C

FIRST PUBLISHIG LT ASSEMBLEI MONI QR 4

ASSENIBLER /
.m.@&“"@ﬁ' B4

Powerful 6510 MACRO Assembler
Development Package

for the Commodore 64
By: Lothar Enalisch

A Data Becker Product

First Publishing Lid Unit 208, Horseshoe Road
Horseshoe Park
Pangbourne, Berks
Tel: 07357 5244

¢
z’msr PUBLISIHG LTD i ASSEMBLER/MONITOR 64

COPYRIGHT NOTICE

it Pabashinag Lid makes this packacge availabloe for use on a sinale
cominileronly s unlawind lo copy any porhion of this sollare packeade onto
iy modin lor any porpose olher than backup. s unilawlul o aive away
o el capaes otany part ol ths packaae. Any unauthorized distribution of
s prodnet doprives the anthors of their deserved royallies. For uso on
maliple comptors, please conlact First Publishing Lid lo make such
cirangemenls,

WARRANTY

iness of lhis soltware product lor any particular purpose. In no event will
st Publishing Ltd be liable for consequental damaaes. First Publishing
Lt wali replace any copy of the software which is unmieadable if returned
within A days of purchase. Therealter, there wiill be a nominal charae lor
toplacement

First Prantine Saplember 1984
Prnted m HEAD Temslated by Greag Dykema
Copyriaht (C) 1984 Data Becker, GimbH
Morowinagerstr, 30
4000 Dusselddor, W.Germeany
Copynai (Y1984 Prest Pabilistana L
Ut 208, Florseshoe Roadd
Horsoshoe Park
Panabourme, Porks
Tool: 07357 5244
3TN0 EHO S 06 3

Tous ochition typosot and prnled by

Caotua Tocinneal Sorvicos Lid,, Choltonham
Noweomibwor (14

FIAST PUBLISHING LTD ASSEMBLER/MONITOR 64

Table of Conients

P T B A S S M B B R e ta vt s oe s s s E T o o r s e AN er s e i]
AU SIN G A S SEM B R B et sas s te s hsos s ss i a s s oo Pobonsanratesns |
2B o o e () N (S 1 O OO s X P L T T A R T ER T L P Lo 2 3
S B P) R S e s e e, (3

12 Symbolivalue assignmMent:: i i, seisssessissststeiisssnsssnsssasass 6

2 1’ndr>hmng SYINDO VIS L i v eees s es s se s s S5 e d sa sou s ias smeads 6

I Program counler asSIGNIMEN!. oreassessssessssasssstsosssasesnsanss)

T 7] B e X O e e O R K T e TR 7

S ORI eeiane B L e L e 8

O e o R e R T S o s s s sa s e i s s s e 8

e B iy S a0 e s esears s o e s DATR S Hls PSS s ss Sha A e s A ST a s e s oS e tans 8
)) e e e s reee e ae L A S L L S 9
B s s sy e s ey A e e e s e da s s e s e s se Ty alany a
O A it B O O D O T O P 10
D s e e e e et 10
A e R A S T T O T R T B O T o 10
I S T i nrn it e et e R SR e i et 10
i o o e T L L A T T T D PR O DY O PP e TR 11

R e i 2 e e T T e OO PO E O T R Y O e 11
L o R s A A e e o L LT T T A T O D e 11
D YN S s s S e s e e e e S e S S TR T Sh S SV s S s o e 12
230 Y (] R | el B o rrro A L e S 12
B A I s e S A e B N AP X 12
A @) S A S S L O T T T Bt T T Y A O LT 13
D A S AMPEE RPROGRAM st i aises sstis dinas osssvnaasanse 15
Y e R g L N s O e P, 17
l". ERBORIMES S G E S e e i sitesisnssssscasasssssbesensanssstssnsssstcasss 23
(@ 4 5 o) | B b, Gy e OO e By E T D L T T K P T 26

e L B @)\ [K0 5 B s e S O T e X L AT O O T L Y A LB T O 29
A. SUMMARY OF MONITOR-64 COMMANDSocoovvviveiinennen. 29
B EOADINGEIMON @ R A s e s G e v cer st s ey sae be s s i s s 30
C. COMMAND DESCRIPTIONS

I. SWITCH MEMORY CONFIGURATION.........cccvuvvveereernnennns 3l
2 GEOMPAREIMEMORY: ARE A S it i e ea s araassassssnanss 3l
3. DISASSEMBLE A MACHINE LANGUAGE PROGRAM 3l
4 M E M) R Y R N N (G e T oot 32
S X B U B R RO G R A M s ot ea rr s v ss srs s i ra e Ty Ce s AT et 32
6L SENREHING N BN ORY A R E A S e eessisinsren s ssussestosnssnse 32

6.21 Search for byte combinalions ..v..vveeeciiiiiiiiiininniiiiee, 32

[BT e T 0V Lo e 12 Bty Lo e e TR R S L O T T P e 33
7. LOAD A MACHINE LANGUAGE PROGRAM.......c.ccvvveneens 33
8IS REAY MEMORY CONTENTS st ivssore tesnessstonossaanas 33

- 1ii -

FIRST PUBLISHING LTD ASSEMBLER/MONITOR G4

9. PROGRAM EXECUTION WITH BREAKPOINTS............... .34
10. DISPLAY THE REGISTER CONTENTS ..o, ot
11. SAVE A MACHINE LANGUAGE PROGRAM35
2l AN S B R M EM O Y A R e e o eeqas e sssssaershissanss
13 SEIRNBREAKBPOIN Tt i r i it v ey, SRt SHvan
[1G BTN B S A E VY (O] P 1 rerrrsoredoonsior et o iR ooy
1S S R RN @ B Sl T e ra e s e coes e snes ot aassrsbss an
D ERRORIME S S A G E S e s en oo e g

-V -

FIRST PUBLISHING LTD ASSEMBLER/MONITOR G4

THE ASSEMBLER

ASSEMBLER 04 is a two-pass 6510 or 6502 assembler [or the Commodore 64.
It is wrilten entirely in machine language and occupies 8K byles of RAM. |t
allows [ree-lorm inpul using the buillin BASIC editor, produces complele
assembly listings, loadable symbol lables, various optiens for sloring
created object codes, redefinable symbols, and a comprehensive sel of
pseudo-ops (assembler directives) for such things as creating macros or
conditional assembly. The syntax for the mos! parl adheres to the MOS
standard.

A. Using ASSEMBLER 64

ASSEMBLER 64 is loaded from diskette and requires 8K of the BASIC RAM.
{address $8000-59FFF). The area most frequently used [or machine lan-
aguage programs from $C000 to $CFFF is lefl free and can be used for
MONITOR 64 (FC000-3CBFF) or your own machine language programs.

Loading ASSEMBLER 64
Insert the ASSEMBLER/MONITOR distribution diskelle and type:
LOAD "ASSEMBLER 64",8.1
The lollowing appears on the screen:
LOADING
SSEMBLER 64 V2.0 1S LOADING ...

*** ASSEMBLER 64 V2.0 **°
() 1984 DATA BECKER GMBH
D)
HONN0-GH00
NO EBORS
READY,
When loading, ASSEMBLER 64 prolecls itself from being overwrillen by

BASIC. You are ioft with 30717 byles for your assembly language source
programs.

The 2 m the message indicales the start of pass 2. Following is the address
range ol the created object code and the number of errors.

Assembler prearams are enlered using line munbers just like BASIC
programs. i.anes can be chanaed, deleled, or inserted exactly as in BASIC.

No other edilor is necessary and more slorage space is available for your

FIRST PUBLISHING LTD ASSEMBLER/MONITOI 64

sonrce programs - a tolal of 30K. You can separate several assembier
commands on the same line usinag colons as in BASIC.

You can iake your assembly languaae programs easior o 1ead by placine
an up arrow as the first characler ol a line. Altor this, all spaces are
accepled and the arrow is ignored by ASSEMBLER 64. This allow:
inden! your progreams as cesired.

3 you to

ASSEMBLER 64 uses almost the same source format as the MOS standerd. i
even you are lamiliar with this standard, you should read this description
beccuse it also explains the departures from the MOS stanclard. The
examples illustiate the instructions.

This manual is nol intended lo leach 6510 cw‘mmbl languaae proaram
ming. We recommend other books such as The Maclmm Language Book for
the Commodore 64 or the Advanced Machine Lancuage for the Commo-
dore 64 for more inlormalion on the use of macros and {loating-poin’
arithmelic.

Lines of ASSEMBLER 64 source code consisl ol labels, instruction
mnemonics, lho operands, and comments. In addition, there are severai
"pseudo-ops,” which are not machine language instructions but 1ather teil
the assembler to do special things. These pseudo-ops are described later i
the manual.

