larger, the difference between a
number and the next larger number also becomes larger. For
example, 1 can no longer be correctly added to the number
lElO.

• A compiled program has slightly higher accuracy than an
interpreted program.

Example:

PRINT 3"4

4.5 Array dimensioning

The boundaries of arrays must be known during the compilation for
the following reasons:

• Arrays can also lie in bank: 0, yielding additional memory
capacity. This results in complicated memory management
which only the compiler can perform.

• Access to arrays should be as fast as possible and should be
direct. The compiler requires the array addresses and the
memory bank to do this.

In some cases, the boundaries of an array are not known during
compilation, such as with the following DIM command:

30

: ~ , -:" 2. \. ; !! ' . , . I (: "\;l. -) : '; '; ~ t

multiple j'Ji : ;': ;i'i;"! '~ '"
\';:illJc ~. S,-' (',1 , '; (:.\',' d~;;

bc! ','y'et~ tl ! ~ 1 e: "

;1 ; . ;~ : ~ 0!:()I-',.·ed bv a
)' ,:'. ;'-,)[' ,,'] : . i-~t: (if the

"', -,;,; ;,' r;)(,iiue \Jf ,:.: , W ith
-, .. ', " ': ,;, for rh;: unk nown

; :.> ' ," lh:. ' ;; " ",'l';:' t i > key

/\ 1thcugh Ih ~.: c'J!:':i<I,:d .: .:~ . ,. >.\ ili .,,: ~ ~ y L~:·.' f· :~n(~ Ll gh !nCiTlo_ry
avai1<Jble ,,) it. [:-1'. qU-':'~;I:i ' -',··'; ,I .-.. iY!! lll , , ·.: i'~v!nd~;),' is often
als o a qllt'<';Ul!' 0:' :h::. n ~ c ! ;', ~\ ',Y" :(: ' -:, 1'W " ,~:i _ ~n Chaptn 8 you
fi:'ld j l iq (/ ~ i',-· V1,'IL;;; d:.1 ::· , ' . ' ;~: '; ' :iiern ·x . requiff~ments,

Wht:l: \\/ r l t l " ~~ p'. I,;:'t·UlL: " . . f. :

pn_)h kr.l of U:c j':1 :lTPf (~ l t ~(:
;; th ::'ln !h(,~ · · ,,: ,·,: ~ " ' d:.~d p,·C',F.i':- , ! ",

thc 'c , J)',: \ r " :':~: '~ \J SCi1',(.. ~. L,~ ~,'

''.· f); /',V: ih rn:~ Ily arrays , the
.. " :- Ie,; ,; ,.;wrag :::' space (bank

, \ ji.!i , i !:.1:.lf't :.i f hal',k 0) occurs , In
, l_ --, " " .: ' " \V I'! I-, q'l1 a-lle-r 011-a)' s' , . I.. ~ J.;- I. , .. ' L . " ~ . l U. \..

. ' ~li. : m index of the
" 1,

Abacus Software Basic 128 Compiler

4.6 Direct mode commands

Some BASIC commands cannot normally be used within a e
program or do not make sense there. The following are some of
these commands:

LIST, SAVE, VERIFY, CONT, DSAVE, DVERIFY,
AUTO, DELETE, RENUMBER.

The commands DSAVE, SAVE, DVERIFY, and VERIFY are
correctly compiled by the compiler. It is not possible for a program
to save itself, however, since a compiled program moves and
changes itself in memory.

The remaining commands do not make sense in a compiled
program and are ignored by the compiler. A compiled program can
no longer be listed, for example, because it is not a BASIC
program any more. The compiler outputs the message "D IRECT
MODE ONLY" in these cases.

4.7 Integer loops

Integer variables may not normally be used as counters in
FOR/NEXT loops, but this is possible with the BASIC 128
compiler. Integer loops are not only faster, they occupy less stack
space and can therefore be nested more deeply. In addition, access
to the loop variable within the loop is faster. The following example
program uses an integer loop, but can still be executed by the
interpreter:

5 REM@I=I, J
10 FOR I=l TO 100:PRINT I
20 FOR J=l TO 50: NEXT J, I

A STEP value can be specified for integer loops just as with normal e
loops, but extreme care should be taken, because the STEP value
will be converted to an integer value. The value 0.5, for example,
leads to the STEP value zero and therefore to an endless loop.

32

Abacus Software Basic 128 Compiler

4.8 Special handling of certain BASIC 7.0 commands

When compiling a BASIC program into P-code or machine
language, all information about the line and command structure of
the program is lost. The run-time system can no longer determine
which line is being executed and where a command begins and
ends exactly. Some commands of BASIC 7.0 require precisely this
information, however, and are therefore not normally compilable.
BASIC 128 can compile these commands, however they require
special handling. To handle these certain commands the BASIC
128 compiler uses either or both of the following:

LINE RECORD or COMMAND RECORD

The following commands require special handling in order to
compile programs that use them:

1)

2)

TRON:

Requires a LINE RECORD and COMMAND RECORD
in the range to be investigated.

RESUME and RESUME NEXT:

Requires a COMMAND RECORD in the range in which
the error occurs.

3) RESUME constant line number:

record unnecessary.

4) EL variable

Requires a LINE RECORD for the range in which the
error occurs. The E L variable can also be read after
program termination through an error. In this event you
don't need a line list.

33

Abacus Software Basic 128 Compiler

5) COLLISION:

Requires a COMMAND RECORD in the range in which
the command is to be effectiveo

6) Other commands with a variable line number, such as TRAP
N*10:

Requires a LINE RECORD in the range in which the
possible line numbers lie.

Exception: RESTORE never requires a command record.

There are several ways to have the compiler create a COMMAND
RECORD. The simplest way consists of inserting the following
compiler instruction in the first line of a program:

1 REM@TLC

This compiler directive avoids all problems which could occur with _
the commands mentioned above. This directive does make the .,
program longer and slower. BASIC 128 has the ability to control
the structure record more flexibly. You can achieve the following
settings with multiple presses of the <J> key in the advanced
development package:

TRACE: OFF
TRACE: LINE
TRACE: COMMAND
TRACE: LINE & COMMAND

; no record, nonnal state
; only LINE RECORD
; only COMMAND RECORD
; both records

You can also use compiler directives to control the recording so that
a record is made of only the parts of the program where it is
required:

REM@TB or REM@TLC
REM@TL
REM@TC
REM@TO

; both records
; only LINE RECORD
; only COMMAND RECORD
; tum record off

34

Abacus Software Basic 128 Compiler

All compiler directives become effective immediately after their
occurrence in the program.

e Example:

10 TRAP 1000
20 FOR I=-5 TO 5
30 PRINT l/I
40 NEXT
50 END
1000 PRINT "NOT DEFINED": RESUME NEXT

This program uses the command RESUME NEXT, for whose
execution the run-time system needs a command record in line 30,
because the error occurs in line 30 (division by zero). You can
enable the command recording in the advanced development
package, for example. Within a larger program, the following
compiler directives would be more effective:

25 REM@TC
35 REM@TO

Note: A line record can replace a command record if there is only
one command per line in the selected range.

The compiler warns you of an incorrect use of the structure record:

"TRACE NOT USED":

The record is not required (except perhaps for TRON) and should be
turned off in the whole program.

"TRACE NOT FOUND":

No record directive was inserted in the program, although the
program contains one or more commands which require a record.
TRON is not checked.

35

Abacus Software Basic 128 Compiler

4.9 Loading and saving the compiler settings

All compiler settings which can be set with the advanced e
development package and its sub-menus can be saved in a disk file
and loaded again. This is done with option "I" in the advanced
development package. Press the <S> key for save or <L> for load
and enter the filename. To save a file which can also be loaded with
option "2" from the main menu, the name "B 128" must be
given. To distinguish it from other files, BASIC 128 puts "E-" in
front of each file of compiler settings, but you should not type in
this "E-" .

