

I(

Basic 8.0

The Enhanced Graphics system For The C128

Developed by

LR Wallace, DP Darus
WALRUSOFT

March 19, 1987

(C) 1986 WALRUSOFT

Dear Valued Customer.

Thank you for purchas ing Bas ic 8 101 i th Basic Paint. Basic Pa int was
Acreated using Basic 8 and has been included with the package as an added
~bonus to show what can be accomplished with Basic 8. Also included is an

Icon based. Desk-top utility "hich enables you to access your Basic 8
programs quickly and conveniently.

We think you will find Basic 8 to be one of" the most sophisticated"nd
powerful software packages available for the C-128. It breaks new ground
in unleashing hidden graphic; capabillties rivalinq those of 16-Bit
Computers! Your purchase enables us to continue to oifer software of the
highest qual i ty to users of the Co,]modore 64 ·,nd 128.

I. To offer the best qual i ty
accurately reflects its true

softwat'e at a fai"
value to the user.)

(One which

2. To offer real istic a.nd usable support to each Reg~ster'ed user after
purchase", to ensure that he gets full value from the software.

3. To Present the software in its original state~ without copy-protection
of any kind! This enables you to make back-ups fcr your convenience
and the protection of your investment (as well ~s your equipment",

You put your trust in Patech wherJ you purchased Bas,c 8. In turll, 'we
are putting our trust in you to help ens"re tnat we are f3irly co~pen­
sated for our software. Only through this mutual trust can we
cont inue to serve your software needs. Please don't force us to add
copy protection to our software. That would only hurt both of us!

Patech is a very open company.
suggestions. please write to us.

If you have any question.s, comments or
We will do our best to respond promptly.

If you have written any programs (with or without the aid of Basic 8)

which you think have merit, or if you have an idea f~r one which you think
fills a genuine need, please cont3.ct us. We 3re always interested in good
programs and ideas. Who knows, you may just bec:Jme the newest :ne"lber of
the Patech Software Development Team'

To keep fully informed of future products and u"JcJ!.c:,; and to become d

Registered User. please mail the enclosed Registration Card. Whenever you
contact us for support, please reference the Serial Number printed on the
card. (Make a record of the number before you moll the c3rd')

I hope you find that Basic 8 fulfills your eKpectations.
your support.

Sincerely,

,9~~
~PareSh Patel. President
W'Pat!'ch Software. Inc.

P.O. BOK 5203
Sumerset, tJJ O~S73.

Thanks a.ga in fo!

(1)

TABLE OF CONTENTS

TABLE OF CONTENTS
HARDWARE REQUIREMENTS
MAKING BACKUPS
PHILOSOPHY
FOREWORD

1. INTRODUCTION
1.1 COMMAND SUMMARY
1.2 STARTING BASIC 8.0

2. SCREENS AND MODES
3. DRAWING COMMANDS
4. THREE DIMENSIONAL GRAPHICS
5. MEMORY MANAGEMENT

5.1 BUFFERS
5.2 STRUCTURES

A. Saving and recalling STRUCTURES
B. Patterns
C. Logo
D. Character Font
E. Brush

6. Exotic Commands
7. Making A Distributable Disk - The Run Time System
8. BASIC PAINT
9. WIOS WORKBENCH And Other Supplied Utilities
10. Basic 8.0 COMMAND ENCLYOPEDIA
11. Printer Drivers

Appendix A:
Appendix B:
Appendix C:
Appendix 0:
Appendix E:
Appendix F:
The Players

The 8563 VIDEO CHIP - Ram Expansion
VIDEO RAM MEMORY MAPS (MODE's 0-3)
C128 Basic 8.0 MEMORY MAP
File Formats, Naming Conventions
Data Compression Algorithms
Other Suggested Standards

Page
1
2
3
4
6

8
12
lJ
14
20
25
Jl
31
32
3J
35
36
36
37
38
42
44
62
65

122

173
175
177
179
185
187
188

(2)

Required Equipment

Commodore C12S (or C128D) computer in ~128 80 column Mode only

At Least 1 disk drive (1541, 1571, 1581 and compatibles)

RGB Monitor

Supported Hardware options

External RAM Expansion
Model 1700 12SK RAM cartridge, or
Model 1750 512K RAM cartridge

Internal 64K RAM Expansion for the 8563 Video Display Chip
(New C128D model comes with the 64K already built in.)

Model 1351 Proportional Mouse

Standard Joystick

Dot Matrix Printer (See chapter 11 for specific printers)

(3)

MAKING BACKUPS OF YOUR BASIC 8.0 DISK

Even though it is copyrighted, your BASIC B.O disk is not

cop¥protected. In fact, it comes with a built in backup

facility. The original disk you buy is not meant to be used for

work. The first time you boot the disk, have thrGe formatted

blank disks ready. Put the original BASIC B.C disk into the

drive and either turn on the computer or press t~e reset button

(if the computer is already on). You will be prompted with a

menu which has three choices. These menu options allow you to

make a BASIC B.O Work Disk, a BASIC PAINT Work Disk or a BASIC

B.O RunTime Disk. You should make one of each, then put the

original BASIC B.O system Disk away, where it will be safe. Use

it at another time to make additional work disks or runtime

disks. Of course, you can also use your favorite disk copy

program to back up your work disks and runtime disks.

The BASIC B.O Work Disk is for writing and editing your

BASIC B.O programs. You may not give this disk away! Make a

backup of this disk, and work from your backup work disk. This

disk contains the complete BASIC 8.0 editor system, and is the

disk you will use for creating your own BASIC 8.0 programs. To

use this disk, just put it in the drive and boot t~e computer.

The BASIC 8.0 system will load and become initialized. You may

then

WOUld.

write programs, run them and save them as you normally

The difference lies in the many new BASIC B.O commands

available.

The BASIC PAINT Work Disk contains the included 80 column

color paint program, as well as menus, fon~s and requestors. It

is a RunTime Program, meaning it contains only the runtime

library, not the editor. You cannot edit or list the program,

(4)

and you cannot sell or give it away. The BASIC PAINT disk is

also an autoboot disk. Just plug in a 1351 mouse into port one

or a joystick into port two and boot the disk. You will be

presented with a series of menus and requestors that allow you to

configure the program to your system.

The BASIC 8.0 RunTime Disk is the only legal way to sell or

give away programs you have written with BASIC 8.0. It contains

the RunTime Lihrary, which is a program that allows BASIC 8.0

programs to run, but not edited or listed. This disk also

contains the WORKBENCH program, which i~ simply a BASIC 8.0

program that allows you to use a mouse to ,oad and run BASIC 8.0

programs. This disk too is a autoboot disk. It will load and

activate the RunTime Lihrary, and then it loads and runs the WIOS

WORKBENCH. You can put your own programs and their required

files on this disk, where they can be loaded by pointing the

mouse and selecting them with the mouse

alter the booting sequence of the

directly load and run your program.

details.

buttons. Or you can

RunTime Disk in order to

See Chapter Seven for

OUR PHILOSOPHY ON SOFTWARE COPY PROTECTION

We made a very deliberate decision to not put any type of

copy protection on the disk, so you could easily make working

disks. At this time, nearly all new Commodore software is

protected. So why not BASIC 8.0? We believe that C128 users

deserve to be trusted. We believe in giving you value for your

money. So on this disk is not only the first truely unique C128

software package (BASIC 8.0), there is a FREE run time system

that can be used by registered owners to produce program disks

that will run your BASIC 8.0 programs without using the BASIC 8.0

(5)
editor disk. These run time systems can be given away or sold

without you eaying us royalties! So if you write an exceptional

program you want to share, you can do so legally without

infringing on our copyright. (These run time programs can only

be ran, not edited or altered by the user.)

If that isn't enough, there is also a bonus program written

in BASIC 8.0 called BASIC PAINT. This is a very powerful graphic

paint package, actually more powerful than most commercial

systems available for sale. This program is also copyrighted, so

you may not give it away or sell it. Use BASIC PAINT just as a

paint system, or use it to create pictures, brushes and patterns

for use in your BASIC 8.0 programs.

Besides informing you that making copies of BASIC 8.0 and

BASIC PAINT and giving them away (or selling them) is illegal and

makes you subject to criminal penalties, please consider this.