Each program line contains a mnemonic or pseudo-op and may bean witn
a label (symbol). Il a line is supposed 1o contain a label, simply place it in
front of the instruction, lollowed by one or more spaces. A label must bedair
with a lelter lollowed by other lellers, numbers or periods. The first 8
characlers of a label must be unique (thal is, no labels may have the same
first 8 characters). Non-alphanumeric characters are not aliowed.

Instruclion mnemonics may lollow a label or may beain at the start of a hine
il no label is present. All mnemonics consist of 3 letters. Mnemonics aie
roserved words and may not be used as lﬁb"l"

it an instruction begins with a period ("."), it is teated ¢ as o pseudo-op. Innm
are three pseudo-ops which do not beain with a poriod. All psoudo
musl lm ::npvuclln(l from their operands by spaces, with the oxception ¢ -!
and " =", Pseucdo-ops which bagin with a peried are distinauished by the
firs! lhmo characters only, aithough they will be printed in lall
assembly lisling.

A line can be lerminaled by a semicolon., Everything following the
semicolon is ignoied by the assembler and can contain comments, Clom
menls are printed oul in the assembly listing but are otherwise disrogaraed
A colon within a comment ends it and begins a new instruction, as iona as
the colon is nol placed within quotation marks.

Il a2 line begins with a semicolon, the assembler treats the entite line a= a
commenl. Such lines are printed without a line number.

==

FIRST PUBLISHING LTD ASSEMBLER/MONITOR 64

The operand fieid contains the addressing mode and an expression for the
command or pseudo-op. A semicolon may follow.

The addressing modes with expressions have the following syntaxes:

#oyprossion absolute addressing
expression absolute or relative addressing
expression, x absolute,x indexed by x
expression,y absolute,y indexed by y

(expression, x) indexed indirec! addressing
ssion),y indirect indexed addressing
indirect acddressing

ASSEMBLER 64 antomalically converts absolule addressing lo zero-page
addressing il lhe expression has a value less than 256. If you want to force
absolute addressing, you can place an exclamalion point in front of the
expression. LDA 15,X creates the code BD 05 00, the absolute form of LDA,
while LDA §,X yields the zero-page addressing BS 05. This is useful if you
wanl o avoid the wrap-around effec! of indexed addressing with addresses
under 256.

B. Expressions

ASSEMBLER 64 is unigue amuong assembler in s ability o caieul
complex expressions. The assembler has a rocursive routine for calculati
nested expressions, which aives you more capabilities than otie:
assemblers. An ASSEMBLER 64 expression may be placed whorover e
word "expression” appears in a hst. Such an expression is also ai o

the pseudo-ops which expecl a numerical aigument. The oxpreos,
evaluation of ASSEMBLER 64 is so elficien! that your programs con i
wrillen enlirely using symbols. This makes chanuing e transporting
ASSEMBLER 64 proarams especially simple and oasy 1o understand

The synlax of expressions is very simple and is a supersel of the
standard. Expressions are enlered exaclly as they would be an =
calculalor which does not use an algebraic evaluation system va!
allow parentheses. All operators are evaluated strictly from Iett oo
although square brackels are allowed as well as parentheses i oo
aller the order of evaluation.

An expression can be terminated by a variety of characters. The end o
line always ends an expression. Colons, semicolons, cnd commas aizo eno
an expression, provided that these are not enclosed in quolation mearss
closing parenthesis ends an expression provided no unpaired opo
parenthesis remain. This makes nested expressions possible wilh index
addressing.

You can use the lollowing operalors in expressions:
1 O}

- add values

- subltract right value from left value

multiply values

divide leit value by right value

logical OR ol two values

logical AND of two values

logical XOR (exclusive or) of two values

shift left argument as many bits to the nght as the oo
argumenl specilies

shift left argumen! as many bils o the lelt as [he rig
argumen! specifies

V ‘Q:—\

A

All operations are perlormed using 16 bil arithmetic, although var
operations will lead lo overilows, such as multiplication by a value aieo
than 32767, or shifting lelt more than 15 bits. These cause an iLiE +f
QUANTITY ERROR. This error message also appears lor a division by 7
For addition and subltraction, a resull greater than 65535 is interpretot <
negalive number in lwo's complement form.

The operands themselves can appear in a variety of forms, In the toilowin
the syntax is given logether with an example.

= =

FIRST PUBLISHING LTD ASSEMBLER/MONITOR 64

Operand types

Type Example Synlax

hexadecimal $I1C3 ${hexdigit)

decinal 127 {digit})

binary %110011 %{0or 1}

PC '

ASCII character "A" "characler”

label SYMB alphabetic{alphanumeric}
expression ("Z2"+86) {expression}

Under "Syntax,” items placed within braces {} may be repeated as often as
necessary.

Each of the above lerms can be combined with the previously-described
operators. These can be enclosed in parentheses as desired in order to aller
the order of evaluation. A minus sign can be placed in front of every
operand, including parenlhesized expressions, to yield a two's complement
value.

An enlire expression can be changed by a single modifying character. One
example iz the use ol | lo selecl an absolute addressing mode. In addition,
the "greater than” and "less than” signs are allowed. ">" in front of
oxpressions lells the assembler to lake only the most significant byle of the
cxpression’s resull (first 8 bits of the 16 bit expression), while "<” denotes the
least signihicant byte. This is necessary lor direct addressing or with the
.BYTE pseudo-op. The most signilicant byle operalor (>) performs the same
operalion as:

expression > 8
The least significant operalor can also be represented as:
expression & HIFF
Sample expressions
>LABEL-—-1+(TABLE®2)
VALUE-*
0"="A" < 3 + ("D" = "A" > 2&%]111)

Parenthezes may be nested as deep as necessary. Modiliers cannot be
used on parenthesized parls of expressions.

FINST PUBLISHING LTD ASSEMBLER/MONITOH 64

C. Pseudo-ops

Most ASSEMBLER 64 pseudo-ops begin with a period ("."). All of these
"period” opcodes musl be separaled from Iollowing characlers by al ieasi
one space. In addition, there are three special pseudo-ops which are
delined by special characlers. Pseudo-ops are recognized by their [irs!
three lellers; everything else up lo the next space will be ignored, althouan
it will be printed in the lisling.

The three special pseudo-ops serve lo deline symbols and the proaram
counler,

1. Symbol value assignment

The simplest of these is the operator for symbol delinition, the equal i
(=). In order lo assign a value (expression) lo a symbol, you simply wnte:

symbol = expression

The assignmenl is made only during pass | of lhe assembly. Any subse
quent definition of this same symbol in the source program resuits in a
"REDEFINITION ERROR.” The "=" sign is used lo dehne constants ancl
addresses in symbolic [orm, so that only one line need be changed to alter
all occurrences ol the value. Here's a few examples:

BEGIN = $C000 ;deline start of program
TAPEBUI = 828 ;deline lape bulfier at $33C

2. Redefining symbol values

Similar lo the operator for symbol definition is the assignmen! operator,
which is wrillen as a left arrow (<—) and is used with the same synlax:

symbol <-— expression

By contrasl lo the previous operalor, il is possible te redeline a symbo. 11,
this case, the assignment is made during pass 2 as well as pass |. This car.
be used for various purposes, most often during conditional assembly (se«
.GOTO). Here are some examples:

NUMBER <— NUMBER - | ; decrement value
PROGRAM <-—*

3. Program counter assignment

The third special pseudo-op controls the program counter. (tis wnitlen as *-
which means "assian a value to the program counter”. The pnmary use ol

= (=

FIRST PUBLISHING LTD ASSEMBLER/MONITOR 64

this symbol is lo specily the starling address of the program. If not specified,
il defaults to $C000.

Slorage lor data may also be reserved. The statement *=*+-32, lor example,
delines a 32 -byle block begmning at the current program counter location.
The value of the proaram counler is then incremented by 32. If a symbol is
found in the label field, the value of the program counter is assigned to il
belore the program counter is incremented. Here's an example that defines
variable in page 1.

‘= $200 ; sels the program counter o the start of page |
ADDRESS *= *++1 ; a one-byle address, sel lo zero
TABLE ‘= *-+32 ; lable begins at $201

LABEL *= ‘+1 ; LABEL has the value $233
TWO *="*4-2 ; lwo-byte pointer
TEST *= $800 ; TEST has the value $236;

following code begins at $800

To define a table within a program, the following can be used:

LDA #5

RTS
TABLE ‘= *+256 ; 256-BYTE TABLE
TEST LDA #>ADDRESS'3

in general, you can use ‘= lo define symbols by altering the program
counter. You should nol, however, move it backwards. This is allowed only:
1)1l you assembie objec! code directly into memory and execule it there; or
2) when you do not create object code at all. When you assemble code at
E1000, for example, you cannol normally sel the program counler back lo
F0F00 to assembie code there, This is allowed for label definition, but you
musl then retum to an address which was higher than the address into
which the ia:t byle of object code was assembled.