4.10 Restarting the compiler and compiled programs

After a compiled program has been started, it moves itself to the
memory location for which it was generated by the compiler. After
the program is done, it is still in memory, but can no longer be _
started with RUN and must be reloaded. There is a way to restore a ,.,
program without loading it. This is the function of the program
"START" on the BASIC 128 diskette. Simply insert the disk with
the program "START" and enter RUN "START". The compiled
program currently in memory will be started. Naturally, you can
also copy the commands in the program "START" and enter these
directly.

The compiler can also be loaded with the program "START" The
following conditions must be valid:

• The BASIC 128 distribution disk is in the drive.

• The compiler has already been used and correctly ended (not
with RESET or the on/off switch).

• After using the compiler, no compiled program was started,
else the compiled program will be started.

36

Abacus Software Basic 128 Compiler

• Before restarting the program, a BASIC program may be
loaded, changed, and saved again. This program may not
significantly exceed a length of 15K (60 disk blocks), or the
compiler will be overwritten. When using the graphics area
the program may have a length of only 6K.

If these conditions are not met, the compiler must be started as
described in Chapter 1.

4.11 The FAST mode

The FAST command of the C-128 doubles the speed of the
computer. Naturally this command also doubles the speed of a
compiled program so that the speed ratio between the compiler and
interpreter remains intact. If a compiled program is started with the
80-column screen active, the program automatically switches to the
FAST mode. This can be retracted with SLOW command.

The compiler itself can operate in the F AS T mode which is
automatic when using the 80-column screen. When using the
40-column display, the compiler must be switched to the FAST
mode with the "F" option in the advanced development package.
In this case the compiler enables the screen only for important
messages. The compilation speed is not quite double by the FAST
mode because the compiler speed is largely dependent on the speed
of the disk drive used.

37

Abacus Software

Intern.:m.ing (')lnt':; ,.:'J \.".):!.': ;1: :- '.". :. r! ~t· ,: ~: (':! I:, or:ly raa:ly _
possihle, ':':.1;:1"; i\'; "V)·i~~ I' : ·. ""I:l~' .. ,\,,:<;: q 'i · . !:..:~); .. ;t::lU c·;,rnrna :1Cs. It is .,
not poss ib1c in .:-~)n !. ~,' ~:l~ \ : (!~~~ ". t,' "n.tt-Id \..~:!~~ be
used to pre 'er ;: a. r:-'~~:.'. r~::·~ : :... . ;1'.; :-, I.\~. (\;'. (' i"f.li 11'il'

TR1\P comrr~: m:l " :~,:. ' j :. ','. '~ : 1 . ~; "f'

Interr t.: f.'l.i:';; d rru:.::" '; I' i,
with li le b' I) :,'::" ; ' \l~

RS -2 3~ '. ; i ikl i, ; "~"

, . (

,,'< " ­"'., ,

POKE 792 ,51 : POKE -H c'

Abacus Software Basic 128 Compiler

Chapter 5: Special commands of BASIC 7.0

tit 5.1 Error handling

The TRAP command of BASIC 7.0 is used to trap errors. This is
not supported by BASIC 128 in all cases. For example, some
errors discovered by the compiler are taken care of so that they do
not enter into the program flow. In addition, some error messages
no longer occur after compilation so that parts of the error handling
routines become superfluous (see also section 4.2).

Programs in which the commands RESUME and RESUME NEXT
(not RESUME 1 ine number) are used must be compiled with
command records enabled (see section 4.8).

5.2 IF ... THEN ... ELSE, BEGIN ... BEND

The interpreter does not always handle the structured instructions
ELSE, BEGIN, and BEND in the way the programmer and the
program structure intended. For reasons of compatibility to the
interpreter, the compiler is forced to behave in the same manner. In
such cases the compiler outputs the following warnings:

BEND WITHOUT BEGIN:

A BEND does not refer to a BEG IN and is therefore superfluous or
erroneous.

ILLEGAL BEGIN:

In the same line before the BEGIN there is a THEN or an ELSE
which no BEGIN follows. The two structures are then not nested
but intersecting, which is a gross program error in almost all cases.

39

Abacus Software Basic 128 Compiler

ILLEGAL ELSE:

An ELSE refers to two of more previous IF ... THEN instructions.
In this case the part after the ELSE is always executed if one of the _
two IF conditionals is false. This behavior is almost never the .,
intention of the programmer, however. The correct nesting can be
achieved with BEGIN ... BEND.

ILLEGAL BEND:

A BEND does not show its effects until the end of the line or the
next ELSE. A BEND which is not just before a line end of an ELSE
is incorrectly placed.

5.3 Undocumented commands and command options

BASIC 7.0 contains some commands and options for commands
which are not mentioned in the Commodore 128 manual. In e
addition, some commands do not behave as indicated in the
manual. In these cases BASIC 128 behaves like the BASIC
interpreter. Despite intensive research and investigation, there may
still some undocumented possibilities in BASIC 7.0 which the
compiler does not support.

The most important undocumented cases:

• Almost all graphics commands can work with relative
coordinates (see also section 4.2), as is possible with
MOVSPR, for instance.

• Graphic coordinates can be specified in distance and angle
by using a semicolon instead of a comma.

• MID $ may be used on the left of the assignment character.
• SYS has the same parameters as the RREG command (see

also section 8.3)

Some commands of BASIC 7.0 do not behave correctly or
according to the intentions of the programmer. Where this is
necessary to maintain compatibility, the compiler follows the

40

Abacus Software Basic 128 Compiler

incorrect behavior of the interpreter (see also 5.2), though this
cannot be guaranteed in all cases.

5.4 BASIC extensions

If a program containing commands which do not come from
BASIC 7.0 is to be compiled, the compiler can be informed of this
via the option "H" of the development package. Additional
compiler settings are also necessary. The manual for your BASIC
extension may contain the necessary infonnation. But you still may
have to try to compile each extension command to check for proper
operation.

The run-time system of BASIC 128 makes the following
procedures available to adapt a BASIC extension to the compiler:

Functions:

An extended function token calls a run-time system routine at
$ACE in bank O. The second byte of the token is found in the
accumulator. The integer value of the function parameter is found in
memory locations $ 47, $ 4 8; the result is also expected there.

Commands:

If an extended command token occurs in a program, the run-time
system passed control to a routine which starts at address $AC6 in
bank O. The BASIC extension can fetch command parameters with
the usual interpreter routines since these are appropriately redirected
by the compiler. In addition, the CHRGET or CHRGOT routine can
be used.

The BASIC extension is responsible for supplying memory
locations $ACE and $AC6 with appropriate routines.

41

Abacus Software Basic 128 Compiler

Chapter 6: Overlays and Run-time module

tit 6.1 Compiling overlay packages

In Commodore 128 BASIC 7.0 you can load and start a program
with the LOAD and DLOAD commands. In these cases, all previous
variable contents remain intact. This version of the LOAD command
is always executed when the command is used within a program
and results in a warm overlay. The command RUN "name", by
contrast, uses a cold overlay and causes all of the variables to be
erased.

Cold overlays can be compiled as individual programs, but the
run-time module may not be disabled because programs without
run-time modules cannot be started with RUN. The command RUN
"name" can also start an uncompiled program from a compiled
program.

Compiled programs which use the warm overlay mechanism are
not compiled in the usual manner. To compile a program from the
overlay package the compiler requires a symbol table in which all of
the variables used in the program package and the memory layout is
listed. Overlay pass 1 serves to create this symbol table (not to be
confused with compiler pass 1).

Before the execution of overlay pass 1, the file" S-OVERLAY"
must be deleted from your work disk, provided it is present.