We spent two years developing this system for the C128, at a time

when most software developers were ignoring your software needs.

We have given you one of the most powerful graphic languages ever

produced on eight bit machines, a free run time system for the

programs you develop, as well as a powerful paint package. \-Ie

have trusted you by allowing you to make copies of the disk for

your own use. If we find that all this is not ,espected and

piracy occurs anyway, other software being developed by us may

well never show up, or may be protected if it does.

But if you show the proper restraint and do not give out

illegal copies, rest assured we will follow with more powerful,

unique and unprotected software for your C128.

other companies may follow our lead!

And who knows,

(6)

FOREWORD

The Commodore 128 personal computer was released in mid 1985

as the logical upgrade path to the -popular C64 computer. In

order to address the wants and needs of the potential C128

computer buyers, Commodore asked for suggestions about what the

users would like in this new computer system. The major

suggestions were implemented. These were C64 compatibility, a

faster high capacity disk drive, more standard memory and ram

expansion capability, a higher level BASIC language, and a

professional 80 column color display. All these improvements

over the C64 allowed Commodore to create what is perhaps the most

powerful 8 bit microcomputer yet released to the public, and they

explain why in a little more than a year over one million C128's

have been sold.

One problem associated with the C128 has been the limited

amount of software developed for its native C128 mode. This is

mainly because of the C64 compatibility as software developers

wanted to play it safe and only released software that would run

in C64 mode. This lack of real C128 mode software has led to a

good deal of anger and disappointment in the C128 buying public,

yet they have stayed with their chosen computer system. And of

the one hundred or so native C128 packages available after a

year, most have been productivity packages like word processors,

spreadsheets and databases. Interestingly enough the ones that

have been successful have all catered to the C128's 80 column

display capabilities.

While the built in Basic 7.0 has a very large base of

commands that take advantage of the C128's 40 column graphics

capability, almost nothing is available to the BASIC programmer

(7)
to access the C12S's SO column graphics possibilities, which are

quite extensive and actually more powerful than the supported 40

column graphics. In fact Commodore originally stated that there

would be no high resolution RGB graphics (except text) as the

8563 chip was not designed to support them and any that CQuld be

added via software would be too slow to be usable. The authors

of Basic s.o demonstrated that high speed monochrome graphics

were not only possible, but quite practical in an early

copyrighted language extension called Ultra Hires. This small

graphics language generated such an avalanche of world-wide

interest that we decided to see just how extensive the graphics

of the 8563 were. Our criteria was to produce the most powerful

and productive graphics system ever developed for a 8 bit

computer. With Basic 8.0 we more than succeeded.

David P. Darus

Louis R. Wallace

(8)

CHAPTER ONE
INTRODUCTION TO THE BASIC B.O

PROGRAMMING LANGUAGE

Basic B.O is a new and exciting programming environment for

the C128 computer owner. It allows you to use an entirely new

aspect of graphics on the C128, graphics that actually exceed the

high resolution and power that the C128 and C64 user have come to

expect. Yet it does so while being compatible with the existing

advanced non-graphic commands of Basic 7.0 that are built into

the computer.

Why i~ Basic B.O so powerful? Well, first of all it offers

an extremely high resolution graphics display of 640 X 200 pixels

on the screen at the same time (twice the resolution of 40 column

mode). This screen memory is completely separate from the normal

system ram contained in the computer, and unlike the 40 column

graphic screen it does not use any of the users valuable

programming ram. Secondly, the normal bitmap graphics used on

microcomputers are a two dimensional system. with Basic B.O

however, its drawing commands work in a three dimensional

environment, and the BASIC programmer has a great deal of control

over perspective, rotation, viewing angles, the origin and depth

of view. Futhermore, it gives the programmer co~~ands to

generate three dimensional solid surfaces, a power usually only

available on much more expensive computers. Third, Basic B.O

offers the RGB graphics user five different types of graphic

displays, four of which can use all 16 colors on the screen at

the same time. It is also possible to have several screens in

memory simultaneously, each with a different color resolution

and/or screen size. Fourth, Basic B.O has many other special

Chapter One

(9)
and unique features. For example you can make Virtual screens

that are much larger than the normal 640 X 200 displayable

screen. By using the SCRDEF command you can create custom screens

that are up to 2040 pixels wide or over 800 pixels tall.

Conversely, by using the MODE command you can easily switch

between any of the 32 predefined graphic screens. There are also

commands to SCROLL a screen, save and load screens and brushes,

define a LOGO, PAINT with exotic color PATTERNS of your own

design, create WINDOWS, make printed copies of your images on

many different printers (and in many different sizes as well as

in color) and much more.

Another important feature of Basic B.O is it's total support

of the Cl28 and its hardware expansion capabilities. Obviously

the 80 column RGB display is used. And of course the Basic B.O

user can make use of the 1541,1571 and 1581 disk drives. Support

for a number of different dot matrix printers allow programs to

create hardcopy of the graphic screens. Basic B.O also is one of

the first commercial software packages to support the 1700 and

1750 ram expansion modules. You will find that the new 1351

proportional mouse has found a home here in Basic B.O programs,

and you can still use a joystick too. You will even find that

the extra 64K video ram expansion for the 8563 chip being

installed in tens of thousands of C128's by their owners (and

already presen~ in the new C128D) is completely supported. Basic

B.O can use in one way or another the whole 704 K ram that can be

installed in the C128, as well as virtually every periphial

device. In fact every time you upgrade your C128 cOmptlter, you

will find Basic 8.0 waiting with even more capabilities for you

to use!

Chapter One

(10)
The following chapters will help you learn about Basic 8.0

and its commands and techniques. They are divided into several

sections: screens and modes, 3d graphics, solid shapes, memory

management, data structures, the mouse/joystick/pointer system,

printers and more. Following these chapters you will find a

Basic 8.0 ENCYLOPEDIA, which is an organized directory of the

commands and their syntax. Here every command is listed and each

parameter explained. Then comes the Basic 8.0 MEMORY HAP, which

simply shows the areas of the computer that are used by the ROMS,

RAM and Basic 8.0 itself. Finally the appendix contains

information on the data compression algorithms used, the file

format for the graphics, 3d data file structures and more!

The hardware in the C128 that lets Basic 8.0 generate all

these special graphics is the 8563 video Display Chip. This is a

very powerful RGB display processor that is a new addition to the

Commodore computer family. It is controlled through 37 registers

that are completely separate from the normal C128 operating

system. If is only possible to address the 8563 registers and

its video display ,am through two locations in the C128. These

are $0600 (Address Register) and $0601 (Data Register).

Programming the 8563 can be quite complex, and explains why

graphics were thought to be infeasable, though obviously not

impossible. On a standard C128 the 8563 video chip has 16k of

dedicated display ram you can use, but it is quite possible to

expand that ram to 64k, opening a whole new world of C128 and

Basic 8.0 graphics.

Basic 8.0 allows you to access these new capabilities as

well as creating many additional features in your own programs.

It does this while still supporting the built in Basic 7 commands

Chapter One

(11)
(except of course the 40 column graphics commands).

How does Basic 8.0 work? Well, the language is what is

known as a wedge. A wedge is a machine language program that is

wedged into the computers BASIC interpreter where the new

co~~ands can be executed (and evaluated) along with the old. One

of the problems associated with these types of languages is the

fact they slow down the normal basic interpreter simply by adding

more commands. Basic 8.0 does not work this way because we did

not want to slow down your programs. Instead we choose a method

called a syntax error wedge. This technique prefixes the new

commands with a character that is not used by BASIC in any of

its' normal commands. So when this character is encountered in a

statement, the operating system jumps to the routine that handles

syntax errors. We have taken over that function, and check for

one of our commands when an error occurs. If it is a real syntax

error the program passes it on to the operating system for

evaluation. If however we find it to be a Basic 8.0 command it

jumps to our new interpreter. Only then is the new command

interpreted. This technique saves a great deal, of time in

processing the program, especially when (like in Basic 8.0) the

added language consists of a large number of new commands.

time savings means your programs run as fast as is possible.

This

The special character used to prefix all Basic 8.0 co~~ands

is the @ character. It is easy to see in your programs, and does

not require pressing the shift key on the C128 keyboard to use.

And, finally it should make it far easier for a compiler to be

developed for the Basic 8.0 language, should a developer wish to

do so.