4. .BYTE expression

Tne \BYTE pseudo-op is used to place one-byle values into the objecl code
al the location contained in the program counler. Any legal ASSEMBLER 64
‘exprossions, separaled by commas, may be used as operands. The number
iz imiled only by line length and the lenath of the ASSEMBLER 64's bulfer.
Any expressions may be used, but the expression musl evaluale o a
one-hyle vaine, or an "ILLEGAL QUANTITY ERROR" occurs. Two-byle
values can be modified with ">" and "<" in order lo lake the high or low
byle, respectively. A one-byle value lies in the range 0 to 255 or $FF80 lo
SFFFF. The hiaher values are allowed berause they normally signify
negative numbers from =1 to —128. Therelore the line ".BYTE —1" is

T d

FIRST PUBLISHING LTD ASSEMBLER/MONITOR 64

allowed. .BYTE can be used lo define tables such as jump tibles o
pointers. You can calso "hide” coninands, such as the BIT command:

BYTE $2C ; ABSOLUTE BIT INSTRUCTION
LABELI LDA # =1 ; HIDDEN LDA INSTRUCTION

5. .WORD expression

The .WORD pseudo-op is used in order to place two-byte addresses into
the object code al the location contained in the program counter. Fos
example the following statements:

START = $C000
.WORD START

Would assemble the byles 00 0C (the value of the symbol START ieas!
significan! byte first) into the object code. The address i1s stored with the
least significant byte first followed by the maost signilicant byte.

.WORD address
is equivalent to the slalements:
.BYTE <address;>address
The .WORD pseudo.op and the .BYTE psendo-op permit mulliple vaines

on a line, separaled by semicolons. The .WORD pseudo-op is most often
used for crealing acidress tables.

6. .FILE device number, flilename”

The .FILE pseudo-op is used lo chain several source programs. The syntax
is as [ollows: $

.FILE device number, "filename”

where device number is 8 for the disk drive or | [or the dalasetle, ana
"filename” is the name of the assembly language source program whicl i«
o be loaded nexl. If you are wiiling a very long assembly langurice
proaram, you can break il up into several parts and chain these togethe:
with FILE. The last file in this chain must contain an .END pseudo-op that
speciles the first lile of the chain.

7. .IF expression

" The .IF pseudo-op is used for conditional assembly. The synlax 1s as
follows:

e

FINST PUBLISHING LTD ASSEMBLER/MONITOR 64
IF expression : .GOTO line-number

The argument expression is evaluated in both pass 1 and pass 2. If the
cxpression 15 no! zero, the code [ollowing the .IF in the same line is
performed. Usually, this will be a .GOTO to direct the assembly lo a
dilferent line. The additional code in the line must be separated by colons.

With .IF, .GOTO. and symbol redefinitions, il is possible lo creale
assembler loops. Although .IF only lesls for zero, other comparisons are
possible by using simple lechniiques. For example, shifting 15 bils to the
right yields a resull of 1 if the expression was negalive, and 0 if positive. Two
numbers may be compared by subtracting one from the other and testing
the resull for positive or negative. 7

8. .GOTO line-number

The .GOTO pseudo-op inslructs the assembler lo continue assembly al the
line number given as the argument.

.GOTO line-number

This line number may also be an expression. The line number must be
contained in the currently loaded program (if you are using .FILE lo chain
mulliple source programs). You cannot jump between different files. This
line number may be located either belore or after the line number
containing the .GOTO pseudo-op. When used with .IF and redelining
symbols, il's possible lo build a loop for condilional assembly. Try the
foliowing exampie:

10 SYS 32768 ; CALL THE ASSEMBLER
20 .OPT P ; LISTING TO SCREEN

30 OFFSET <- 5 ; NUMBER OF LOOPS

40 LDA %C0O00 + OFFSET

50 OFFSET «<- OFFSET — 1 ; DECREMENT
60 .IF OFFSET : .GOTO 40

70 .END

9. .GTB

This pseudo-op stands for Go 1o BASIC. It has no argument and simply
returns contiol to BASIC. The BASIC commands in following program lines
will be execuled. You may return lo the assembler by using SYS40954.

You should nole that the BASIC commancds thal can be executed holore
relurn lo assembler are liiiied. Some BASIC statemenls may overwrile the
work areas used by ASSEMBLER 64 and should not be executed. In
particular, the INPUT comimand, or any other basic commands which

)=

FIRST PUBLISHING LTD ASSEMBLEFR/MONITOR 64

wriles to byle 9 of the BASIC input buifer (address $0209) must be avoided.
The GET statement is aiiowed. You should never return control to the user
during assembly.

10. .ASC "tex!”

This pseudo-op places the ASCII value(s) for the "lext” inlo the object code !
the location contained in lhe program countor. The lext is enclosed in
quetation marks, It is thereby possible lo inserl cursor or color contioi
characlers inlo the texl The text can be up lo 55 characlers long. Lonuer
lexls mus! be divided up into several .ASC statements. The MOS standara
uses the .BYTE pseudo-op lor this purpose, in which strings are enclosed in
apostrophes. You should lake this into account when converling programs
Note the use of the double quotes instead of single quotes,

11. .SYS expression

This pseudo-op allows machine language programs lo be called during
assembly. The value of expression delernnines the jump address. This
pseudo-op is identical lo the SYS command in BASIC. The rouline locatea at
the address specified by expression is called is called during both pass |
and pass 2. The SYS command can be used by those familiar with the
internal workings of ASSEMBLER 64 to creale custom pseudo-ops.

12. .STM expression

This pseudo-op is used lo raise the lower boundary of the symbol table. The
symbol lable grows downward from the end of the storage (£8000), exactly
as strinas are saved in BASIC. Al the slart of assembly, this lower boundary
is set lo the end of the BASIC program and variables. You can set it hiaher if
you are working wilh .T'ILE or buffered objecl code (.OPT O). If the space for
the symbol lable is too small, the message "SYM TABLE OVERFLOW™ 1=
aiven and the assembly slopped.

13. .SST device number, secondary address. “lilename”

Syinbol lables may be saved lo storage devices such as the lloppy disk, i
Arom there loaded in again. .SST is executed in pass | only, and saves th
symbol table that has been generated up to that point.

The first argument is the device number, normally, 8 lor the disk dnve e
secondary address can lie belween 2 and 14. The lilename is given as m i
OPEN command, and therelore requires an ",S,W" following the name ‘tor
sequential and write).

This pseudo-op 1s recuired if you wanl to later print a sorled list of symuois
and iabels. The program SYMPRINT then uses this lile o st the symbis te
your prinler.

~ i) =

FIRST PUBLISHING LTD ASSEMBLER/MONITOR 64

The .SST command is aiso useful when assembling source programs
separately, bul which musl access subroutines from the other programs.
Simply save lhe symbol lable at the end of lirst assembler program and
read this same symbol lable into the second program using .LST.

14. .LST device number, secondary address, "filename”

This pseudo-op loads the symbol table thal was saved by the .SST
pseudo-op. You can use .LST to load the a symbol table created by other
programs, such as a table of kernal routines. Duplicate symbols are not
checked. The last definilion of a duplicale symbol is used and previous
delinitions are simply ignored. Overflow of the symbol table is nol recog-
nized when loading, although an error will occur as soon as you Iry lo
deline anolher symbol.

15. .FLP expression

Il you often ise the floating-point arithmetic of the BASIC interpreler, you
can use .FLP lo place floaling-point constants into the objecl code. This
simplifies the use of floating-point routines. One or more floaling-point
conslanls separated by commas can follow the .FLP command, for
example:

.FLP 10, 1E8

Each lioaling-point number occupies 5 byles; therelore our example gener-
ates 10 bytes. Note thal only the first three bytes of the converled number
are printed in the object code listing.

16. .END [device, "lilename”]

This pseudo-op ends a source program and is-oplional. .END execules a
.GTB al the end of pass 2. Il there are additional BASIC slatements [ollowing
the .END pseudo-op, they wiil be executed.

You can, for example, call the machine language program just assembled
with a SYS-stalement.

When chaining source programs, .END must have the additional argu-
ments. The argumenls are in the same format as the .FILE pseudo-op and
direct the assembler lo re-load the [irst source program at the end of pass |
and conlinue wilth pass 2 al the line containing the SYS 32768. "filename”
musl thereiore be the name of the first program in the chain (which contains
the SYS 32768). "liiename” has no further effect in pass 2.