Overlay pass 1;

Compile all of the programs in the program package individually.
Before starting the compilation with <1> or <RETURN>, press
<4> (overlay) and then <1> (pass 1). All options of the advanced
development package (menu option 3) can also be used. The
compiler does not create a finished program and for this reason
runs faster. It generates just the table of variables. In addition, the
compiler saves all compiler settings and reloads them for overlay
pass 2. It is important that the first program compiled also be the

43

Abacus Software Basic 128 Compiler

starting program of the overlay package because this program will
be the only one which can be started from the direct mode.
Furthermore, the start program can only be started with RUN
"name" and not with DLOAD "name" from another program. If e
necessary, an appropriate program must be written for the overlay
package, such as a menu program.

After the symbol table is complete, the programs in the overlay
package can be compiled. Overlay pass 2 does this.

Overlay pass 2:

Compile all of the programs in the package, but first press the keys
< 4 > (overlay) and <2> (pass 2). The compiler then loads the
corresponding overlay table and the compiler settings. After all
programs have been compiled with overlay pass 2, the package can
be started.

The following must be noted when compiling overlay packages:

• The compiled programs must be renamed to the appropriate
names because the compiler puts "P -" or "M-" in front of the
name of the compiled program.

• If larger overlay packages are to be compiled, the individual
programs must be divided among several diskettes because the
compiled programs need disk space. The compiler loads the
overlay table before the input of the program name. The table
can therefore be loaded from a disk other than the disk
containing the program to be compiled. It is important only that
in pass 1 the last-generated table is loaded (last compiler pass).
In overlay pass 2 the last table generated from overlay pass 1 is
always loaded.

A command can be sent to the disk drive with the menu option
"M". In this manner you can delete an already-compiled _
program (naturally only programs of which copies exist) in •
order to create space on the disk.

44

Abacus Software Basic 128 Compiler

•

•

•

All arrays must be dimensioned in the start program, at least if
the compiler outputs a corresponding warning.

The compiler compiles the commands DLOAD and LOAD
automatically into the corresponding BLOAD commands.
Although no programs in the package contain a run-time
module except the first program, you need not take the
instructions in section 6.2 into account.

Within the overlay package the start program may be loaded
only with RUN "name" and the other programs only with
DLOAD or LOAD.

The compilation of a warm overlay package requires a bit of
practice in operating the compiler. Overlay packages are usually
only written by experienced programmers.

The compiler can output the following warnings for errors in the
compilation:

ILLEGAL OVERLAY:

The overlay package was not compiled correctly. The absence of
this message is not an absolute guarantee that the compiler was use
correctly.

LOAD ONLY IN OVERLAY:

When using the commands DLOAD and LOAD the program must
also be compiled as an overlay.

45

Abacus Software Basic 128 Compiler

6.2 The run-time module

The run-time module contains all routines necessary for the e
execution of the compiled program. Every compiled program
contains these routines. If disk space must be saved, you can
disable the generation of the run-time module (menu option" G").
When loading several programs sequentially, only the first need
have a run-time module. All additional programs without run-time
modules must be loaded absolutely with BLOAD "name", BO.
You will get an individual run-time module if you compile the
following program:

10 REM

The run-time module and program can now be loaded individually.
A program without run-time module can be run only if a run-time
module is already in memory. Starting a program without a
run-time module is done with the program "START" (see section
4.10).

The compiler can generate two types of run-time module. The
second type is generated only if you directly disable the arithmetic
module with the compiler setting. Disabling the arithmetic module
automatically through the compiler has no effect on the module.
The two types of run-time module may not be mixed.

46

A bacus Software Basic 128 Compiler

Chapter 7: Speed

e 7.1 The optimization levels

The compiler has two levels of optimization which can be selected
via option "0" of the advanced development package. The selected
optimizer is displayed under option 1 of the main menu.

Optimizer I:

When selecting this optimization level, all possible optimizations
and program changes are performed and guaranteed not to change
the operation of the program. Optimization level I is therefore
completely compatible with the BASIC interpreter. Calculations
with integer values are executed as integer operations only when it
is determined that an integer makes sense as the result. This is the
case for most BASIC operations, however.

Optimizer II:

This optimization level has several important differences from level
1 and the BASIC interpreter:

• All variables, with the exception of string variables are
classified as integer variables, that is, the compiler assumes
that a % sign is behind each variable. The compiled program
then works faster and the compiler does distinguish between
variables like I and 1% -- they just have the same type.
Variable arrays, on the other hand, are classified with the
correct data type.

The division of two integer variables or values is always
done with floating-point division in optimization level 1.
Level 2, on the other hand performs such a division as an
integer operation and ignores the remainder. In certain cases
this leads to a difference from the interpreter. Usually this is
not the case because no floating-point result is expected from

47

Abacus Software Basic 128 Compiler

integer operations. An integer division runs significantly
faster than a floating-point division, especially division by 2.

• The function INT is not treated as the greatest-integer
function, but as a conversion to the data type "integer".
Further processing with the corresponding value in a formula
will be performed with integer operations. The difference
here is that the function INT is no longer usable on values
outside the integer range (-32768 to 32767).

Optimization level 2 has various applications. It is intended for the
following type of programs:

• Programs for which high speed is more important than
compatibility to the interpreter.

• Programs for which it is clear from the start that all variables
will have only integer values.

• Programs in which the use of integer variables was not taken _
into account and the compiler is to do this. This is also done in _
level 1 by the run-time optimizations in a somewhat less
effective form.

The following example is a typical application of optimization level
2:

10 A=INT (RND (1) *1000)

The variable A serves only to accept an integer number despite the
fact that a floating-point calculation is used.

Programs for which optimization level 2 is used usually require
some floating-point variables. Since optimization level 2 does not
recognize these, it is then necessary to specify these variables to the
compiler in a compiler directive.

48

Abacus Software Basic 128 Compiler

Instruction:

REM@R=variable,variable, ...

The variables listed are classified as floating-point variables in
optimization level 2.

Example:

10 FOR I=l TO 1000
20 A=SQR(I): PRINT A;
30 NEXT

If this program is compiled with optimizer II, the following line
should be added:

5 REM@R=A

The optimization level can also be changed within the program:

REM@Ol
REM@02

;enables level 1
;enables level 2

Switching the optimization level affects only the data type of
variables if these variables are not used before the switch.

Optimization level 2 has no effect on the data type of arrays. Arrays
of integers should always be designated with a "%" sign because
this saves a good deal of space when using the BASIC interpreter.
This usually makes it possible to test such a program with the
interpreter. After compiling, the memory space for arrays is
significantly larger.

NOTE! Use optimization level 2 only for programs which you
have developed yourself and for those for which you know the
operation of the program and the use of data types. This also
applies to the other additional possibilities of the compiler over and
above the interpreter.

49

Abacus Software Basic 128 Compiler

7.2 P-code (speed code) and machine language

Very large programs are often not compilable into machine e
language because a program translated into machine language is
always longer than the original. In larger programs there are also
time-critical program segments, of course, and it may be necessary
to compile these into machine language. For this reason BASIC
128 has the ability to change the code generator during the
compilation with two compiler directives:

1) REM@M

This directive tells the compiler to compile all subsequent program
lines into machine language. When these program lines are
encountered, the corresponding machine language program is
started.

2) REM@P

After this directive the lines following it are compiled in P-code e
again. When these lines are encountered, the P-code interpreter is
started and the commands following are interpreted.

These two compiler directives should be used only if you
understand their effects completely. The following restrictions
apply when using these directives:

• The microprocessor of the Commodore 128 can execute only
machine language and not P-code.

• The P-code interpreter can interpret only P-code and not
machine language.

If the code is changed without encountering a corresponding switch
point (compiler directive), the behavior of the program is no longer
predictable and in no event will it work correctly. As a consequence _
of this, no program jumps within a program which end in a _
program segment with different code will succeed. The commands
GOTO, GOSUB, RETURN, IF, ELSE, LOOP, EXIT,
NEXT, and RESUME perform program jumps.