Chapter One

@ANGLE
@ARC
@BOlt
@BRUSHPATlUf
@Bl1F1'ER
@CBROSH
@CDR
@CIRCLE
@CLEAR
@COLOR
@COPY
@CYLNDR
@DIR$
@DISPLAY
@DO'l
@DRWHODA
@ORWHoDB
@FETCH
@FLASH
@FOIl'1'
@GROlf
@HCOPY
@LIJIE
@LOGO
@LSTROCT
@MODE
@MOOSE
@ORIGIN
@PAINT
@PATTElUf
@PlXEL
@PTR
@SCALE
@SCLIP
@SCRDEF
@SCREEN
@SCROLL
@SDAT
@SEND
@SPHERE
@SPOOL
@SSTRUCT
@STASH
@STORE
@STROCT
@STYLE
@TEltT
@TOROIO
@VIElf
@WALROS
@WINDOWCLOSE
@WINDOWOPEN
@2DOM

(12)
Basic 8.0 COMMAND SUMMARY

Chapter One

(13)
STARTING BASIC 8.0

To start BASIC 8.0 turn on your disk drive and RGB monitor.

If you are using a dual monitor (like the 1902) make sure it is

in RGB mode. Press the 40/80 column key on the C128 down. Put

the BASIC 8.0 Work Disk in the drive, and turn on the computer.

The system will autoboot (load and run itself). When it is

finished loading, you can then run one of the supplied utility

programs or write your o~n.

Chapter One

(14)

CHAPTER TWO
SCREENS AND HODES

There are five different screen formats supported by BASIC

8. The key difference between them lies not in the screen pixel

resolution, but rather in the color resolution or color cell

size. In monochrome graphics mode there is no color information

stored for a color cell, so there is only two colors, foreground

and background, available to the screen. Therefore a 640 X 200

monochrome screen requires 16000 bytes of ram for the bitmap, and

no ram for color information. To use many colors at once you

must have ~omewhere in memory to store the color information, or

attributes. On the C128 a single attribute byte controls the

color information for a color cell. Each attribute is

responsible for storing the color information for a specific area

of the screen known as the color cell. A color cell is always 8

bits (pixels) wide, and can be either 2, 4, 8 or 16 scanlines

(pixels) tall. Each color cell can have any 2 colors, a

foreground color and a background color, from a palette of 16

colors. The larger the color cell, the smaller the amount of

ram required for color attributes. The smaller the color cell

the more ram required for color attributes. So when using the

multicolor modes some ram in addition to the bitmap ra~ is

required to store the color information, with the exact amount

depending on the color cell and screen size.

The five possible display modes are defined as such:

Hode ~ Color Resolution

0 Monochrome No color cell
1 Color Mode 1 8 X 2 P xel color cell
2 Color Mode 2 8 X 4 P xel color cell
J Color Mode J 8 X B P xel color cell
4 Color Mode 4 8 X 16 P xel color cell

Chapter Two

(15)
For some point of reference look at display mode 3. It uses

an 8 X 8 pixel color cell, which means that each of the 8 X 8

cells on the screen in this display mode can have their own

unique pair of colors, one for the foreground and the other for

the background. This is the same color resolution as the C64 or

C12B composite high resolution screens color capacity, yet the

bitmap has twice the horizontal screen resolution of the

composite mode. Each color cell requires 1 byte of attribute

memory in addition to the bitmap ram requirements. Using a 640 X

200 display with an 8 X 8 color cell requires 16000 bytes for the

bitmap and 2000 bytes for the color attributes totaling 18000

bytes of ram. This is obviously more than the 16K built in for

the 8563 to use and since none of the C128's system ram can be

directly accessed for 80 column graphic purposes it is not

possible to display a full 640 X 200 color screen in any of the

color modes with only the standard 16K. That's why we strongly

recommend you have the full 64K video ram installed in your C12B

(see appendix). The ram requirements for a 640 X 200 screen in

each display mode are :

DISPLAY MODE DESCRIPTION COLOR CELL SIZE RAM REQUIRED

0 Monochrome 0 16000
1 Color Mode 1 8 X 2 24000
2 Color Mode 2 8 X 4 20000
3 Color Mode 3 8 X 8 18000
4 Color Mode 4 8 X 16 17000

As you can see it is not possible to have these full screen

colors without the extra ram. If you have installed the full 64K

of ram (or have a C128D) you can use any display mode as well as

virtual screens larger than 640 x 200. However in a standard

C128 there is only 16K, so to get around this limitation and

still provide color, you must define screens that are less than

Chapter Two

(16)
200 pixels high, which frees some ram to be used for color

information. You can define your own screens using the @SCRDEF

(SCReen DEFinition) command, or simply use the @MODE,O command to

define 8 separate screens designed for the 16K C128. These

screens already make allowances for the limited memory, and

crea~e screen displays of various heights and resolutions. They

are as follows:

SCREEN 0 640 J: 200 Monochrome
SCREEN 1 640 J: 192 Color B J: 16
SCREEN 2 640 X 176 Color B J: B
SCREEN 3 640 X 152 Color 8 X 4
SCREEN 4 640 J: 104 Color B X 2
SCREEN 5 640 X 176 Color B X B Interlaced
SCREEN 6 640 X 152 Color 8 X 4 Interlaced
SCREEN 7 640 X 104 Color 8 X 2 Interlaced

After using the @MODE,O command you can work on any of the

above screens by just using the @SCREEN,n command, where n is

0-7. We have found the @SCREEN,2 (640 X 176 Color, 8 X 8 color

cell) the most generally useful color display in the standard,

unexpanded C128. If your needs are such that a smaller display

(640 X 152 or 640 X 104) is useful, by all means use those

screens. The extra color capability is exceptional, and it

allows for strikingly beautiful color displays. If you need a

larger color display in a 16K system, use @SCREEN,l for a 640 X

192 color display using a 8 X 16 color cell. You can use only

one of the @MODE,O screens at anyone time, but you can switch

very easily between the different screen types. You can also

maintain the different screens in memory as brushes, or @STORE

them to disk until needed. Depending on the size of your

program, you can @STASH several screens in the C128's ram banks 0

and 1. However, if you have the 1700 or 1750 Ram Expansion

cartridges you can have dozens of screens, fonts, brushes, logos

Chapter Two

(17)
and patterns in memory at one time.

If you have the 64K video ram expansion installed in your

C128 (see Appendix) or own a C128D your screen possibilities are

enhanced virtually 1000l! You can now use all four @MODE

commands. @MODE,1-3 offers twenty four spectacular screen

combinations. Besides 640 X 200 monochrome screens there is

every possible 640 X 200 color screen (8 X 16, 8 X 8, 8 X 4 and 8

X 2). There is a large variety of VIRTUAL SCREENS (screens

larger than what can be displayed on the monitor at once),

including monochrome displays such as 1280 X 409, 640 X 819, 2040

X 252 and 800 X 655 pixels. There are many virtual color screens

as well, up to 640 X 728 pixels. @MODE,l and @MODE,2 both

contain combinations that allow two to four screens in memory at

once, regardless of the screen size or type. Of course, you can

use the @SCRDEF command to custom design screens of any size

using any of the five color types. When used it overides the

definition given that screen number by @MODE,n. Take a look at

the various screens in each mode, because it is likely most of

the screens you want will be there; if not, then make some of

your own design. You can find a detailed list of tht screens in

each mode in the chapter BASIC 8 COMMAND ENCYCLOPEDIA under

@MODE; the complete syntax of @SCRDEF is also listed there.

You activate your chosen graphic screen with the command

@SCREEN,draw screen, view screen. The draw screen and view

screen signifies which of the possible (at one time) 8 screen

definitions to use as your current drawing screen and viewing

screen. They do not have to be the same, so you can be looking

at one screen while drawing on another (in 64K video ram

systems) • This is ideal for many applications, and can be used

Chapter Two

(IS)
for double buffered displays, a technique often used for

animation. And screens can be saved or loaded with the @STORE

and @DISPLAY commands.

At times you will need the use of the normal text screen,

and you can return to it quite easily with @TEXT. This

initializes the C12S SO column text display, using the standard

character fonts. If you want to install custom fonts in text

mode, using the @FONT command will allow you to load any two

fonts into memory for use with the SO column text display.