==

FIRST PUBLISHING LTD ASSEMBLER/MONITOR 64
17. .SYM

This pseudo-op can be used to list a table of all the defined symbols and
their values after the assembly of the proaram. This lisl is senl 1o the screan
or other davice according to the oulpul oplion ((OPT P). Four symbals,
loagether with their values in hexadecimal form, are printed per line. I you
want a different number of symbols per line, you can use this number as i1
argument for the .SYM command. .SYM is useful when working on the
screen, for example. The symbols are listed in lhe reverse order from that in
which they were defined. lf you wan! an aiphabetically sorted list, you must
save lhe symbol lable with .SST and use the program SYMPRINT found on
your ASSEMBLER 64 distribution disk.

18. .PAGE page-length,left-margin olfset

This pseudo-op has three different functions and serves lo control the
acsembly language listing. Withoul additional parameters, it forces a torm
feed in the listing. This allows you to place a certain section of an assembier
lisling on a new page. ASSEMBLER 64 automatically inser!s a form feed
aller every 60th line, and begins the next page with a title and the current
page number. If you wani lo change the page length, you can sel the
number of lines per page with the .PAGE command, for example:

.PAGE 66

This instructs ASSEMBLER 64 to write 66 lines on a page. Values up to 255
are accepled. An additional funclion is the determination the leit marcin
This is uselul for printed listings which you wanl to put in a notebook. Tne
second parameler of .PAGE gives the number of spaces to be printer in
front of each assembler line in the listing. The standard value 1s zero. With

.PAGE ,10
the lisling can be indented 10 characlers. The comma is necessary in order

lo denole the 10 as the second parameter. The two parameters can also be
combined: }

.PAGE 66,10

19. .TITLE "tex!"
This allows you lo acd lext to the slandard. litle
&
ASSEMBLER 64 V2.0 PAGE |

which appears on every page of the listing. This lex! is given alter the .TiTLE
command within quotation marks, such as:

JTITLE "HARDCOPY ROUTINE"
— W=

FIRST PUBLISHING LTD ASSEMBLER/MONITOR 64

This text will then be placed before the standard title, and we get:

HARDCOPY ROUTINE ASSEMBLER 64 V2.0 PAGE |

20. .OPT options{,options)

The .OPT psoudo-op stands for OPTion and gives you control over the
assembly listing and the objec! code. This synlax is the following:

.OPT option,oplion,oplion ...
The following oplions are available:

P — Print. You select this oplion when you want the assembly listing lo
appear on lhe screen. All other P oplions (see below) also output to the
screen because the screen is the fasles! output medium. The listing
will be formalled automatically. Lines which contain errors or a .FILE
command will be printed in passes | and 2 regardless of the P option.

P# —Print lo [ile. With this oplion, you can send a lisling lo the printer, for
example. In order to do so, you must first open a logical file before the
SYS 32768 with an OPEN command, such as OPEN 1,4. The logical file
number (I in our example) then replaces the number sign (#), such as
.OPT PI. using lhis lechnique, you can also write the assembly listing
to disk or casselte wilh the appropriale OPEN command. You can
specily thal a line feed (CHR$(10)) be sen! after each carriage return
(CHRE(13)) when selecting lhe logical file number in BASIC. This
accomplished by using a logical file number greater than 127 such as
OPEN 130,4 and then .OPT P130.

P = expression - With this oplion you can direct the outpu!l lo a routine of
your own. The start address of your routine must be given as the
expression. The characler lo be outpulled is passed in the accum
ulator. A zere indicates the last characler (close file). This allows
cuslom oulpul devices lo be used (such as an interface on the user
port).

O - Objec! means object code output. Without additional characlers, the
object code goes to a special bulfer directly above the assembler
program, where array variables normally lie; the same pointers are
also used.

OO - Object at arigin. This oplion writes the object code directly lo the
memory locations for which it was wrillen. This is vary useful for
quickiy lesting programs, and allows maximum freedom when
movinu the program pointer. Saving code lo lape is also made
possible using the monitor. If an assnmbly language program is
intended to run in the memory range where the source program or
assembler lies, this method may naturally not be used.

— @)=

FIRST PUBLISHING LTD ASSEMBLER/MONITOF 64

O#

0=

— As with P#, this allows oulput of the abject cocle to a file. The nie
musl be previously opened as a program lile for writing (second i,
address 1), such as OPEN 1,8, I"PROGRAM". With .OPT Ol the oy
code goes o this file. First ASSEMBLER 64 writes the start address ¢
the file, and then the generated code. [f the assembler operation enei
normally, the program file will be closed again. The machine
language program crealed in this manner can be loaded directly with
LOAD or with a monitor. Nole that .OPT O# to a casselte i1s no!
possible. See the next oplion and the appendix.

expression - This allows the object code o be sent to a user-delinec
rouline with the same synlax as the .OPT P= command. The abjeci
code outpul routine must be somewhal moare complicated becauso it
is called only ence per assembler line. Some symbols which are
recjuired are lound in the appendix. The mosl important 1s LENGH,
which gives the number of byles lo be cutput minus 1. If length is zere,
for example, one byte must be oulput. You routine must be test for two
special values. A value of $C0 means "close the lile.” Otherwise,
LENGTH contains a small number from zero on up. The data to oe
outpul are slored in two places. The firs! three byles are stored in the
zero page al address OP. if more than three bytes of object code are
crealed (for .BYTE, .WORD, .ASC, for example). the additional bytes
are stored at address OBJBUF. Your outpul routine may change any
registers or flags (with the exception of the decimal {lag). Caution is
advised in using the zero paae however. A program is listed in the
appendix which makes it possible lo oulput the abject code to a fiie in
hex format. It is therefore possible in principle to save data directly to
the dalasetlte.

— If you work with macros, you can decide whether you want the
entire macro conlaining the actual paramelers to be hsled lor each
macro call, or just the hne containing the macro call. if you do nol
enler this command, the complele macro will be listed. You can
suppress this wilth .OPT M and cause only the line with the macio call
to be lisled.

.

— You can cancel the outpul oplions at any time with .OPT N. i
cancels all of the oplions except the M option. If an option 18 supposc |
lo remain in elfect or swilched on again later, add that option. if, i
example, you want lo turn off the screen listing, but still want the
objec! code lo go lo file 2, you would wri!o\?

.OPT N,02
and
.OPT P
when the lisling is lo go to the screen again.

s

FIRST PUDLISHING LTD ASSEMBLER/MONITOR 64

D. A SAMPLE PROGRAM

The following example proegram wriles the contents of the zero page al line
LINE on the screen. It illustrates the general use of the assembler.

10 SYS 32768 ; CALL ASSEMBLER

20 .0PT P,00

30 %= 3C000 ; PGRM START ADDR

40 LINE = 10 ; LINE 10 ON SCRN

50 SCRMEM = %400 ; SCRN MEMORY

60 CLRMEM = $D800 ; COLOR MEMORY

70 COLOR = 1 ; COLOR IS WHITE

80 LbX #0 ; ZERO INDEX REG

90 LOOP LDA 0,X ; GET BYTE

100 STA SCRMEM+(4O*LINE),X ; PUT IN SCRN MEMORY
110 LDA #COLOR

120 STA CLRMEM+(4O*LINE) , X ; SET COLOR
130 INX ; NEXT BYTE

140 BNE LOOP

150 RTS ;DONE

160 .END

I you starl assembler this source program by typing RUN, the following
listing the screen:

2

ASSEMBLER 64 V2.0 PAGE 1

20: €000 .0PT P,00

30: €000 *= $C000 ; PGRM START ADOR
40: 000A LINE = 10 ; LINE 10 ON SCRN
50: 0400 SCRMEM = 30400 ; SCRN MEMORY

60: D8O CLRMEM = $0800 ; COLOR MEMORY
70: 0001 COLOR = 1 ; COLOR IS WHITE
80: €000 A2 00 LdX S0 ; LERO INDEX REG
EX REGISTER

90: €002 B5 00 LOOP LDA 0,X ; GET BYTE

100: €004 90 90 05 STA SCRMEM+(4O*LINE),X ; PUT
IN SCRN MEMORY

110: €007 A% 01 LDA #COLOR

120: €009 90 90 D9 STA CLRMEM+(40#LINE),X ; SET
COLOR

130: €00 ER INX ; NEXT BYTE

140: €00D DO F3 BNE LOOP

150: COOF 60 RTS ; DONE

1¢000-€010

NO ERRORS

= e

FIRST PUBLISHING LTD ASSEMBLER/MONITOR 64
In the following example. the object code is sent direcliy to disk and the
listing is sent lo the printer. The source program consisls ol severa,
inchividual programs.