50

Abacus Software Basic 128 Compiler

In addition, the COLLISION instruction executes a jump to an
unpredictable location. By limiting the structure record (section
4.8), you can limit the corresponding range.

The TRAP instruction executes a jump from the erroneous location
to the error-handling routine. The code type at the location where
the error occurred is unimportant--the TRAP command must just
have the same code type as the error-handling routine.
Furthermore, the RESUME instruction represents a jump whose
destination code must be taken into account, which is very easy for
"RESUME line number". In addition, RESUME NEXT and
RESUME are usually only performed for known program locations.

Switching the code generator in structured programs can be done
without danger at the start and end of a block. A program block is
designated such that no jumps are made out of it and no jumps are
made into it. It is started at the beginning and is exited at the end.
Larger programs are usually block-structured so that switching to
machine code for parts of them is possible. Programs which are
neither block structured nor possess some other recognizable
structure should not switch the code generator within the program.
Such programs usually do not run correctly because of the lack of
structure or are very small.

It is especially simple and useful to switch the code generator for
subroutines. Such a subroutine could have the following general
form:

1000

1980
1990

REM@M

REM@P
RETURN

Lines 1001 to 1979 are compiled into machine code in this
example. The subroutine may be started only with GOSUB 1000
and then exited only by executing lines 1980 and 1990 (with GOTO
1980 if necessary). This is the case with structured programs. If
another subroutine is called within the subroutine, the code
generator must be switched back first. In our example this would
look as follows:

51

Abacus Software

1500
1510
1520

REM@P
GOSUB5000
REM@M

Basic 128 Compiler

It doesn't matter what code type the subroutine called is, as long as
the first line (with the compiler instruction) is compiled into P-code.
Time-critical subroutines usually call no other subroutines.

52

Abacus Software Basic 128 Compiler

7.3 The integer value range for the POKE command

Some other possibilities of the Commodore 128 can be used in
BASIC only with the help of the commands PEEK and POKE.
These commands are usually used to pass data to assembly
language programs and should therefore be executed as quickly as
possible. The use of integer variables in combination with the
POKE command is particularly useful because memory addresses
are represented by whole numbers. There are exactly 65536
different memory addresses in the Commodore 128 (0-65535) and
an integer variable can have one of 65536 different values (-32768
to 32767). Unfortunately, the number ranges are not identical.
Floating-point values and variables must be used for memory
addresses above 32767. In connection with the POKE command
and some other commands, the compiler has the ability to perform
integer operations for values above 32767, though this involves
sacrificing the negative numbers. The user of the compiler notices
this through higher program speed.

REM@I=I 5
10
20
30
40

FOR I=1024 TO 2023
POKE
POKE
NEXT

I,65
I+54272,0

The program becomes faster with the following change:

6 OF%=30000
30 POKE I+OF%+24272,0

This change causes only integer values to be processed and a
floating-point addition results in two integer additions. Such tricks
should be used only in extremely time-critical program locations.

53

Abacus Software Basic 128 Compiler

Chapter 8: Memory addresses
and machine language

You should read this chapter is you want your BASIC and
assembly-language programs to work together or if you use POKE
commands in your program.

8.1 Memory layout

Pressing the <E> key from the advanced development package
moves you to another menu, with whose help you can manipulate
the memory usage of the compiler arbitrarily. Press the appropriate
digit <1> through <5> and then enter the address.

The memory layout of compiled programs results from the values
printed by the compiler and the preset and not-yet changed
addresses in the memory menu. The values for the start of the
run-time module and the arithmetic module are found in the
program "START" on the BASIC 128 disk:

1) a to start of bank a

System memory

2) Start of bank a to data code start

Storage for individual variables and arrays

3) Data code start to top of bank 0:

Program code

4) Run-time module or arithmetic module start to memory end

Run-time system

55

Abacus Software

5) $0400 to start of bank 1 :

Stack for string descriptors in bank 1

6) Start of bank 1 to string end:

Free memory area for strings in bank 1

7) String end to top of bank 1 :

Basic 128 Compiler

Memory for arrays and individual variables in bank 1

8) Top of bank to end of memory:

Run-time system in bank 1

An area of memory can be reserved by moving the top values down
and those for the start values up. The compiler will no longer use
these areas and they can be used to store assembly language
programs or new character sets, for instance. Be sure to note that _
neither the run-time system nor the arithmetic module is movable. A •
memory area between the program and the run-time system or
arithmetic module can be created by lowering the setting of the code
start below that specified by the compiler.

The compiled program stores the variables in the following form:

Inte~er variables:

2 bytes:

low byte, high byte

F1oatin~-point variables:

5 bytes:

fIrst byte exponent, second through fIfth bytes mantissa e
or
fIrst byte 0, third and fourth bytes integer representation

56

Abacus Software Basic 128 Compiler

The USR function can be used to pass a floating-point variable in
the interpreter fonnat to an assembly language program.

String variables:

3 bytes:

Length, address of the string low byte, address high byte

Strings:

2 bytes trailer plus I byte per character

An assembly language program can change the contents of
variables. The addresses of the variables can be obtained from the
symbol table. For strings, neither the location of the string nor its
length can be changed by an assembly-language program. This can
be done only by the compiled program or by uncompiled programs
of the interpreter.

The graphics storage from $IeOO to $4000 is automatically
reserved by the compiler if a command which uses this area appears
in the program. In this case the value for the start of bank 0 may not
be changed or only changed to a value over 16383.

8.2 Memory addresses

When using POKE and PEEK commands, it should be noted that a
compiled program uses some memory locations differently than the
interpreter. The following applies for the usuability of POKE
commands:

• There is no change to banks 2-15

• All memory locations from $0000 to $1300 in bank 0 used by
the operating system or by commands of the interpreter retain
their function (keyboard buffer, pressed key, I/O vectors,
screen memory, graphic values, etc.). Many previously unused
memory locations in this area are used by the run-time system.

57

Abacus Software Basic 128 Compiler

Changes occur only in the following memory locations:

The reserved area of $1300 to $lCOO is used by the compiled
program. If this area is to be used in another manner, it can be _
released with a compiler instruction: .,

REM@S address

The whole buffer can be freed with the following command:

REM@S7168

When using graphics the following command will free the graphics
screen:

REM@S16384

Memory locations which the BASIC interpreter uses for
interpreting the program partially lose their meaning. This is a
natural result of compiling. Only the memory locations which can
normally be used meaningfully with POKE commands remain. _
These include: .,

-floating-point registers
-random number
-CHRGET routine and other memory access routines
-status word ST
-RND value
-pointer to the program start (43-44)
-pointer to the program end (45-46)
-pointer to the string stack (53-54,57-60)
-pointer to the next DATA element (67-68)
-description of D S $
-hires flag
-mode flag

The stack pointer $7D, $7E is used in a different manner by the
compiler than by the interpreter. It is possible to read memory e
location $7D and save it again if necessary in order to check the
FOR and GOSUB nesting. Memory location $82 must also be
corrected. Memory location $7E'may not be affected.

58

Abacus Software Basic 128 Compiler

Example:

10 A%=PEEK(125) :REM save stack state
20 FOR I=l TO 1000
30 POKE 125,A%:POKE 130,A%:

REM restore stack state
40 NEXT:REM results in NEXT WITHOUT FOR

When using addresses (2 bytes), it must be noted that it is possible
that other address than when using the interpreter will be stored
there. This applies especially for the memory management (45-58)
and for the error handling (768-769).

The differences between the interpreter and compiler in the layout
of memory addresses is so small that it has practically no
repercus sions.

8.3 Special commands

SYS:

The SYS command of BASIC 7.0 has the same parameter list as the
RREG command. For this reason this command has only limited
use for BASIC extensions as opposed to the SYS command of
BASIC 2.0. This also applies for the compiler.

BANK:

When starting the program, the command BANK 15 is
automatically executed because this involves the standard setting of
the interpreter. If another bank is to be used, the corresponding
switch must be made within a program.