Another powerful command is @WINDOWOPEN. This command

allows you to define special subwindow areas of the screen. The

upper left corner of the window becomes the screen location 0,0.

Both the windows size and location is user defined, and once

defined all sUbsequent drawing commands default to it. It stays

the default output until another @WINDOWOPEN or @SCREEN command

is issued or you give the command @WINDOWCLOSE. Once opened,

the window can be cleared, filled with color, drawn into, etc.

If clipping is on, Objects drawn outside the window are clipped.

Most, but not all, of the graphic commands work on the

current window. Those that do not (like @STASH, @FETCH, @COPY

etc) are not drawing commands. In the BASIC S.O COMMAND

ENCLYCLOPEDIA each command is defined and if it does not respond

to the @WINDOWOPEN command, it will be clearly labeled as such.

Here is a simple example program that will define a @MODE,O

640 X 176 color screen, clear the display and set up some default

drawing colors.

10 @WALRUS,O:REM define the 16K ram mode
20 @MODE,O:REM Select the 8 screens available to 16K users
30 @COLOR,0,8,O:REM black background, red drawing color, black border
40 @SCREEN,2,2:REM use the 640 x 176 color display Sxs cells
50 @CLEAR,O:REM clear the display
60 SLEEP 5:REM wait 5 seconds

Chapter Two

(19)
70 @TEXT:REH return to text mode

A final note. The different color screens are not

compatible. You cannot display an 8 x 8 screen in an 8 x 2 mode.

The same is true for brushes. They can only use the color mode

from which they were created. Monochrome screens and brushes can

be loaded into any screen, although they will not contain any

color information. Color screens and brushes of any color cell

resolution can be displayed in a monochrome screen, with the

color information ignored by the monochrome display. By going

through a monochrome intermediary, you can transfer the bitmap of

screens and brushes from different color modes.

Chapter Two

(20)
CHAPTER THREE

GRAPHICS

BASIC 8.0 has all the graphics shapes you would expect from

a graphics oriented language. It has @DOT, @LINE, @BOX, @ARC,

@CIRCLE, @PAINT and more. These are normally rather standard

commands, but this is BASIC 8.0, not some simple graphics system.

Each of these commands offers far more than found in any other

language. For example, each of them works in 3 dimensions.

Thats right, 3D! Each point is defined as an element of a X,Y,Z

coordinate system. This is far more advanced than the simpler 2D

system used on other graphic systems. It allows you to define

and draw complex 3D objects without complex (and slow)

mathamatical calculations. It doesn't stop there either. BASIC

8.0 has some powerful pattern capabilities that allows you to

define patterns n bytes wide by m pixels deep and in color. This

is especially useful with the @PAINT command, but also the

drawing commands (and the character command) can be told to draw

in the current pattern. That means your lines, circles, boxes,

dots, arcs and letters can all be patterned (like the AMIGA) .

There's more! Each of the drawing commands (except @DOT) can be

given a height parameter that allows you to multidraw it. You

can define both the direction and the step value used by the

height parameter with the @GROW command. The syntax is @GROW,x

step,y step,z step; these step parameters can be positive or

negative values. Therefore it is possible to grow in several

dimensions and directions, all at the same time! If the step

value is 1 or -1, the line is drawn as a solid. If it is 0 there

is no growth in that direction. If greater or less than 1 or -1

then each layer of the graphic is stepped by that number of

lines. What can you do with this? Well, for one thing it allows
Chapter Three

(21)

lines of different weights. For another, when used with the

@CIRCLE command it allows you to draw cylinders. Used with the

@ARC or @BOX commands it allows you to draw 3D bars of various

shapes, or use a sub tended arc and make 3D pie wedges for graphs

or charts.

@BOX allows shearing which means to pull the base left or

right from its position, while holding the top still. These

parameters allow you to specify a shear direction (X or Y) and a

shear value (how far to shear it). This allows you to make

complex 3D bars very easily.

@ARC offers a few special features too. While it can be

used for circles or ellipses, it can also be used for generating

segments of a curve by specifing the start and ending angles of

the arc. You can set the increment of the arc (angle between the

lines used to draw the arc) to create other geometric shapes.

The smaller the increment, the smoother the line. The larger the

increment, the more noticable the lines. If you define an

increment of 45 degrees, the arc becomes a octagon (8 sides).

Use 60 degrees and it's a hexagon (6 sides), 90 degrees and you

have a diamond, and 120 degrees for a triangle.

When using pixel oriented graphics, a problem arises. The

pixel is not syrnetrical, rather it is bigger in the Y direction

than the X. This means if you draw a 100 pixel horizontal line

and a 100 pixel vertical line, the vertical line will be

physically longer. To compensate for this BASIC 8.0 has the

command @BCALE. There are three scale modes available. The

first, @SCALE,O is the normal mode. Here the Y pixel is longer

then the X, so a 640 X 200 pixel screen is just that. @SCALE,l

tells the graphic primitives to use a different pixel scale. The
Chapter Three

(22)

640 X 200 physical pixel screen becomes a 640 X 512 logical

screen. There are no more real pixels displayed but they are

addressed differently. This new graphic scale means that in the

example above, both 100 pixel lines are the same physical length.

@SCALE,2 doubles the logical scale of @SCALE,l. The screen now

becomes 1280 X 1024 logical pixels. Again here we have no

additional pixels, only a better logical addressing where all the

addressible points are the same size. It is very important not

to confuse these logical screens with virtual screens. Virtual

screens really are physically larger in terms of real pixels. If

you are working in a large virtual screen and change the scale

the virtual screen is adjusted accordingly. To determine the new

pixel ranges, use these formulas:

@SCALE,l
NewX = OldMaxX, NewY = 01dMaxY/.39

@SCALE,2
NewX = OldMaxX*2, NewY = (OldMaxY/.39)*2

OldMaxX and 01dMaxY are the largest X and Y values in the

current screen.

A word about using @SCALE is in order. While it does

compensate for the C128's non-symetrical pixel, it has the

drawback of slowing .the rate of drawing. Thats because the

scaled points must be converted to the physical screen pixels.

So don't use @SCALE 1 or 2 in situations where speed is

important.

@PATTERN allows you to specify one of the 192 structures as

the current pattern. You can fill an enclosed area with the

@PAINT command. @PAINT uses the currently defined pattern, if

pattern mode has been selected in @DRWMODA, otherJise @PAINT uses

the current color for a solid paint. @PATTERN allows you to

create incredibly detailed patterned fills, and of course the
Chapter Three

(23)

pattern can be in color. Anything you can define as a brush can

be used as a pattern. Just @STASH the screen area you want in

memory as a brush, then use @BRUSHPATRN to make that brush into a

pattern. For information on defining a pattern structure see the

chapter on structures or the BASIC 8.0 ENCYCLOPEDIA.

You can also find out information on any specified pixel

with the command @PIXEL. It allows you to tell if a given pixel

is on, and what the colors are within its color cell.

When using the multicolor modes, it is easy to set the

drawing, background and border color with the @COLOR command. It

allows each to be any of 16 colors. Normally there is no

different border color in the C128 RGB mode, but while in color

mode BASIC 8.0 was able to get around that limitation. You can

also use the @CLEAR command to fill the current screen or window

with the colors of your choice, or even to fill it with one of

255 different simple patterned shades based upon the numbers

0-255.

Another graphic command is @CHAR. @CHAR allows you to write

on the graphics screen using ani character font yo~ want. You

can use the two built in fonts, or you can load a new font into a

structure and use it. The characters can be enlarged up co 16

times in both the x and y directions. You can position the

character string anywhere on the active drawing screen. If you

are using the color modes you can specify the foreground and/or

the background color of the character by inserting control codes

in the string. You can also give the direction to print the

character string. The direction can be left, right, up, down or

combinations of them, like up and to the right. And there are

many special character control codes in addition to colors
Chapter Three

(24)

available. For example, you can underline, rotate, flip, mirror,

reverse, pattern, complement, inverse and blank under the

character string, just by including the proper control code. For

details of the @CHAR command see the BASIC s.o ENCYCLOPEDIA

(CHAPTER 10).