10 OPEN 1,8,1, "0:0BJECT CODE"

20 OPEN 2,4 : REM PRINTER

30 SYS 32768

40 .0PT 01,P2

50 ; ASSEMBLER COMMANDS

1000 .FILE 8, "PROGRAM 2"

PROGRAM 2 contains

10 ; ADDITIONAL COMMANDS

1000 .FILE 8, "PROGRAM 3"

PROGRAM 3 contains

10 ; ADDITIONAL COMMANDS

1000 .END 8, "PROGRAM 17

whereby PROGRAM | is the proaram which contains the 5YS 32768.

FIRST PUBLISHING LTD ASSEMBLER/MONITOR 64

E. MACROS

We now come now lo a powerful feature of ASSEMBLER 64 — MACROS.
What are macros and what are they used for?

With macros we have lhe ability to combine a series of instructions and
assembler directives and give them a name. If you have defined a macro in
this manner, you can later insert this set of instructions into the source code
as often as desired by simply using the name of the macro. An example will
make this clear.

In machine language programs, one repetilive lask oflen comes up in
programming - namely incrementing the conlents of a 16-bit variable
localed in consecutive zero page locations. The instructions to do this might
look like this:

INC POINTER

BNE LABEL

INC POINTER+1
LABEL ...

At another place you might have to increment a different variable called
TEMP:

INC TEMP

BNE LABELI

INC TEMP++1
LABELI ...

With macros we can define a set of instructions once and use this definition
later. To define a macro, two new pseudo-ops are used.

The first adeclares the macro delinitien, and the second ends il. In order lo
able lo reler lo a macro later, il must have a name. The same conventions
apply as [or other symbols (first character must be a lelter, then letters,
digils, or periods, eigh! significant piaces). Our definition looks like this:

INC.PNT .MAC ADDRESS
INC ADDRESS
BNE .LABEL
INC ADDRESS+1
LABEL .MEND

The name of this macro 15 INC.PNT. A macro definition is introduced with
the pseudo-op .MAC. Paramelers may follow. Here we have a parameter
calied ADDRESS. Next the execulable inslruclions follow in their standard
form. One special [eatlure 1s found in the line BNE .LABEL. The las! line

_ e

FIRST PUBLISHING LTD ASSEMBLER/MONITOF 64

conlains the label definiion and the end of the macro definiion witi
.MEND. Now we can call the newly-defined macro:

'INC.PNT POINTER

This line replaces the above set of instructions. We wrile an apostrophe
lollowed by the macro name and any paramelers. In our case there was
one parameter, although a macre can have no parameters, or severai
paramelers separaled by commas. When assembled, the macro iz
replaced by the inslructions:

INC POINTER

BNE LABEL:00

INC POINTER+ 1
LABEL:00

The next example illustratles a macro without parameters.

RAM .MAC
SEI
LDA §01
AND #%I11111110
STA §01
.MEND

This macro requires no paramelers and no so-called local labels - labeis
within the macro definition, Macros withoul parameters generate the same
code each lime and can in principle be replaced by subroutines. Macros
are aids during the assembly and creale object code each time it 15 userd
Subroulines can be thoughl ol as aids during run-time, and are lound oniy
once in the object program.

Macros are especially useful in combinalion with conditional assemply. i
you have macros ready for a variely fundamental lasks, the main proaram
can consist of a sel macro calls.

A few noles aboul using macros:

Macros mus!t be delined al the slart of the assembly language source
belore they are called. If you are chaining source proarams using FILE, o
macros musl all be conlained in the first program. Il you deline o

within a macto, a period mus!t be placed belore relerences to the laber 1
illustrated earlier. This also applies within expressions. Such labels are =iy
sicmificant to six characlers. If you call such macros severai times arnic
output the symbol table, the labels are listed as many times, together win
dillerent values. In order to dislinguish these from each ether, the name «
followed by a colon and the number of the label, for example:

LABEL:00 0006 LABEL:01 C020 LABEL:02 €035

The number zero indicates the label value within the deliniion, reiative o
the starl of the macro.

FIRST PUBLISHING LTD ASSEMBLER/MONITOR 64

[f labels are delined with a macro, different names must be used within
dillerent macros, or a "REDEFINTTION ERROR" will occur. Paramelers may
have the same names because these are replaced by the actual values
during a macro call anyway. Arbitrary ASSEMBLER 64 expressions can be
used in a macro call; these are calculated by the assembler and transmitted
as paramelers, for example:

‘INC.PNT POINTER—-8"2

Here, for example, the value of pointer is laken and the result of 8 times 2 is
subltracted [rom it. The order of evaluation can be delermined through the
use of parentheses as usual.

As an example, we have a program which consisls almost enlirely of macro
calls. Two macros are defined. The first serves lo sel the cursor. The
operaling system of the Commodore 64 places this rouline at our disposal.
The macro with the name CURSOR expecls two paramelers. The firs! is the
line in which the cursor is to be placed, and the second is the column. If we
wan! to sel lhe cursor al a specific place in our program, we need only call
the macro, for example:

'CURSOR 10,20

The second macro serves (o oulput lext. The parameler is the address of the
text. The string must be terminated by a zero byte.

In the program you lind firsl the definition of the two macros and then the
aclual program which consisls only of four macro calls and an RTS. The
strings are listed al the end of the program.

The source program is listed on the next page followed by the assembly
listing:

50 OPEN128,4,5

100 SYS 32768

110 .0PT P128,00

120 ; DEMO PROGRAM FOR MACROS
130
140 ; SET CURSOR

150 CURSOR .MAC LINE, COL
160 LDX #COL

170 LDY #LINE

180 STX £pé6

190 STY 303

200 JSR SETCRSR ; SET CURSOR
210 .MEN

220 ;

230 ; STRING OUTPUT

240 PRTSTR .MAC TEXT

250 LDA #<TEXT

260 LDY #>STEXT

e s

o

FIRST PUBLISHING LTD ASSEMBLER/MONITOR 64

270 JSR STROUT ;0/P TEXT TO SCREEN

280 .MEN

290 ;

300 SETCRSR = 3ES6C

310 STROUT = $ABI1E

3208

330 *#= $C000

340 ;

350 "CURSOR 10,10

360 "PRYSTR TEXT1

370 "CURSOR 0,20

380 "PRTSTR TEXT2

390 RTS

400 ;

410 TEXT1 .ASC "TEXT LINE # 1": .BYT 00
420 TEXT2 .ASC "TEXT LINE # 2°: .BYT 00
430 ;

440 LEND

Here's the assembly listing:
ASSEMBLER-64 V2.0 PAGE 1
110: c000 .0PT P128,00

120: ; DEMO PROGRAM FOR MACROS
130: H

140: ; SET CURSOR

150: . CURSOR .MAC LINE,COL
160 ' LDX #COL

170: * LDY #LINE

180: » STX #D6

190: 3 STY #03

200: 3 JSR SETCRSR ;SET CURSOR
210: ; .MEN

220: £

230: 5 STRING OUTPUT

240 i PRTSTR .MAC TEXT

250: : LDA #<TEXT

260: ’ LDY #>TEXT

270: g JSR STROUT ;O/P TEXT TO SCREEN
280: ’ .MEN

290: 5

300: ES6C SETCRSR = $ES6C

310: ABIE STROUT = SAB1E
320: ;

330: €000 *= $C000

340 H

350: €000 ‘CURSOR 10,10

) €000 A2 0A LDX #COL

4 €002 AD OA LDY #LINE

4 c004 B6 D6 STX 306

— 20—

FIRST PUBLISHING LTD ASSEMBLER/MONITOR 64

4 c006 84 D3 STY $03

+ c008 20 6C ES JSR SETCRSR ;SET CURSOR
> co0s MEN

360: €00B "PRTSTR TEXT1

+ co0B A9 25 LDA #<TEXT

+ €000 AD €O LDY #>TEXT

4 C00F 20 1E AB JSR STROUT ;0/P TEXT TO SCREEN
i €012 .MEN

370: €012 “CURSOR 0,20

4 €012 A2 14 LDX #COL

+ C014 AD 00 LDY #LINE

+ c0146 B6 D6 STX $06

+ €018 84 D3 STY $D3

+ CO1A 20 6C ES JSR SETCRSR ;SET CURSOR

+ c010 .MEN

380: CO1D "PRTSTR TEXT2

+ c010 A9 33 LDA #<TEXT

+ CO1F AD €O LDY #>TEXT

4 c021 20 1E AB JSR STROUT ;0/P TEXT TO SCREEN
} €024 .MEN

390: €024 60 RTS

400 ;

410: €025 54 45 58 TEXT1 .ASC "TEXT LINE # 1"

410: €032 00 .BYT 00

420: €033 54 45 58 TEXT2 .ASC "TEXT LINE # 2"

420: €040 00 .BYT 00

430: P

Lel's lake a closer look al the listing. You recognize that within the macro
delinition, an aposirophe appears inslead ol the program counler. The
object code lield is emply because no code is crealed by the macro
delinition (lines 150-210, 240-280).