STOP:

This command causes the end of a compiled program. As with the
output of error messages, the command CONT cannot be used.

59

Abacus Software Basic 128 Compiler

POINTER:

The POINTER function of the interpreter always specifies an
address in bank 1. The compiler places some of the variables in _
bank 0 as well. For this reason the compiler has the ability to read .,
the memory bank with PEEK (2) . A program which is to run
correctly with the interpreter as well as the compiler could look as
follows:

10 POKE 2,1:
REM Bank for the interpreter

20 A=POINTER (X)
30 BANK PEEK (2) :

REM Bank for compiler and interpreter
40 E=PEEK (A) : REM read value

The compiler usually outputs the warning "POINTER WITHOUT
BANK" if the POINTER function is used incorrectly.

The compiler always puts a variable at a set address. It cannot occur
that the POINTER return several different addresses during the e
course of a program, as can sometimes happen with the interpreter.

If a data field must be placed in bank 1 for reasons of compati bility,
this can be communicated to the compiler directly after the DIM
command:

REM@B

60

Abacus Software Basic 128 Compiler

8.4 Symbol tables

BASIC 128 has the ability to load and save symbol tables. A
symbol contains all of the variables in a program and the addresses
at which they will be stored. The symbol tables themselves are
stored in the form in which they are internally processed by the
compiler.

Savine a symbol table:

To save a symbol table the compiler needs only a name for the
table. This is done with menu option "C". The name "OVERLAY"
is reserved for overlay symbol tables. The symbol table is saved
after compilation.

Loadine a symbol table:

The name of a symbol table to be loaded can be specified with
menu option "B". The table is loaded before compilation. All of the
variables and memory addresses listed in the symbol table are
accepted. This useful if several programs access common variables,
in order, for example, to use the same assembly-language
programs. The compiler makes use of this when compiling overlay
packages.

Processine a symbol table:

A program called SYMBOL is located on the BASIC 128
distribution disk. After loading and starting the program it asks for
the name of the symbol table. After entering the name you can
select between two options.

By pressing the < 1 > key the program will be told to convert the
symbol table into the format used by the Abacus
ASSEMBLERIMONITOR. The name of the converted symbol
table is the same as that created by the compiler. The old table is not
erased however because the compiler places "s -" in front of the

61

Abacus Software Basic 128 Compiler

name of the table. This need not be taken into account. The
ASSEMBLER/MONITOR can load symbol tables with the the
pseudo-op " . LST" (see the ASSEMBLERIMONITOR manual).
The names of the variables can be used in an assembly language _
program as if they were defined in the program. This makes it •
possible for an assembled program to access variables in a
compiled program. The program SYMBOL transforms the names
of the variables in order to distinguish them from each other. In the
following example, "na" stands for the first two bytes of the
variable name:

Individual variables:

na -na
na% -naIN
na$ -naST

Arrays:

na -ARna
na% -ARnaIN
na$ -ARnaST

The representation is not dependent on the optimization level. It is
derived directly from the variable name. The following fragment of
an assembly-language program exchanges two BASIC integer
variables:

100 LST 8,2, "name,S,R"
110
1000 LOA AIN
1010 LOX BIN
1020 STX AIN
1030 STA BIN
1040 LOA AIN+1
1050 LOX BIN+1
1060 STX AIN+1
1070 STA BIN+1
1080

This corresponds approximately to the following BASIC program:

62

e

Abacus Software

100 H%=A%:A%=B%:B%=H%
110

Basic 128 Compiler

The ASSEMBLERIMONITOR runs in the C-64 mode of the
Commodore 128, but the assembled programs can be run in the
C-128 mode and used in a compiled program.

If you do not have an assembler, you can still process the symbol
table. After starting the program SYMBOL, press the <2> key to
output the listing. The program asks for the number of the device
on which the listing is to be outputted. The following device
addresses have meaning:

o = device 0 = screen
4 = device 4 = printer
8 = device 8 = sequential file on the disk

The program then outputs the names of the variables followed by
the memory address and the memory bank.

The program SYMBOL may not be used on the symbol file
OVERLAY. To transform an OVERLAY file, let the compiler load it
and then save it to another file by compiling the following program
in the non-overlay mode with the appropriate compiler settings.

10 REM

The program SYMBOL is just a suggestion for processing symbol
tables and can be extended as desired, since it is not compiled.
Possibilities include a symbol editor or adaptation to another
assembler.

63

Abacus Software Basic 128 Compiler

Chapter 9: The features of BASIC 128
and their applications in overview

This chapter offers only a short overview of the compiler and its
use. Most of the compiler capabilities are described in greater detail
in the appropriate chapters of this manual.

Startin~ the compiler:

The <1> key or <RETURN> starts the compiler when you press it
in the main menu. You can always exit a menu with <RETURN>,
provided the compiler is not waiting for you to end some input with
<RETURN>.

Loadin~ compiler parameters:

You can use the <2> key in the main menu in order to load all of
the compiler settings from the main menu and then automatically
move to menu option "3". Via this option you can load only files
which are stored under the name "B 12 8" (see option" I ").

Settin~ compiler Parameters:

When starting the compiler with the <1> or <RETURN> key, the
compiler has a list of values and instructions which is needs for
compilation. To display this list on the screen, press <3>. You can
now change this list and then press <RETURN> to get back into the
main menu. The individual options on the list are designated with
leters and can be selected with the appropriate keys:

65

Abacus Software Basic 128 Compiler

Menu Options:

Option" A" - Code ~enerator

The compiler can create either P-code, machine language
(6502/6510/8502), or no code at all. Machine language programs
recei ve "-M" before the name, other programs "P - ". The compiler
preset is the P-code generator.

Option "B" - Load the symbol table:

Via this option the compiler can load a variable list which was
saved when compiling another program. This has the result that
both programs use the same addresses for the corresponding
variables (overlay packages and similar applications).

Option "C" - Saving the symbol table:

Saved symbol tables can be loaded when compiling other programs
or used by an assembler for the label addresses. This is useful
when a BASIC program calls machine language subroutines with
the SYS command.

Option liD" - Generates a line list:

Mter a compiling a program, the compiler can save a line list of the
program. This list can be loaded with D LOA D
"Z-program name" and listed with LIST. Each BASIC line
(right side) is assigned to a memory address (left side) (for error
messages or for starting a program segment with SYS).

66

Abacus Software Basic 128 Compiler

Option "E" - Memo:ty division:

With this menu option you can change the memory division of the
compiler. A sub-menu with the following menu options appears:

" 1" - start of the variable storage in bank 0

"2" - end of the program and data storage in bank 0

"3" - start of the data storage in bank 1, lower boundary for strings

"4" - end of the data storage in bank 1

Memory space, such as for a machine language program, can be
reserved by changing the values of these four memory settings.

"5" - maximum start value for the compiler-generated code

"6" - This option can be used to turn the fast floating-point compiler
routines off. This makes the program about 3K shorter. The
compiler switches the routines off automatically if they are not
required.

Option "F" - Compiler mode:

If the 40-column screen is active, the compiler runs in the SLOW
mode of the C-128 in order to make screen display possible. You
can also run the compiler in the FAST mode, however; in this case
the compiler switches the screen on only to output important
messages.

Option "G" - Generatin& a run-time module:

You can disable the automatic inclusion of the run-time module
(about 9K) and then load module and program from disk
individually. This saves disk space and loading time for overlay
packages.

67

Abacus Software Basic 128 Compiler

Option "R" - Settin!: the BASIC extension:

If the compiler is to compile a program which contains the
commands of a BASIC extension, this must be selected via this e
option and the memory division of the compiler must be set so that
memory is free for the extension. See the manual for your
extensions to see if and to what extent is also extends to the
compiler.