There are other commands used with the graphic commands that

modify the way they are used. The commands are @DRWMODA and

@DRWMODB. Each allows you to turn on and off different drawing

modes. For example, you can use @DRWMODA to draw, erase or use

the XOR (complement) mode when drawing pixels. You can turn on

and off patterned drawing. You can merge a pattern with the

screen, and set the clipping flag. (Clipping chops off the

drawing commands when they leave the edges of the current screen

or window.) You can also change from perspective to parallel]D

drawing modes with the @DRWMODB co~~and as well as setting the

Unplotlast and Unplotvertex flags, so that when drawing

multiheight objects they have a more obvious]D appearance. All

the parameters of @DRWMODA and @DRWMODB are explained in the

BASIC 8.0 COMMAND ENCYCLOPEDIA.

10 @WALRUS,O:REM 16K video ram system
20 @MODE,O:REM use 16K screens
30 @SCREEN,2,2:REM use 640 x 176 screen
40 @DRWMODA,1,0,O,O,O,O,O:REM define drawmoda using JAMl color
50 @DRWKODB,O,O,O
60 @COLOR,O,S,O:@CLEAR,O:REM set colors, clear screen
70 FOR 1=1 TO 100:REM Define random lines and colors
SO Xl=INT(RND(1)*640)
90 Y1=INT(RND(1)*176)
100 Zl=INT(RND(1)*100)
110 X2=INT(RND(1)*640)
120 Y2=INT(RND(1)*176)
130 Z2=INT(RND(1)*100)
140 C=INT(RND(1)*15)+1
150 @COLOR,O,C,O
160 @LINE,Xl,Yl,Zl,X2,Y2,Z2,1
170 NEXT I
lS0 SLEEP 5:REM wait 5 seconds
190 @CLEAR:@TEXT:REM return to text mode

Chapter Three

(25)
CHAPTER FOOR

THREE DIMENSIONAL GRAPHICS
Commands and Theory

Many of BASIC 8.0's graphic commands work in three

dimensions, or 3 space. In order to increase the graphics power

available, there are a number of special commands that effect how

the graphics are drawn. But before discussing them, a short

explaination of 3 dimensional graphics and its terms is

necessary.

Three dimensional graphics means there are three coordinate

axis used to define a point. In normal microcomputer graphics

only 2 dimensions are used. They are labeled X and Y, where the

X axis is horizontal to the screen and Y is vertical (up and

down). In three space, a new axis is defined, Z. This Z axis is

directed into and out of the screen. (See Figure 4.1)

Figure 4.1 3D Coordinate Axis

There are two viewing methods commonly used in 3D graphics.

One is parallel, where the Z coordinate is simplY used to offset

the point when converted to the 2D space of the screen. The

other is perspective viewing, which uses a point in 3 space as

Chapter Four

(26)
its vanishing point. Perspective makes objects drawn near to the

viewer (Z values decrease) appear bigger, and objects drawn away

from the observer toward the vanishing point (Z values increase)

appear smaller. You can select perspective or parallel mode by

using the QDRWMODB command. The vanishing point has no effect

when using parallel mode.

When drawing in perspective mode, objects that approach the

vanishing point appear to be smaller. If they reach the

vanishing point they become a single point, and if they exceed it

they become larger (to our eyes). By being able to define the

vanishing point (with the @ORIGIN command) you can control the

degree of three dimensional perspective your images will assume.

Another aspect of 3 space that effects the way we perceive a

3D object is its origin. The origin is essientially the center

of the universe to your object, line or point. When you rotate,

you are rotating around the origin. The default center of

rotation is the 3D point 0,0,0. sometimes you don't want an

object to rotate around this point, because, depending on your

position in space relative to this default origin, you can end up

with your object completely off the screen. If you wanted to

rotate an object around its own center and stay in the same

screen location you would have a problem. BASIC 8.0 removes this

difficulty by allowing you to define any spot in 3 space as the

center of rotation. To control where the origin is as well as

the vanishing point, use the @ORIGIN command. For example, if

your object was a cube, by setting the center of origin to the

center of the cube your object would rotate around its own

center, and stay in the same spot while doing so.

In BASIC 8.0 you can make a 3D object or point appear

Chapter Four

(27)
different with parallel drawing mode set by using the @VIEW

command. @VIEW sets the position of your eye around the Y axis.

It has the effect of a simple rotation of your eye (not your

data) around the Y axis. so when you draw you see Jour object at

a different point of VIew.

In order to have compl~tE rotati~n contro!, B~S 8 0 L.lse~

the @ANGLE c c!:',ma prj . It al~ows you ~o sat globa1

as the rotation sequence.

There are three different axis i~ J ~pacc, tt: Y and

axi.s. You can rotate your Obj~Ct5 i~ a~)' t.heS2 three

directions, both in the positive and neg~t~'!e j.: -ctions. You

can rotata in more than one axis ~t cnce, ,cults ~n 3

ITI'Jltiple t:::-ansfcrmatic'l of the ("2~~ec.:t. When :"-0<:: .'.~:

directions at once, the ~nd ~esul~s differs

se.quence yC~l rO'Cdi.:,e XVZ I ::Z"/, YXZ, YZX, ZX,{ CT .:.. ~

rotated in ~he sequer1~e Xy~ will appe3r ~if£ f ::():~:

rotated in XZY, e-:c!n i~ tl1e .:?cnglQs of rot~tion ,OJ'

All of the~e para~eters ~re definable ~ith the

currently defIned @ANGLE setting. ';'hie default "·;GLE., 0 I a! n.,

(no rocation). Once set to anot:-J::::- value I

commands output their functions 2cc~r~in;ly.

are drawing an arc, and the @AN~LE is

the result ill'J

will appear to rotated n the y a~\ .is.

commands @DOT, @LIl'-.l'£, @BOX, @/"\3=:C, and GCLRCL.,.; ,111 will rE'S~';): to

the given @ANGLE. ':;t iT:',po1-~·J.ntly,

Ch~pter Fnur

(28)
that complex rotations will decrease the speed of your graphics

(although only a tiny fraction of what they would be if

mathematically rotated in basic) .

Here is an example of a BASIC 8.0 program that draws a

rotated line using the caYL~CLE command to rotate it around the Z

axis. Notice that the line definition is never changed, only the

@ANGLE values change.

10 @WALRUS,O:REM 16 K VIDEO MODE
20 @MODE,O:REM USE FIRST 8 SCREEN DEFINITIONS
30 @SCREEN,O,O:REM MONOCHROME SCREEN 640 X 200
40 @SCALE,O:REM USE NORMAL SCALE
50 @DRWMODA,l,O,O,O,O,O,O:@DRWMODB,O,O,O:REM STANDARD MODES
60 @ANGLE,O,O,O,O:REM DEFAULT NO ROTATION
70 @ORIGIN,320,100,0,320,100,200:REM ORIGIN IN SCREEN CENTER
80 @CLEAR,0:@COLOR,0,8,0:REM CLEAR SCREEN, SET COLOR TO RED
90 FOR AN=O TO 360 STEP 20 :REM CHANGE ANGLE BY 20 DEGREES

100 @ANGLE,O,O,AN,O:REM ROTATE LINE AN DEGREES AROUND Z
110 @LINE,200,100,0,440,100,0,1:REM DRAW LINE
120 NEXT AN
130 GETKEY A$:REM WAIT FOR A KEY PRESS
140 REM CLEAR ALTERED ROTATION VALUES
150 @ANGLE,O,O,O,o
160 REM RETURN TO TEXT MODE
170 @TEXT

In addition to these 3D drawing co~~ands, there are several

designed to be used to generate SOLID 3D OBJECTS. These are

based upon techniques developed for the C64 computer by Mr.

Richard Rylander and first published in the May 1985 Dr. Dobb's

Journal. Because of the 3D nature of our work, Mr. Rylander

allowed us to convert his solids algorithms to the C128 for use

in BASIC 8.0. We wish to thank him for his great work and

generosity.

The Rylander Solid commands allow you to generate textured

(halftone or random) solid images such as SPHERES, TORIDS,

CYLINDERS and SPOOLS. You have a great deal of control over

clipping the objects, shading and texture. It cannot be

Chapter Four

(29)
emphasized enough the incredible graphics possibilities of the

solid generation commands.

The solid commands differ from the regular 3D graphic

commands in that they are defined using the normal 2D X,Y system.

You can not use a Z coordinate value when defining their

positions.