The lirst macro call is in line 350. The actlual program counter as well as the
code created appear in the listing. A plus sign (+) appears in place of the
line number, which shows thal the created code comes [rom a macro call.
You recognize that the symbols LINE and COLUMN have the values which
they were assigned by the macro call. The subsequent macro calls proceed
in the same manner.

il you have many macros in your source program or you call cerlain macros
ollen. you have lhe option ol supressing the macro-created code in the
assembly lisling. Only the line containing the actual call will appear. The
oplion .OPT M performs this {unclion. See the next example:

ASSEMBLER=-64 V2.0 PAGE 1

110: c000 .0PT P128,M,00
120 ; DEMO PROGRAM FOR MACROS
130: A

— Al =

FINST PUBLISHING LTD ASSEMBLER/MONITOR 64

140: ; SET CURSOR

150: i CURSOR .MAC LINE,COL

160: : LDX #COL

170: ’ LDY #LINE

180: i STX #D6

190: ? STY #03

200: g JSR SETCRSR ;SET CURSOR
210: : .MEN

220: ;

230: ; STRING OUTPUT

240 ; PRTSTR .MAC TEXT

250: i LDA #<TEXT

260: ; LDY #>TEXT

270: i JSR STROUT ;0/P TEXT TO SCREEN
280: ’ .MEN

290: ;

300: ES6C SETCRSR = SE56C

310: ABIE STROUT = $AB1E

320: 5

330: €000 *= 3C000

340: -

350: €000 *CURSOR 10,10

360: C00B “PRTSTR TEXT1

370: €012 “CURSOR 0,20

380: €010 "PRTSTR TEXT2

390: €024 60 RTS

400: s

410: €025 54 45 58 TEXT1 .ASC "TEXT LINE # 1~
410: €032 00 .BYT 00

420: €033 54 45 58 TEXT2 .ASC "TEXT LINE # 2°
420: €040 00 .BYT 00

_430: ;

Supressing the macros makes the listings shorter and olten easier to read. in
the next example we have added a .SYM pseudo-op as statement number
115. This pseudo-op prints a list of the symbols and their values together witn
the defined macios and the number of times which they were defined as a
lwo-digil hexadecimal number. The first part of the listing is the same as the
previous page. Only the symbol table and macro lable are printed as lollows

ASSEMBLER =64 V2.0 PAGE 2

SYMBOLTABLE: ,

TEXT2 €033 TEXT1 €025 TEXT €c033 coL 0014
LINE 0000 STROUT ABITE SETCRSR E56C

7 SYMBOLS DEFINED

MACROTABLE:

PRTSTR 0?2 CURSOR 02

2 MACROS DEFINED

==

FIRST PUBLISHING LTD ASSEMBLER/MONITOR 64

F. ERROR MESSAGES

ASSEMEBELER 64 has a set of error messages. Errors are printed in both pass
I and pass 2. Il the assembler recognizes an error, 4 asterisks followed by
the error message is displayed. The line conlaining the error will then be
displayed on the screen, regardless of the .OPT P sellings. For a synlax
error, a digil will also be displayed in fronl of the four asterisks which
describes the error in grealer delail. There are 10 different types of syntax
errors which can occur. They are listed below. Still other errors can occur
when using macros; these are indicated by a prefixed letter.

Some errors are "falal,” meaning lhat they cause the assembly lo stop. An
exclamalion poinl is displayed in [ront of lines conlaining falal errors. The
assembly is stopped aller the message is displayed. The lirst byle of the
object code created for such a line is a zero, which is the 6502 BRK
command. If you iry to execule such a program, a BRK command is
execuled when 1l comes lo lhe erroneous line, which either performs a
warm slarl, or refurns you the monitor, if it is loaded. In general, you should
first correct the errors belore you execute an assembly language program.

One lype of error which ASSEMBLER 64 cannot detect is a phase error. This
error does nol usually occur, bul can be encounlered with cerlain combin-
ations ol conditional assembly conlaining .BYTE or .WORD pseudo-ops. A
phase error occurs when the program counler is different in pass 2 than il
was in pass I. You can recognize a phase error with an .IF instruction:

PHASE .iIF PHASE-" : PHASE ERROR
Normally, PHASE has the same value as the program counler and the code
behind the colon is never execuled. If a phase shift occurs, the resull is nol
zero and the additional statement resulls in a syntax error which you can
recognize.

Error stalislics

Before the slart ol pass 2, ASSEMBLER 64 outpuls the number of errors in
pass |, if any were [ound. For example:

2 ERRORS IN PASS 1

Aller pass 2. when the assembly is complete, the number of errors in pass 2
15 displayed. il the assembly was error-free, the message

NO LRRORS

is displayed. i errors were encountered, thal number is displayed. For
example:

4 ERRORS
g

FIRST PUBLISHING LTD ASSEMBLER/MONITOR 64
Messages

SYNTAX
— This error message is preceded by a digit which describes the ertor in
arealer detail. These digils have the following meaning:

0 - Label for emplty assignment not allowed (the line contains only one
slring).

| - lllegal opcode

2 - lllegal addressing mode — this command may not be used with tins
addressing mode.

3 — Unknown operator in expression (unallowed character in an expres
sion)

4 - Unpaired parentheses

5 - lllegal expression - illegal characler in an expression, or an emply
string ™.

6 - Missing comma - a pseudo-op is expecling a comma

7 - lllegal pseudo-op. The .XXX string is nol recognized as a pseudo-op.

8 — Symbol does not starl wilth a letter. A symbol was expected, but an

alphabetic characler was nol found.
9 - Opcode with unallowed addressing mode.

The following syntax errors can occur for macros:

B - .MEND command withoul previous .MAC

C - Unclosed macro delinition

D - Nested macro definilion — macros within macros are not allowed.

I' - lllegal number of parameters. The number of paramelers in the macro
call does not malch the number in the macro definition.

ILLEGAL QUANTITY
- The expression evaluated lo a value which lies oulside the borders for this
commuand or pseudo-op. The expression yields a value greater than 65535.

OVERFLOW

- The input buffer which ASSEMBLER 64 uses in order to decode source
lines is lo small. Divide the line into several instruclions or use a lemporary
variable in order to simplify the expression.

BRANCH OUT OF RANGE
- A relative jump (branch command) over a distance greater than 128 bytes
was allempted. -

REDEFINITION
—~ An allemp! was made to define a symbol twice withoul using tne
redefinition operalor.

UNDEF'D STATEMENT

— A label or expression i1s not delined.

=24

FIAST PUBLISHING LTD ASSEMBLER/MONITOR 64

REVERSAL

~ An altempt was made o assemble code at an address which is lower than
the last address. This error does not occur when you assemble directly to
memory. This is a falal error, as are all of the following.

SYM TABLE OVERFLOW

- You have fried lo define more symbols than space in the symbol table
permils. Either sel the minimum lower with .STM, or divide your program
into several parls. This error message can also appear when loading a
source program with .FILE if the program is loo large and part of the symbol
lable has been overwrilten. Divide the program into smaller parts.

OUT OF MEMORY
— The bulfer lor the object code (.OPT O mode) is oo small. You should
choose some other type of output, such as disk.

UNDEF'D STATEMENT
- A GOTO lo a non-existenl line (exaclly as in BASIC). In contrast to the
error named before, this one is falal.

DEVICE NOT PRESENT
- The addressed device is nol present on the bus, or does not answer.

IEEE
- Another error on the IEEE bus.

DISK
— Disk error. The disk drive error message was given just prior lo this.

—25i=

FIRST PUBLISHING LTD ASSEMBLER/MONITOR 64

G. Appendix

The following source program is another example of the use of ASSEMBLE
64. It demonstrates oulpulling of object code by a user-defined routine i
sends each byte in hex format lo a previously opened file with the logical
file number 1. It is therefore possible to write the object code directiy to the
datasette, for example. It is possibie lo read code in this format with the
BASIC program following it.