Option "I" - Load and save all compiler settin~s

Via this menu option you load and save the compiler settings. The
compiler always places liE-" before the name of a file. This need
not be taken into account for the name, however.

Option "1" - Line and command recordin~:

To compile some commands in BASIC 7.0 (such as RESUME _
NEXT, TRON, COLL I S ION) the compiler must insert the line _
and/or command structure into the compiled program because these
commands will otherwise be executed incorrectly. This menu
option should be used only for small programs; larger programs
should use the compiler instructions instead.

Option "K" - Error trap line:

This menu option allows the automatic insertion of a TRAP
command in the program.

Option "L" - Overlay pass

This option sets the overylay pass. Normally this is done via option
"4" of the main menu, however.

68

Abacus Software Basic 128 Compiler

Option "M" - Disk cOmmand channel:

With the help of this option you can send commands to the disk
drive. It suffices to enter the first letter of the desired DOS
commands. The compiler then asks for the command parameters.
In addition to the commands HEADER, SCRATCH, RENAME,
COLLECT, and DIRECTORY, there is the command OTHERS,
with which arbitary strings can be sent to the disk drive via the
command channel. If HEADER is used with an ID, both letters of
the ID should be separated from the diskette name with a comma.

Option "N" - DirectO:lY:

This menu option reads the directory of the disk in the disk drive.

Option "0" - Optimization level:

Optimization levell :

This level is completely compatible to the BASIC interpreter V7.0.
All program optimizations performed do not affect the course or
behavior of the program in any way but serve only to achieve
higher speed. In order to use the speed of integer calculations in
levell, integer variables must be designated appropriately. In
Commodore BASIC this is done by appending a percent sign (%)
to the variable name.

Optimization level 2 :

Level 2 differs from level 1 in that all variables are viewed as
integer variables, even those not viewed as such by the BASIC
interpreter. If some variables are to contain floating-point values
despite this, they must be designated with a corresponding compiler
instruction. In addition, the level 2 optimizations involve integer
division and integer conversion (INT) which are not compatible
with the interpreter in all cases.

69

Abacus Software Basic 128 Compiler

Compiling overlay profWlms:

Programs which are to be loaded and started with DLOAD or LOAD
should usually also use the same variables or the same contents e
(warm overlay). When loading with RUN, all variables are erased
and such programs can be compiled normally (cold overlay).
Compilation of overlay packages, which use the command LOAD or
DLOAD, is done in two passes:

Pass 1:

Compile all of the programs in the overlay package. Immediately
after activating the compiler, press <4> (overlay) and then <1>
(pass 1). All compiler settings must be made in pass 1. The
compiler automatically disables the run-time module except when
compiling the first program in the package, because no program
without a run-time module can be started from the direct mode. The
first program in the overlay package must therefore be a start
program, which may be started only with RUN. No program is
created in pass 1, just a table; for this reason this pass is done _
relatively soon. _

Pass 2:

Compile all of the programs again, whereby you use <4> and <2>
(pass 2) this time. The compiler then generates the desired
program.

If the disk space does not suffice, you can also delete the original
programs after compilation (option "M" in the sub-menu).

In order to start an overlay package, the names of the compiled
programs must be changed so that the programs can load each
other.

70

Abacus Software Basic 128 Compiler

Compiler directives:

It is often necessary to change the compiler options during
compilation. This is done with the help of special REM statements
within the program. These directives are designated with an at-sign
(@).

Switchin~ to ~eneration of machine code:

Fom1£Jt:

REM@M

Effect:

The compiler immediately begins to create machine code. In
addition, an instruction is inserted into the program which informs
the P-code interpreter at run-time than a machine language program
follows.

Switchin~ back to P-code:

Fom1£Jt:

REM@P

Effect:

The compiler generates P-code again. In addition a command is
inserted into the program which actviates the P-code interpreter.

71

Abacus Software Basic 128 Compiler

Switchin~ error handlin& on and off:

Format:

REM@E line number

Effect:

This option corresponds to the TRAP command of the interpreter,
but is not active until after the compilation.

Declaration of inte~er variables:

Format:

REM@I=variable, variable ...

Effect:

All variables listed (floating-point variables with % sign) are e
classified as integer variables by the compiler, which leads to faster
program execution. This allows you in addition to use integer
variables within FOR/NEXT loops, which the BASIC interpreter
normally does not allow. This command makes sense only in
connection with optimization level 1.

Declarin& floatin&-point variables

Format:

REM@R=variable, variable ...

Effect:

All variables listed as classified as floating-point variables, which _
is necessary only when using optimization level 2. .,

72

Abacus Software Basic 128 Compiler

Switchin~ optmization level:

FOnna!:

REM@O level number

Effect:

The optimization level is changed. This affects only the data type of
variables which have not yet been referenced by this point in the
program.

Releasin~ reserved memOty area:

POnna!:

REM@S address

Effect:

The compiler automatically uses the unused memory area from
$1300 to $lCOO for data storage. This can be disabled with this
command.

Example:

REM@S7168

This directive causes the compiler to place variables at $lCOO on
up.

73

Abacus Software Basic 128 Compiler

Selecting bank 1:

Fonnat:

REM@B

Effect:

The array dimensioned immediately before is placed in bank 1
independent of available memory. Normally the compiler places
arrays in bank 0 until no more space is available there.

Switching to the FAST mode:

Format:

REM@F

Effect:

The compiler is switched to the FAST mode. This directive is
useful when a program is often compiled in the 4O-column mode.

Selecting program structure recording:

Fonnat:

REM@O
REM@L
REM@C
REM@B or REM@LC

;tums the record off
;tums the line record on
;tums the command record on
;tums both records on

Each of these directives may be preceded by a T if the TRON
command is used. The run-time system needs a record of the
original command or line structure in order to execute some BASIC
7.0 commands. This makes the program longer and slower. For
this reason the structure recording can be limited to individual
program segments with these commands.

74

Abacus Software Basic 128 Compiler

Using the optimization options of BASIC 128:

Although compilation speeds up your program significantly, the
speed can be increased even more if you pay attention to which
operations will be executed particularly quickly after compilation
while you are writing the program. Usually it suffices to pay
attention to the following rules to achieve the highest speed:

• Things you have learned to increase the speed of individual
operations in an interpreted program probably don't apply
to compiled programs any more.

• Operations with integer variables run faster than those with
floating-point variables. According to experience, the
larger share of all variables in most programs can be
replaced by integer variables (values between -32768 and
+32767). Integer variables can be indicated to the compiler
and interpreter by appending a "%" sign to the variable
name. In addition, you can inform the compiler of this with
the help of REM instructions or with optimization level 2.

Integer values are used exclusively in the following
functions and applications, for instance:

loop counter, array indices, POKE, PEEK, ON, WAIT,
file parameters for OPEN, SYS, TAB, SPC, FRE,
number parameters for string functions, ASC, CHR$,
logical operations, all graphics commands, often with
comparisons and *,1,+,-, and with almost all other BASIC
commands.

In each of these cases it does not make sense to use
floating-point variables, and doing so will slow down the
program. This is not detectable when using the BASIC
interpreter because it performs all calculations with
floating-point numbers.

• String operations are performed differently by compiled
programs than by the interpreter. This results in higher
execution speed for complex string formulas.

75

Abacus Software Basic 128 Compiler

• The compiler takes work away from the program, such as
finding jump destinations for GOTO, GOSUB, the
interpretation of commands and formulas, syntax
checking, decimallfloating-pointlinteger conversion,
locating variables, transforming and optimizing formulas,
calculating operations with constant values and strings,
memory management, etc.

• The complex arithmetic functions of BASIC 7.0 are
significantly accelerated by BASIC 128 (S IN, COS,
TAN, ATN, EXP, LOG, SQR, A).Itisnotnecessary
to avoid these functions in time-critical program segments.