Perhaps the most interesting of the Rylander shapes is the

sphere. It allows you to generate a solid spherical object,

which can be used in many drawings or illustrations for quite a

dramatic effect.. The command is @SPHERE,X,Y,RADIUS. It will

place the sphere at the given coordinate X,Y (remember these

commands have no Z axis cOOltrol). You can change the clipping,

shading and lighting with the @STYLE and @SCLIP com;o:,ands.

You can create a toroidal shape (somewhat donut shaped) with

the command @TOROID. This allows you to define both the inside

radius and the outside radius, as well as the view (horizontal,

vertical or top) so the shape can be quite different looking with

the same command.

Another of the,Rylander shapes is SPOOL. A spool surface

can be thought of as the inside of the toroid sur:ace. Created

with the @SPOOL command, it allows you to specify th", inner "ni

outer radius, and two viewpoints, horizontal and vc~~ical.

The final Rylander solid shape is the CYLINDER shape. This

will create a horizontal or vertical cylinder, with you defining

its radius, halflength and view.

To make these even more useful, there are two command that

can be used to define the characteristics of the solids in much

the same way as @DRWMODA and @DRWMODB define the drawing

commands.

Chapter Four

(30)
@STYLE sets up the shading (textured or half toned), scaling

(symetrical or elongated) and lighting (normal or backlite).

@SCLIP allows you to only draw part of the solid, and clip the

rest. This makes it easier to combine the shapes into more

complex solids.

While the solids commands do not respond to the 3D commands

(@ANGLE, @VIEW etc) they do respond to the @COLOR,

@WINOOWOPEN/@WINOOWCLOSE and bitmap screen (@COPY, @STASH/@FETCH)

commands.

Here is a simple example that creates a green textured

sphere.

10 @MOOE,O
20 @SCREEN,2
30 @COLOR,0,5,0:@CLEAR,O
40 @DRWHOOA,l,O,O,O,o,O,O:@ORWHODB,O,O,O
50 @STYLE,O,l,l
60 @SPHERE,320,200,SO
70 GETKEY A$
80 @TEXT

An important point should be made about the 3D drawing and

3D solid commands. Your program, when it finishes up and exits,

should set the ANGLE, VIEW, DRWHOD's, ORIGIN etc back to the

default values. Otherwise the next program will begin in these

modes. Always finish with @ANGLE,O,O,O,O and

@ORWMOOA, 0,0,0,0,0,0,0. (See Appendix 0)

Chapter Four

e

(31)
CHAPTER FIVE

MEMORY MANAGEMENT
BUFFERS, STRUCTURES AND OTHER DELIGHTS

BASIC 8.0 is able to utilize up to 10 different 64K banks of

ram for storage. Two of these are ram banks 0 and 1, which are

the two standard ram banks used by the C128 itself. The other 8

are made available when you install external ram via the 1700 or

1750 ram expansion cartridges. If you have added the 1700 ram

expansion cartridge, which has 128K of ram, you have then added

two addition banks, bringing the total avaIlable 64K banks to ".

If you have added the 1750 ram expansion cartridge it adds 512K

additional. ram, giving you 8 additional banks of 64K for a total

of 10 banks.

BASIC 8.0 allows you to access that ram by the use of a data

structure system. Each of the 10 banks is refered to as a

BUFFER. The BUFFER numbers are 0-9, where 0 and 1 are the

standard C128 banks 0 and 1, and BUFFERS 2-9 are the external

banks added with the ram expansion. You can also define where in

the ram bank a BUFFER will begin and it's size in order to

effectively use the system ram banks 0 and I. Qbviously you

cannot just use all the ram in banks 0 and 1, as that would leave

no room for programs and variables; yet very few programs use

every byte in those banks. That leaves some for use as BUFFERS;

but it is far better to have the external ram for structures, and

leave internal ram for programs. For example, let's define a

BUFFER in ram bank 1. Since this bank lS also used for basic

program variables you should adjust the variable start or end

pointers so that your buffer doesn't corrupt your variables or

visa versa.

POKE 47,0:POKE 48,68:CLR
@BUFFER,1,l024,16384

Chapter Five

(J 2)

This example uses ram bank 1 as the BUFFER, with it starting

at decimal 1024 and is 16J84 bytes long. It moves the start of

variables in bank 1 up 16K to make room for the data buffer.

Thats enough for several fonts, or even a full screen monochrome

picture. If you have the external ram expansion installed, you

could use several of its ram banks instead. For example;

@BUFFER,2,O,65535 :rem use external ram bank 0, use all 64k
@BUFFER,3,O,65535 :rem use external ram bank l, use all 64k
@BUFFER,4,O,65535 :rem use external raJll bank 2, use all 64k
@BUFFER,5,O,65535 :rem use external raJ!! bank 3, use all 64k

This gives you a total of 256k of ram to use as BASIC 8.0

STRUCTURE storage. You can use all 10 banks if you wish, or any

combination. with the external raP.'! installed and used for

storage, you can use banks 0 and 1 just for your program and its

variables, allowing for very large and graphically complex

programs.

STRUCTURES

Once you have declared your BUFFERS, you can define

structures to use that memory. There are 4 types of structures

you can define. There is the PATTERN.structure, used to define

a bitmap pattern (of any size) and its' color (if any) There is

the LOGO type, which is used to generate one or),ore character

strings. For example, you could define a structure that would

print to a specific place on the screen, with a particular font,

and any defined size. You can define many character fonts with

the FONT structure, allowing you to have an unlimited number of

different character fonts all at once. Finally there is the

BRUSH type of structure, which is a rectangular area of bitmap

(including color if it is present). Brushes allow you to pick up

any area of the screen and save them to memory or disk, flip

Chapter Five

(33)
them, mirror or reverse them, then put them back on the screen

where ever you want. If you are using color the color is saved

and manipulated as well. You can even compress them to their

smallest possible size for compact storage. Even more impressive

is that a brush can be copied to another STRUCTURE as a pattern

type. This allows ANYTHING you can place on the screen to be

used as a pattern!

The data structure is defined using the commands @STRUCT,

@SDAT, and @SEND. These commands work together to create

different types of usable structures. The command @STRUCT

includes the structure number (0-191) used to identify which

structure when using later commands. Then the stru9ture type

(1-4), followed by a BUFFER number, and an address in the buffer.

Once you have defined the type, use the command @SDAT (structure

DATa) to send whatever data is appropriate. You can use Basic

7.0 commands within the @STRUCT:@SDAT:@SEND block, for example

FOR NEXT, DO WHILE LOOP etc., to generate data. You can use the

@SDAT and @SEND commands to find the next available address in

the buffer, as they return that infornation value when used. For

example, if you are using the @SDAT corr~and to send pattern data,

the next available address in the BUFFER is found by using @SDAT

like this;

@BUFFER,2,O,65535 :rem external ram, 64k buffer
@STRUCT,2,1,2,o:rem struct 2,type pattern,buffer 2,address 0
AD = @SDAT,pattern data, pattern data, pattern data
rem AD = next address available
@SEND :rem finished defining pattern structure

Al Loading and saving STRUCTURES

STRUCTURES come in four types, pattern, logo, character and

Chapter Five

(34)
brush. You use the commands @LSTRUCT and @SSTRUCT to load and

save all four types of STRUCTURES. When. you want to load you

define a BUFFER that can be used to store the data, then use

@LSTRUCT to load it into memory. If you have a STRUCTURE in

memory you want to save, then @SSTRUCT can be used to store it to

disk. Here is a small example that loads the supplied 160 column

character font into a STRUCTURE to be used with the @CHAR

command.

@BUFFER,9,O,65535 : REM use external ram bank 9, all 64 k
@LSTRUCT,O,8,9,O,"FNT.160 COL":REM STRUCTO, DRIVE 8,BUFFER 9,

Address O,filename
AD=@SEND :REM AD now has tbe next address in BUFFER 9

This short program segment has now added a 160 column

character font to external ram memory as structure 0, where you

can use it with the @CHAR command. If we wanted to add another

font as well, the program would continue this way.

@LSTRUCT,1,8,9,AD,"FNT.COMPUTER":REM STRUCT'1,DRIVE8,BUFFER
9,Address AD,filename

AD=@SEND :REK AD now bas tbe next address in BUFFER 9

We could now begin using the different fonts with the @CHAR

command, indicating which one we wanted with it's STRUCTURE

number. However, perhaps we want to load some BRUSH types also.