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300

370
380
390
400
410
420
430
440
450
460
470

SYS 32768 ;CALL ASSEMBLER

.OPT

LENGTH = $4E ;BYTES 70 0/P — 1

OP = $4B ;BUFFER FOR FIRST 3 BYTES

ADDR = $56 ;PGRM START ADDR

0BJBUF = %$15B ;BUFFER FOR ADDITIONAL BYTES
CHKOUT = SFFC9 ;0/P TO LOGICAL FILE

CLRCH = S$FFCC ;0/P TO DEFAULT
PRINT = $FFD2 ; 0/P A CHARACTER
CLOSE = SFFC3

LF = 1 ;LOGICAL FILENUMBER

*= $C000 ;START ADDRESS

LDA LENGTH

CMP #$C0 ;CLOSE

BEQ CLOSEF

LDX #LF : JSR CHKOUT ;OUTPUT TO LOGICAL FILE 1
LDX #0 : LDA LENGTH

CMP #S$B0 ;OPEN

BEQ STARTADDR

OUT LDA OP,X

OUT1 JSR WROB ;OUTPUT BYTE AS HEXNUMBER
CPX LENGTH

BEQ EX1

INX

CPX #3

BCC OUT

LDA OBJBUF-3,X

JMP OUT1

EX1 JMP CLRCH

CLOSEF LDA #LF

JMP CLOSE .
STARTADDR LDA ADDR : JSR WROB ;START ADDR LOW
LDA ADDRF1 : JSR WROB ;START ADDR HIGH
JMP CLRCH

WROB PHA ;0/P BYTE AS HEX NUM

LSR : LSR : LSR :LSR ;UPPER NYBBLE

JSR ASCII

PLA

- 26 -

FIRST PUDLISHING LTD ASSEMBLER/MONITOR 64

480 AND #%1111 ;LOWER NYBBLE
490 ASCII CLC

500 ADC #-10

510 BCC ASC1

520 ADC #6

530 ASC1 ADC #"9"+1

540 JMP PRINT

550 .END

If you assemble this program, you get the following assembly listing:

ASSEMBLER-64 V2.0 PAGE 1

110: €000 .0PT P128,00

120: 004E LENGTH = $4E ;BYTES TO THE o/P - 1
130: 0048 opP = $4B ;BUFFER FOR FIRST 3 BYTES
140: 0056 ADDR = $56 ;PGRM START ADDR

150: 0158 0BJBUF = $158 ;BUFFER FOR MORE BYTES
160: FFCY CHKOUT = $FFC9 ;0/P TO LOGICAL FILE
170: FFCC CLRCH = $FFCC ;0/P TO DEFAULT

180: FFD2 PRINT = $FFD2 ;0/P A CHARACTER

190: FFC3 CLOSE = $FFC3

200: 0001 LF = 1 ;LOGICAL FILENUMBER
210: €000 k= $C000 ;START ADDRESS

220: €000 A5 4E LDA LENGTH

230: €002 c9 cO CMP #%C0 ;CLOSE

240: CO04 FO 24 BEQ CLOSEF

250: €006 A2 01 LDX #LF

250: C008 20 C9 FF JSR CHKOUT ;0/P TO LOGICAL FILE 1
260: c00B A2 00 LoX #0

260: CO00D A5 4E LDA LENGTH

270: -COOF €9 80 cCMp #380 ;OPEN

280: €011 FO 1C BEQ STARTADDR

290: €013 B5 4B ouT LDA OP,X
300: c015 20 3C CO OUT1 JSR WROB ;0/P BYTE AS HEX #

310: €018 E4 4E CPX LENGTH
320: c01A FO 0B BEQ EX1

330: c01C EB INX

340: CO10 EO 03 CPX #3

350: CO1F 90 F2 8CC OUT

360: c021 B0 58 01 LDA 0BJBUF-3,X
370: c024 4C 15 CO JMP 0UT1

380: C027 4C CC FF EX1 JMP CLRCH
390: CO2A A9 01 CLOSEF LDA #LF

400: C€02C 4C C3 FF JMP CLOSE

410: CO2F A5 56 STARTADDRLDA ADDR

410: €031 20 3¢ cO JSR WROB ;START ADDR LOW
420: CO034 AS 57 LDA ADDR#+1

420: C036 20 3C CO JSR WROB ;START ADDR HIGH
430: €039 4C CC FF JMP CLRCH

==

FINST PUBLISHING LTD ASSEMBLER/MONITOR 64

440: CO3C 48 WROB PHA ;OUTPUT BYTE AS HEX #
450: CO3D 4A LSR

450: CO3E 4A LSR

450: CO3F 4A LSR

450: C040 4A LSR ;UPPER NYBBLE
460: €041 20 47 cO JSR ASCII

470: CO44 68 PLA

480: €045 29 OF AND #%1111 ;LOWER NYBBLE
490: C047 18 ASCII cLC

500: C048 69 6 ADC #-10

510: C04A 90 02 BCC ASC1

520: CO4C 69 06 ADC #6

530: CO4E 69 3A ASC1 ADC #7971

540: C050 4C b2 FF JMP PRINT

Jc000-C053

NO ERRORS

If you assemble this program, you can wrile the object code in hex format o
the datasette with this format:

100 OPEN 1,1,1,70BJECT CODE" : REM WRITE TO TAPE
110 SYS 32768
120 .OPT P,0=3C000 ; OBJECT CODE TO CUSTOM ROUTINE

The program can be loaded {rom lape with a small loader proaram in
BASIC.,

100 OPEN 1,1,0,70BJECT CODE" : REM READ FROM TAPE
110 GOSUB 1000 : AD = A : REM LOW BYTE OF START ADDRESS
120 GOSUB 1000 : REM HIGH BYTE OF START ADDRESS
130 AD = A%256 + AD : REM START ADDRESS

140 IF ST=64 THEN CLOSE 1 : END : REM PROGRAM END
150 GOSUB 1000 : REM READ BYTE

160 POKE AD,A : AD = AD + 1

170 GOTO 140

1000 REM READ HEX NUMBER

1010 GET#1, AS,BS

1020 H = ASC(AS)—4B+4(AS>="A")+7 : REM HIGH NYBBLE
1030 L = ASC(BS)-4B84(B$>="A")*7 : REM LOW NYBBLE
1040 A = L+16%H : RETURN

Your ASSEMBLER 64 distribution diskelte conlains a BASIC program called
"SYMPRINT". This program serves lo outpul a symbol table in aiphabetic
order, which you have wrillen to disk previously with .SST.

The program asks for the name ol the symbol table on disk as well as the
number of output device (3=screen, d=prinler, 8=disk). For disk output, you
musl give the name of the [ile o which the symbol lable will be wntien.
Finally, you can determine how many symbols will be printed per line. Two
fit per line on the screen, 4 on a printer. The oulpul formal corresponds to
that of the .SYM command when assembling.

Y

FINST PUBLISHING LTD

ASSEMBLER/MONITOR 64

THE MONITOR

MONITOR 64 is an extended machine language monitor that has features
niot found in more conventional software. It can be loaded concurrently with
ASSEMBLER-64 and thus lorms a complele machine language develop-
men! package.

A. Summary of MONITOR 64 Commands

Here is a list of the commands that can be performed with MONITOR-64:

Commands:

R Register display
M Memory display
G Go

L Load

S Save

D Disassemble

C Compare

L Transler

H Hunt

F Fill

B Bank

W Walk

Q Quicklrace

V] Breakpoint

X Exil

display register contents

display memory contents

execute machine language program
load machine language program
save machine language program
disassemble machine language prog.
compare memory daredas

move memory ared

search through memory range

fill memory range with value

select memory configuration
single-step mode

trace with break poinls

sel breakpoint

return to BASIC

—29 =

FIRST PUBLISHING LTD ASSEMBLER/MONITOR 64

B. LOADING MONITOR-64

The monilor occupies 3K bytes of memory from $C000 to $CBFF outside the
BASIC area and is loaded from diskelle. Type:

LOAD "MONITOR 64",8,1
and press <RETURN>. The messages

SEARCHING FOR MONITOR 64
LOADING

MONITOR 64 V2.0 IS LOADING ...
appear on the screen. Once loaded, the monitor responds with

*** MONITOR 64 V2.0 ***
(C) 1984 DATA BECKER GMBH

C‘
and displays the register contents.

All monitor input and oulput is done using 2 or 4 digil hexadecimal
numbers.

=i =

FIRST PUBLISHING LTD ASSEMBLER/MONITOR 64

C. COMMAND Descriptions

Here is a description of the MONITOR-64 commands:

1. Swilch memory configuration >BX

With this command you can have access to the entire memory of the
Commodore 64. Alter starling the monitor, all commands operate on the
normal memory configuration. With >BA you can swilch the memory
configuration to all RAM, while >BC also adds the character generator.
You can swilch back to the normal ROM configuration with >BR. This
configuration effecls only the commands

M D.C T H and F °

The [ollowing lable illustrales the three configurations.