76

Abacus Software Basic 128 Compiler

Chapter 10: Differences between BASIC 128 Compiler
and BASIC 64 Compiler

BASIC 128 is a revision of the BASIC 64 compiler for the
Commodore 64. BASIC 64 already contained many efficient
capabilities, but it was possible to build even more important
features into BASIC 128. The following contains an overview of
the most important new features together with a reference to the
corresponding chapter of this manual:

• BASIC 128 is completely compatible with BASIC 7.0.

• The average speed of compiled programs can be
considerably increased (chapter 2).

• BASIC 128 performs run-time optimizations in addition to
the compiler optimizations (section 3.6).

• The floating-point functions TAN, SIN, SQR, etc. are
executed considerably faster than they are by the interpreter
(section 4.4).

• The code generator generates shorter P-code and faster
machine language than BASIC 64.

• The entire 128 K RAM of the Commodore 128 is used by
the compiler. In addition to bank 1, the entire memory of
bank 0 not required for program code is available for
variables and variable arrays (section 4.5).

• A record of the program structure is necessary to compile
certain BASIC 7.0 commands. BASIC 128 offers several
flexible options for doing this.

• The settings for memory management are more
comprehensive than those for BASIC 64 (section 8.1).

• Compiler settings can be saved in files and reloaded again
later (section 4.9).

77

Abacus Software Basic 128 Compiler

• The compiler can be started without reloading (section
4.10).

• The procedure for compiling overlay packages has been
improved and no longer needs to be used for cold overlays
(section 6.1).

• BASIC extensions don't have great significance for the
Commodore 128 because BASIC 7.0 is quite capable. For
this reason, extensions are supported by BASIC 128 only
when they are adapted for the compiler (section 5.3).

• Accessing the DOS on the disk is very easy and there is an
option for reading the directory (section 9.1).

• The compiler outputs warnings in addition to the error
messages of the interpreter (section 4.2).

• A STEP value is allowed for integer loops (section 4.7).

78

Abacus Software Basic 128 Compiler

Chapter 11: Additional applications

e 11.1 Input/Output

Peripheral devices like the disk drive and printer work just as
slowly after compilation as before. Therefore when saving and
loading data it is advisable to make full use of the available speed of
the disk. The operating system sends a control code before and
after each command that addresses the disk. The transfer of this
command requires time. In order to avoid this, the largest possible
set of data should be transferred with each command:

90 REM @I=I
100 FOR I=l TO 100
110 PRINT#l,CHR$(I);
120 NEXT

This program fragment could be worded like this:

90 REM@I=I
100 FOR I=l TO 100
110 PRINT#1,CHR$(I);CHR$(I+1);
120 I=I+1:NEXT

The command GET# works particularly slowly because it reads in
only single bytes. For this reason, a line-end indicator should be
chosen after each 80 character, provided the type of data allows
this.

90 REM@I=I
100 A$='''':FOR I=l TO 80
110 GET#l,B$:A$=B$+B$
120 NEXT

This could simplified to the following lines given the appropriate
data format:

100 INPUT# 1, A$

79

Abacus Software Basic 128 Compiler

This saves the repeated transmission of control codes as well as the
concatentation of a string.

Data output on the screen is usually fast enough. When e
constructing screen masks or similiar devices, the screen may
flicker during the reconstruction of the mask. Here the same effect
as when writing programs occurs. If the cursor is moved beyond
the right edge of the screen, all additional lines are move down. As
soon as a program clears the screen in order to display new or
changed data, this effect can occur. The construction of the screen
representation then hesitates. This can be prevented by simply
writing over the old screen, causing no new lines to be inserted.

11.2 High-resolution graphics on the 80-column screen

Drawing 640x200 point graphics on the 80-column screen takes
quite a long time with the BASIC interpreter. High-resolution
graphics show off the advantages of the compiler against the a
interpreter. The following routines use almost exclusively integer _
operations:

5
10

20
30
35
40
100
105
110
120
130
140
150
160
170
180
190

REM@02
BANK 15:WR=52684:RE=52698:FOR I=OT07:
MA%(I)=2 A (7-I) :NEXT
SYS WR,128,25:SYSWR,7*16+1,26
SYS WR,0,18:SYS WR,0,19
FOR I=OT064:SYSWR,0,31:SYS WR,0,30:NEXT
GO TO 10000
REM DRAW X,Y,X2,Y2
X1=X:Y1=Y:DX=ABS(X2-X1) : DY=ABS (Y2-Y1)
IF DX=O THEN SX=O:ELSE SX=INT«X2-X1)/DX)
IF DY=O THEN SY=O:ELSE SY=INT«Y2-Y1)/DY)
IF DY>DX THEN BEGIN
XS=O:DH=DY:DL=DX
BEND:ELSE BEGIN
XS=-l:DH=DX:DL=DY
BEND
X=X1:Y=Y1:C=INT(DH/2) :CP=DX+DY:GOSUB 1000
DO:C=C-DL:IF C<O THEN BEGIN

80

Abacus Software

200 C=C+DH:Y=Y+SY:X=X+SX:CP=CP-2
210 BEND:ELSE BEGIN

Basic 128 Compiler

220 IF XS THEN X=X+SX:ELSE Y=Y+SY
230 CP=CP-l : BEND
240 GOSUB 1000
250 LOOP UNTIL CP<=O
260 RETURN
1000 REM PLOT X,Y
1001 REM@M
1005 AD=INT(X)/8+INT(Y)*80:H=AD/256:L=AD AND

255
1010 SYS WR,H,18:SYS WR,L,19:SYS RE,0,31:

RREG BY
1020 SYSWR,H,18:SYS WR,L,19:SYS WR,BY ORMA%(X

AND 7),31
1030 REM@P
1040 RETURN
2000 REM CIRCLE X,Y,R
2001 REM@Ol
2010 S=R*R:X1=X:Yl=Y
2030 FORX2=OTOCOS(.786)*R+l
2040 Y2=SQR(ABS(X2*X2-S»
2050 X=X2+X1:Y=Y2+Y1:GOSUB 1000
2060 Y=Y1-Y2:GOSUB 1000
2070 X=Y2+Xl:Y=X2+Y1:GOSUB 1000
2080 X=X1-Y2: GOSUB 1000
2085 X2=-X2: IF X2 < 0 THEN 2050
2090 NEXT:RETURN
10000 REM DEMO
10005 FORA=50T0600STEP30
10010 X=A:Y=10:X2=600-A:Y2=190:GOSUB100
10020 NEXT
10030 FORW=50T080STEP10
10040 X=200:Y=90:R=W:GOSUB2000
10050 NEXT
10060 GOTO 10060

READY.

81

Abacus Software Basic 128 Compiler

This program clears the memory of the 80-column video chip and
thereby also the 80-column character set. The 80-column character
set can be restored with SYS 52748.

The program has the following graphic routines:

GOSUB 100 ;draws a line from X,Y to X2,Y2

GOSUB 1000 ;draws a point with coordinates X,Y

GOSUB 2000 ;draws a circle with center X,Y and radius R

You can also replace the example program at line 10000 with your
own graphics programs, of course. The program makes full use of
the capabilities of BASIC 128. After removing the compiler
instructions in lines 1001 and 1030, it can even be compiled
completely into machine code. This results in fast routines that
make use of the graphics capabilities of the Commodore 128 which
can be added to any other program.

The higher speed of compiled programs offers you possibilities e
with the programming language BASIC that you would have never
though possible before.