We still use @LSTRUCT to load.

@LSTROCT,2,B,9,AD,filename :REM STRUCT'2,DRIVEB,BUFFER 9,
Address AD, filename

AD=@SEND :REK AD now bas next available address in BUFFER 9

We now have easily loaded two fonts and a BRUSH in as user

recallable STRUCTURES. We could have loaded LOGO or PATTERN

types just as easily. The @LSTRUCT command allows you total

control, for example, you might have created on the screen an

object that you want to save as a BRUSH. Continuing our program

above (still using BUFFER 9) we will @STASH it to a STRUCTURE,

then save it to disk.
Cbapter Five

(35)

OA=AD :REH Save starting address of this structure
AD=@STASH,3,9,AD,0,0,100,100,1 :REM STASH area of screen

0,0 to 100,100 to
STRUCTURE 3 in BUFFER 9
in compressed format. AD
now contains the next
address in BUFFER 9.

@SSTRUCT,3,8,filename :REM SAVE STRUCTURE
@SEND :REH Save the file

We have now saved the BRUSH as a disk file, but it is also

still available in memory to be used. We could @FETCH it to the

screen, use @CBRUSH (ChangeBRUSH) to flip, reverse or mirror it,

or even use @BRUSHPATRN (BRUSH to PATTERN) to make a pattern out

of it. Of course, since it is stored on the disk we can always

reload it at another time.

B) PATTERN STRUCTURES

BASIC 8.0 has a very extensive pattern capability. You can

define a pattern from 1 to 255 bytes wide, and up to 255 pixels

deep. If you wish, it can also contain foreground and background

information for each color cell in the pattern. Once defined,

the pattern can be loaded to and from disk, and used to fill an

enclosed area with the @PAINT command. It can also be used in

the graphic drawing commands as draw pattern by setting ~~e

appropriate parameter in @DRWMODA.

STRUCTURE is

The syntax of the PATTE~I

@STRUCT,4,1,9,AD:REH STRUCTf4,pattern,BUFFER 9,Address AD
@SDAT,2,8,1,1 :REM 2 bytes X 8 pixels bitmap, 1 X 1 color
@SDAT,255,255,128,0,128,0,128,O,255,255,O,128,O,128,O,128

:REM That is the bitmap data for a brickwall
@SDAT,206 :REM color (brown on lite grey), AD=next address
AD=@SEND

STRUCTURE 4 is now defined as a PATTERN type. You can use

it by specifing STRUCTURE 4 when you use the PATTERN command.

You can make small simple patterns, or very complex ones. The

easiest way to make a pattern is to convert a BRUSH to a PATTERN

Chapter Five

(36)
with the command @BRUSHPATRN.

C) LOGO STRUCTURES

LOGO STRUCTURES are a special form of the @CHAR command.

They allow you to print a number of different character strings

out by a single command. So certain often used strings can be

save and loaded directly from the disk. A good example of a LOGO

STRUCTURE is a menu of options. It could be stored as a BRUSH,

but a LOGO requires much less memory because it is text data, not

bitmap data. Here is an example of a LOGO STRUCTURE.

OA=AD:REM SAVE AD FOR NEXT EXAMPLE
LA=XXXXX :REM LA (LOGO Address in BUFFER 1)
@STRUCT,S,2,1,LA :REM STRUCTtS, LOGO, BUFFER 9, Address LA
@SDAT,l,CHARSET STRUCTt,14,16,0,2,2,2,13,"MENU OPTION 1"
@SDAT,l,CHARSET STRUCTt,14,32,0,2,2,2,13,"MENU OPTION 2"
@SDAT,l,CHARSET STRUCTt,14,4B,0,2,2,2,13,"MENU OPTION 3"
@SDAT,l,CHARSET STRUCTt,14,64,0,2,2,2,13,"MENU OPTION 4"
@SDAT,O :REM Finished the LOGO
AD=@SEND :REM complete this STRUCTURE, AD is next address
@SSTROCT,S,B,"LOGO.HENO":REM Save LOGO STRUCTURE
@SEND :REM save LOGO to disk
LA=AD:REM SAVE NEXT ADDRESS IN BUFFER 1
AD=OA: REM RESTORE AD FOR NEXT EXAMPLE

When defining LOGO STRUCTURES, the first parameter of the

@SDAT command should be either 0 or 1. A 0 indicates you are

finished, while a 1 means continue, I have more data to give.

And, because the character string data in LOGO' 5 ar,-· accessed by

the CHAR command (in much the same way as a string variable) ALL

LOGO structures must be stored in BUFFER 1 (system bank 1).

Remember. LOGO structures in BUFFER 1 only!

DJ CHARACTER FONT STRUCTURES

BASIC B.O has the capability of using virtually unlimited

fonts. These fonts can be defined with any standard character

editor used for the C64 or Cl28. They must be converted to the

proper BASIC B.O format for a CHARACTER STRUCTURE with the

utility program Font Converter supplied on your BASIC B.O disk.

Chapter Five

(37)
All this program does is add a small header file to the beginning

of the font so BASIC 8.0 can tell what kind of STRUCTURE it is.

(For information on file formats see the Appendix.) CHARACTER

STRUCTURES must be loaded into memory with the @LSTRUCT/@SEND

command. After that they are available whenever you need them.

Continuing our program examples above:

@LSTRUCT,6,a,9,AD,"FNT.TECH":REM STRUCTJ/,DRIVE#,BUFFER9,AD,name
AD=@SEND :REM Get the font, AD=next Address in BUFFER 9

E) BRUSH STRUCTURES

Perhaps the most useful type of STRUCTURE is the IlRUSH

STRUCTURE. This type allows you to @STASH and @FETCH a piece of

the screen, any size, back and forth from memory. Of course you

can also save it to disk, where it can be recalled as a BRUSH

with the @LSTRUCT, or even displayed directly with the @DISPLAY

command. BRUSHES can also be manipulated with the @CBRUSH

(ChangeBRUSH) command. This can make flipped, ,eversed or

mirrored images of your brush. Or use the @BRUSHl?l,THll command to

make a copy of a BRUSH as a PATTERN STRUCTURE.

@STASH,7,9,AD,O,O,lOO,lOO,O :REM STASH screen 0,0-100,100 a"
brush structure f7. Do not
compress the data.
AD=next BUFFER 1 address

@CBRUSH,7,0,0,1 :REM FLIP BRUSH IN MEMORY
@SSTRUCT,7,8,"BRUSH.TWO" :REM Prepare to save I:RUSH
@SEND :REM Save To Disk as BRUSH. TWO
AD=@BRUSHPATRN,7,8,9,AD :REM Make Pattern st:-,- ~ure #8
@FETCH,7 , 0,100, a : REM FETCH FLIPPED BRUSH TO .: ;;REEN

A BRUSH can be loaded to a STRUCTURE and saved frOM a

STRUCTURE. It can be returned to the screen with the @FETCH

command, or loaded directly to the screen from disk with

@DISPLAY. When loaded with the @DISPLAY command, the brush is

returned to exactly where it was stored from, or you can specify

the X and Y to load it to. Other areas of the screen are not

affected.
Chapter Five

(38)
CHAPTER SIX

ADDITIONAL BASIC B.O COMMANDS

BASIC 8.0 offers a number of other interesting advanced

commands. For example, if you have the extra 64K video ram

installed for the 8563 video chip (the new C128D comes with it

standard, older C128's do not) you can make use of the @SCROLL

command. @SCROLL allows you to move in one of eight directions

at any of 255 speeds and up to 255 units. The directions are up,

up/right, right, down/right, down, down/left, left and up/left.

The speed is from 0-254, where 0 is the fastest. Each unit of

speed adds a 0.0255 second delay between increments. The X

scroll unit is on the byte level, while the Y scroll unit is in

pixels. Or, by beginning your parameter list for SCROLL with

255, you can move directly to a specified scanline. Use @SCROLL

with virtual screens (screens wider than 640 or higher than 200)

to move around.