Address range >BR >BA >BC
$HE000 = FFFFF ROM RAM RAM
$D000 -$DFFF /O RAM CHAR ROM
$C000 -3CFFF RAM RAM RAM
$A000 -3BFFF ROM RAM RAM
$0000 - $9FFF RAM RAM RAM

2. Compare memory areas >C XXXX YYYY ZZZZ

The memory area from addresses XXXX through YYYY is compared with
the area slarting al ZZZZ byle by byte. Any address whose contents differ
are displayed.

Example: >C 8000 8100 3000
8056

The contents of address $8056 dilfer from the contents of address $3056.

3. Disassemble a machine language program >D XXXX YYYY

The machine language proaram beginning al address XXXX through YYYY
will be displayed in mnemonic (operation code) form. If the ending address

—&hl=

FIRST PUBLISHING LTD ASSEMBLER/MONITOR 64

YYYY is omilled, only one line is displayed. Three question marks wili be
displayed for invalid instruclions.

Example: >D B0I16 B021

BOI6 20 90 AD SR $AD90
BOI9 BO 13 BCS $B0O2E
BOIB AS 6E LDA $6E
BOID 09 7F ORA #87F
BOIF 25 6A AND $6A
B021 85 6A STA $6A

VVVVVYV

Il the displayed addresses are in RAM, then you can change the bytes
following the address. Type in your change and press <RETURN>, to make
the change. The instrtuction is re-disassembled. On the next line, the
following address is aulomalically displayed and the cursor is placed over
the [irst byte of the instruclion, so thal the next instruction can be changed.
This mode can be exited by erasing the character after the address before
pressing <RETURN>.

4. Fill memory range >F XXXX YYYY ZZ
The area from addresses XXXX through YYYY are lilled with the byte ZZ.
Example: >F 8000 8FFF 00

5. Execute program >G XXXX

The Go command executes a jump lo address XXXX and executes the
machine language program found there. If XXXX is not entered, the vaiue
of the program counter (PC) is used as the slarting value.

If the machine language program encounters the command BRK (500),
control returns lo the monitor which displays B (break) and dispiays the
register contents. The program counter points lo the address after the BRK

command. When lesling programs, we recommend thal you lerminate
them with BRK ($00).

6. Searching memory areas

.

There are two oplions when searching: search for a byle combinalion or
search for ASCII text.

6.a Search for byte combination >H XXXX YYYY BB BB BB

The memory range from addresses XXXX through YYYY is searched [or the
byle combination BB. The combination can be up lo 29 byles Iong.

N3 28

FIIST PUBLISHING LTD ASSEMBLER/MONITOR 64

Example: >H E000 EFFF 20 D2 FF

The memory area from addresses XXXX through YYYY is searched for the
combination $20 $DF $FF (subroutine call). Addresses at which this combin-
alion is located are displayed.

6.b Search for text >H XXXX YYYY "TEXT"

The memory area from address XXXX to YYYY will be searched for the
ASCII text "TEXT". The tex! can be up to 29 characters long. Addresses at
which this tex! is located will be displayed.

Example: H> A000 AFFF "READY"
A378

7. Load a machine language program >L "name”, XX, YYYY

The program "name” is loaded beginning at address YYYY from device XX.
Normally YYYY is omilted; the program then loads at the address from
which it was saved. If the device address is also omitled, device 8 is
assumed.

Example: >L "PROG",8
SEARCHING FOR PROG
LOADING
>

If you want lo load from casselle, enter 01 for XX.

8. Display memory contents >M XXXX YYYY

The contents ol memory slarting at XXXX and ending al YYYY is displayed.
Both XXXX and YYYY are four digit hexadecimal numbers. If the ending
address YYYY is omilled, only one line is displayed. The ASCII represent-
alion of the memory conlenits is displayed in reverse [ollowing the
hexadecimal representation. Un-printable control characlers are displayed
- as a period.

Example: >M AOA0 AOCAF
>: AUAQ C4 46 4F D2 4E 45 58 D4 DFORNEXT
>: AOAS8 44 41 54 Cl1 49 4E 50 55 DATAINPU

Memory contenls can be changed in the same way as regisler conlents, by
overwriling the byle value and pressing <RETURN>.

— %) =

FIRST PUBLISHING LTD ASSEMBLER/MONITOR 64

9. Program execution with breakpoints >Q XXXX

The single-slep mode often lakes too long when working with machine
language programs. Therefore MONITOR 64 offers you lhe option of
controlling machine language programs by selling breakpoints.

You can specify thal a machine language program is lo be interruptec
when il reaches a certain place. Should the program never reach the
breakpoint, il can be stopped by pressing the <RUN/STOP> key. The
breakpoints are set with the U command, described shortly. The syntax of
the Q command is the same as for the G and W commands.

10. Display the register contents >R
The contents of the processor registers are displayed.

The labels identifying the registers are:

PC program counler
IRQ interrup! vector
SR status register
AC accumulalor

XR X register

YR Y regisler

SP stack pointer

In addition, the flags of the slalus register are displayed individually:

negative flag
overflow flag
not used
break flag
decimal flag
interrupl flag
zero flag
carry flag

<=

aAN—ToOw@i

Example: >R
PC IRQ SR AC XR YR SP NV-BDIZC
>; 0003 EA31 32 34 02 A2 F8 00110010

If you want to change the register contents, you simply move the curzor io
the appropriate place, overwrite the old contents with the new value and
press <RETURN>. The new register contents are placed inlo the register. if
the conlents of the slatus register are changed, the flags are also changed
and displayed.

— Yt =

FIRST PUBLISHING LTD ASSEMBLER/MONITOR 64
11. Save a machine language program >8 "name", XX, YYYY,ZZZZ

XX is again the device address, YYYY is the starling address, and ZZZ7Z is
the ending address plus one of the program lo be saved.

Example: >§ "PROG",01,C900,C9DE
SAVING PROG

The program "PROG" is saved onlo casselte from address $C300 to $C3DD.

12. Transfer memory area >T XXXX YYYY ZZ72Z

The memory area from addresses XXXX through YYYY are moved lo the
memory area beginning al 2ZZZ.

Example: >T 6000 6FFF 3000

The memory ronge from $6000 through $6FFF is transferred to $3000 lo
$3FFF. The contents of the original range remains unchanged.

13. Set a breakpoint >U XXXX YYYY

Il you want to use the Q command, you musl first sel a breakpoint. The U
command performs this function. XXXX is the address at which the program
is to slopped. If you starl your program with the Q command, it will stop
execuling al lhe acddress given by XXXX. You are then placed in the
single-step mode (W). With <RUN/STOP> you can hall or single-step a
program. The U command offers the additional option of stopping the
program after il reaches the given breakpoint a cerfain number of times.
The YYYY parameter specifies the number of limes the breakpoint is
ignored belore execulion is halled.

Example: >U 1000 0050

Here the program is interrupled when il passes address $1000 for the 80th
lime (hexadecimal 50), Values up to $FFFF = 65535 are allowed.

14. Single-step mode >W XXXX

One special ieature of MONITOR 64 is the single-step (walk) mode. With this
you can execule machine language programs instruction by instruction.
The command has the same syntax as lhe G command, either starting at
address XXXX or at lhe address contained in the of program counter if only
a W is given. When you enter W, the command at that address is executed
and the contents of the registers and flags are displayed in the same format
as with the R command. Displayed on the nex! line is the following

—35F=

FIRST PUBLISHING LTD ASSEMBLER/MONITOR 64

inslruction in disassembled form. If you press a key, the next commana s
execuled and the resulling reaister conlenls are aaain displayed. You can
exil the single-step mode with the <RUN/STOP> key.

Example: >W BCI6
>: BCI8 EA3Il 22 69 34 00 F6 00100010
>, BCI8 86 70 STX §70

The single-step mode works with all "normal” programs. It should not te
used with pregrams that use the I/O kernal funclions.

15. Return to BASIC >X

The >X command returns you lo Commodore BASIC. After exiting lhe
Monilor with the X command you can enler SYS 2 or a SYS to any location

conlaining a zero, as long as the <RUN/STOP><RESTORE> key has not
been pressed in order lo return to MONITOR (otherwise use SYS 12°4095

— [

FIRST PUBLISHING LTD ASSEMBLER/MONITOR 64

D. ERROR MESSAGES

If you have made an error in your input, MONITOR 64 will echo the input
along with a question mark. You can then correct the input.

In addition lo these synlaclical errors, the error routines of the kernal are
aclivated through MONITOR 64. If an errer occurs when saving or loading,
for example, an error message of the [ollowing form appears:

VO ERROR #X

in which X can be a number from 1 lo 9'and has the following significance:

too many files

file open

{ile not open

file not found

device not present
not input file

nol outpul lile
missing filename
illegal device number

OONDO S W —

=My =