82

Abacus Software

INDEX

e advanced devolpment package
arrays

BANK
BEGIN ... END

COLLISION
Command Record
constants

data code
disk errors
direct mode commmands
directives
DIRECTORY

EL variable

e errors
error handling
extensions

FAST
floating-point calculations
formulas
functions

Hi-res graphics

IF ... THEN ... ELSE
input
integers

Line List
Line Record e WAD
loops

machine code
memory layout

83

Basic 128 Compiler

3, 66
30, 62

59, 74
39

34,51
33, 68

11

21
26
32

4,50,71
69

33
22, 24, 39

39, 72
21,41, 68

37, 67, 74
28, 48, 56, 72

12
41

80

39
79

9, 14, 32, 53, 56, 72

27,66
33, 68

1, 36, 43
6, 9,16, 32

17, 50, 66, 71
55, 57, 67, 73

Abacus Software Basic 128 Compiler

object code 21
optimizer 9, 14, 19, 48, 73, 75
Optimizer I 47, 69 e Optimizerll 47, 69
options 66
output 79
overlays 43, 68, 70

pass 1 21,43
pass 2 21, 44
P-code 3, 17, 50, 66, 71
POINTER 60

REM@ 4
RESET 36
RESUME 33,34, 51
RUN 1, 3, 43
run-time 19,23,24,43,46,67

speed 47 e strings 13,21,57
STOP 59
symbol table 61, 66
SYS 59
system errors 24

TRAP 35
TRON 33, 34, 35

variables 15

warnings 22, 23

84

C-128 ©'7,,;,,1l ~ ® INTERNALS
COMPUTER AIDED DESIGN

",-0 •• ;; ,1 ~C··;;;;;'l

iii .~ - .'

AOA' . IrO< £~8OO' ''''I!O._~ 8~ "(>OU- IE~." IIOO<OU""'ED'"

AbicusllllBl!l Software Abacus_ Software

A detailed guitle presenting the ComplJler Aided, Duign on)'OUr C-
128'S operatiog system. lI.pl,,:"- 128 or 64. DeSign il CAD system

~~!~~~~r~fM~~~~!~:'~fii ~~~~J!;~~r~!t~:g~:;::,~~

THE
ION FOR YOUR C-128

CP / M
ON THE C-128

~.;;;,1

iii
A (\II,u -!ll:c.r"9OO<""a.&< ED "
AbilCUS IIIIIIISoftware

An essentia l 9J ide to using CP/M on
your 128 , simple •• planat ions of
operatin g system and ns memory

~S:R:S.C::JAo~~t~;~:m~·1~9~

1571
INTERNALS

~ !1

1/ 804
. ·)0,' . -111 <:. .. 1\0I0(I0, 11 6-

Abacuslll!llHl Soflware

A Quidl! fo r novice and advanced
users. S9qJent ial and fel.at jy, l ijgs,
dirK! access commands. directory
usage. impOrlan! DOS rout ines,
coml1'l8ntfid DOS listings. $19.95

C-128
TRICKS & TIPS

~C •• ;;}l

iii
.Go' .o .c>o '."" "'-'BO..:a,(Osv

Abacu slllBlll Sofrware

ThIS bool< IS c~ock full of Informatoon
which no ·128 user should be
wjt ~oul. II ~o~ers memory usa~e,
hires 9rapn,cs In 80 co lu mns. win·
dowil"l9. memo!)' Iocalions. 519.95

... AND TRUSTED INFORMATION ON THE 64!

ANATOMY OF 1541 DRIVE Besl
handbook on floppy explain. all. Many
uample. and ul i l ~ie •. Fully comm ellled
1541 ROM ~Slirlgs . '2Opp $t9.95

MACHINE LANGUAGE C·fl4 Learn

" deplh inl'O 10 computers in science. Topics:
chemiSlry, physicl, biology, aSllonomy,
e"alolla.otners. '50pp $18.85
CASSETTE BOOK C·I4IVIC·20
Comprehensi~e guide; mally sample
program •. High speed operal illQ system
fUI file loading ~ sa~ing. 225pp $14.85

IDEAS FOR USE ON C·M Themes:

1541 REPAIR • MAfNTENANCE
Halldbook de.crPbes the dis. dri~e hard·
ware. Includes sc:nem<ltiCi and techniques
to kMP 1541 rutlnirlo. 200pp $19.95

ADVANCED MACHINE LANGUAGE
esl0 code write fasl programs. Many sam· Nol oo~ered elsewhere: . video OOlltroller, auto el~ns .. , calculator, recipe file, lIodo;
p~s and listings l or complete assembler. interrupts, l im.,., clocks. 110, real lime, 1:511, diet planner, window ad~,rlisln;,
monitor, & ,imuialor. 200pp $14.95 extended BASIC. more. 210pp 514.95 olhers. lndudM I.'inge. 200pp $ t2.85

~0~~~HI~:5 i~O~~ c.:~~~:::1 ~~:~~:. :':~~~~~m:~o~e~ E~;:~~~;~b~:~:;' ~~:~~L~':wB~~t ~~~:1~~:2~:"1:~
~;~~e:~. ~~~~~;i~s.Hi;~ri. ~~~i,CO~~~: :~~C:~u:;::O 3~:;:;: ~~~:~t~':t:~;J~a; ;:~~~a~;ig;i~h i:d oo:.in~ it~°u.:o~~n~
jeclioM,curves.more.)50pp 519.95 AOM hslinQs. more. :nOpp $1 8.95 edtnpleoompiler. 'OOpp $19.95

PEEKS. POKES FOR THE C·M
Includ.s ill-deplh • • p laf'laliO nS 01 PEEK,
POKE, USA, and other BASIC commandS.
Lealn Ihe "inside" tri<il. to get the mOlt out
of 10ur '&4. 200pp $14.1lS

Optional Dlekel1e. for booke
For your con~.nience, Ih, programs
contained In each 01 our books are .~ail·
able Oil disketle to save you time enterirlg
them from your keyboard. Speciiy name 01
book when ordeling. '14.85 •• ch

Call now for the name of your nearest dealer. To order by credit card call 616/241-5510 . Other
software and books are available - ask for free catalog. Add $4.00 for shipping per order. Foreign
orders add $8.00 per book. Dealer inquires welcome - 1200+ dealers nationwide.

Abacus liiiUUiU!i1 Software
P.o. Box 7211 Grand Rapids. MI 49510 - Telex 709-101 - Phone 616/241 .5510

NEW
'128 SOFTWARE
rlbt :~:I~~i:~~=~;. rJ~-~.~:":· ~~.~. ~''''~'' ~'"~"~"~"~"~ IMa~e~!f~sIi~n~ ~ual-j :~ 1. 11 ity pie, bar and l ine

__ , _~: charts, and graphics
-- from your data. In-

':: ... ' ''.~:. r- ' cludes statistical func-
"'~ tions. 3x the resolution "":Yj1J! : ... -.. :: :",: .. ::'" of '64 version. 500+

-.{:;.il! :t:; ; '~~";~ ;:;~;: ;:,a~:t ~~~~:~.aut~~t;~~

BASIC 128
Compiler

Versat ile compiler in­
stantly turns BASIC into
lightning fast 6510
mach ine code andl or
compact speedcode.
Variable passing over­
lays, integer arithmetic,

'-""====-=-' ----'''''-''--' and more. $59.95

Compiler lnd sort ware
Development SYI lem SUPER Pascal

Complete J& W devel­
opment system. With
enhanced editor, com­

;+ piler, bui lt-in assembler,
tool-k it, graphics, 220
page handbook, and

bC~1~~~~"'~b~ ... ~. :~~Jplenty more. $59.95

+ . -{O-

SUPER C
Complete K&R com·
piler and development
system. Editor, com·
piler, linker, 1/0 library

+ . . and extensive 200 page
-{o- • handbook. Creates fast

l~+ §~~J~~§~I~=IJ65'O machine code . e m~

Abacus liiiinin~1 SofMrare
P.O. Box 7211 Grand Rapids, MI49510 Telex 709-101 Phone 616/241-5510

Call now for the name of your nearest dealer. To order by credit card, MC, AMEX or
VISA, call 616/241-5510. Other software and books are available - Call and ask for
your free catalog. Add $4.00 for shipping per order. Foreign orders add $12.00 per item.
Dealer inquires welcome - 1200+ dealers nationwide,