One very important aspect of any graphics system (language

or application) is in getting what is on your screen to a

printer. In order to make it easy, we have created install able

printer drivers that allow you to create a hardcopy of the

screen. The programmable command to do so is called HCOPY, and

just as BASIC B.O is very flexible, so is it's hardcopy

capabilities.

There are 11 different printers that are directly supported

by BASIC 8.0. The default (built in) is EPSON, but if your

printer is different merely load in one of the other drivers.

(See chapter on printers for instructions on installing a printer

driver.) Since the screen size you can use with BASIC B.O can

differ, and also since many printers have different dot densities

and different horizontal resolutions, HCOPY was designed to allow
Chapter six

(39)

you to print in a variety of different ways. The syntax of RCOPY

is:

@RCOPY,Secondary Address,Height (l-.),Density (1-7) ,Rotation Flag

The secondary address for printer bitmap mode differs from

printer to printer. (See chapter on BASIC 8.0 printer drivers

for secondary address of your printer.) The height flag is how

large to make your printout, with 1 the smallest and 4 very tall.

The density parameter allows you to change the dot density of

your printer, if possible. (Not all printers have more than one

density, but some like the EPSON and PANASONIC have seven

different settings. By setting to a larger density, you can

print an image smaller than it would have been in a lower

density.) Finally, the rotation flag allows you to rotate the

printed image 90 degrees. With some printers, like the Co~~odore

MPS 801 or Seikosha 1000, the image is always rotated because

these printers cannot even print 640 do~s per line (the smallest

horizontal screen resolution).

To make it possible for even more printers to be supported,

Chapter Eleven lists the assembly language source code f8r every

printer driver. Experienced programmers can use these ,3S a base

to develop even more printer drivers.

HOOSE, JOYSTICK and POINTERS

BASIC 8.0 also offers mouse and joystiCk control, along with

a very precise graphic pointer function. You choose between the

mouse (the 1351 proportional mouse, NOT the 1350 joystick mouse)

and a joystiCk with @MOUSE,l,DEVICE,X,Y[,Joystick speed]. This

activates the IRQ controller reading routine. As long as it

remains on it will then constantly update (internally) the

position of the mouse or joystick. You can then find the current
Chapter six

(40)

X and Y value with the @KOUSE function. It will return the X or

Y value, where it can be used to position the arrow with the

@PTR,l,%,Y,PTR DEF. command. For example;

@KOUSE,l,O,320,100

@MOUSE,l,l,320,100,2

@MOUSE,O
KX=@MOUSE,2,O
KY=@KOUSE,2,l

starts the mouse reader using the mouse
and positions it at 320,100
starts the mouse reader using the joystick
and positions it at 320,100 moving 2 pixels
turns off the IRQ mouse reader
returns the current mouse x position to MX
returns the current mouse y position to MY

The pointer function has three basic forms. One turns off

the pointer while the other two are used for positioning.

@PTR,O Turn off the pointer and restore the old image.
@PTR,l,KX,KY,PTR DEF (0-15) Turn on at MX,MY using the

pointer defintion given and 'floats" over bitmap.
@PTR,2,KX,KY,PTR DEF (0-15) Turn on at MX,MY using the

pointer definition given and draws on the bitmap

Programming the mouse/pointer system is quite easy. First

you turn on the proper mode (mouse or joystick) at the location

you want to start. Then just use the @MOUSE,2 comm3nd to find

the X and Y positions, and set the pointer position to those

locations. Here is a small example program that will initialize

the mouse, and move the pointer as you move the mouse.

10 TRAP 140:REM PRESS RUN/STOP KEY TO EXIT PROGRAM
20 @WALRUS,O:REM 16K KODE
30 @KODE,O:REM USE KODE ° SCREENS
40 @SCREEN,O:REK USE SCREEN 0, MONOCHROME
50 @COLOR,O,.,O:REK SET COLOR
60 @CLEAR,O:REK CLEAR SCREEN
70 @DRWMODA,l,O,O,O,O,O,O;@DRWMODB,O,O,O:REM JAM 1 MODE
80 KX=320:MY=100:REK INITIAL X,Y
85 OX=KX:OY=KY:REM SAVE VALUES
90 @KOUSE,l,O,KX,KY:REK USE 1351 MOUSE
100 @PTR,l,KX,MY,O:REM USE ARROW POINTER (0) AT MX,MY
110 KX=@KOUSE,2,O:MY=@MOUSE,2,l:REM FIND NEW MX,MY
115 IF KX=OX AND KY=OY THEN GOTO 110:REM ANY MOVEMENT?
120 @PTR,l,MX,KY,O:REM REPOSITION POINTER AT NEW MX,MY
125 OX=KX:OY=KY:REK UPDATE OLD VALUES
130 GOTO 110:REM CONTINUE TO CHECK FOR MOVEMENT
140 @PTR,O:@MOUSE,O:REM TURN OFF POINTER AND MOUSE READER
150 @TEXT:REM RETURN TO TEXT MODE

Another useful command is @FLASH. This command allows you

Chapter Six

(41)
to reverse a rectangular area of the screen, from 1 to 255 times.

It is very useful for bringing something to a users attention. If

you are in monochrome mode, it reverses the bitmap. If you are

in color mode only the color information is reversed (which is

very fast compared to the bitmap flash).

Another BASIC 8.0 command that is both exotic as well as

useful is the command @ZOOK. This command allows you to fetch an

uncompressed brush from memory as an enlarged version of the

brush. And it can do so in a number of different sizes.

Since BASIC 8.0 is a bitmap graphics language, it offers

very little for use in 80 column text mode. However, there are

two text commands. The first is @TEXT, which returns your

program to text mode from graphics mode. It also re-initializes

some of the various parameters back to their default values. For

example, @ANGLE is set to 0,0,0,0 and @SCALE is set to O.

The other text mode command is @FONT. This command allows

you to set the two character sets available in text mode to any

font you wish. Just load in the font as a structure and specify

in the @FONT command which structure,to use as a font. It is

downloaded to the 8563 chip, where it becomes available in text

mode. Once a @TEXT command has been issued, the standard

character fonts are restored, so it will be necessary to re-issue

the @FONT command.

Chapter Six

(42)
Chal?ter Seven

Making A D1stributable Disk
The Run-Time Module

The ability to give away (or sell) programs written with BASIC

8.0 centers around the RunTime Library supplied with your BASIC 8.0

system. When you first booted your original disk, you were offered

the option of making a Basic B.O Run Time Disk. If you have not yet

done so, you should get a blank disk and create one. If you have

already done so, make a backup of the Run Time Disk. It is this disk

that you are allowed to distribute.

The Run Time Disk is a autoboot disk, meaning it will load and

run when you boot the computer (if the disk is.in the drive). The

normal startup sequence will install the BASIC B.O Run Time System,

then load and run the WIOS WORKBENCH (see Chapter Nine). To use your

program under the WORKBENCH, save your program on the Run Time Disk

with a filename that starts with the letters BB. and is followed with

a filename less than 12 characters. For example, if your program is

called 'CHARTMAKER' you would save it with the name

BB.CHARTMAKER

on the WORKBENCH disk. When the WIOS WORKBENCH is automatically ran

on bootup, it will be able to find the CHARTMAKER program.

However, you may want to have your program be loaded directly,

bypassing the WI OS WORKBENCH. In that case, you will need to change

one of the programs on the Run Time Disk.

To do this, insert a your working copy of the Run Time Disk.

Save your program to this disk. Then load the program called:

STARTUP

and type LIST and press return. You will see the single line:

10 RUN "WORKBENCH"

To change the bootup sequence in order to autoboot your

Chapter Seven

(4 J)
BASIC 8.0 program, type the following line

10 RON "filename" {RETURN}

(the {RETURN} means press the RETURN KEY). The filename should

be the name of your program.

To make sure the new line has been entered correctly, type

LIST and then RETURN. You should see

10 RON "filename"

as the only line in the program. If it is wrong, retype the line

as instructed above and check it again. If it is okay, then

type:

SCRATCH "STARTUP" (RETURN)
ARE YOU SURE? Y {RETURN}

The C128 will ask:
You reply Y and press return

You have now erased the startup file. At this point you

need to save the newly modified (with your filename in place of

WORKBENCH) program as STARTUP. To do so type:

DSAVE "STARTUP" {RETURN}

You have now created a BASIC 8.0 Run Time Disk that will

automatically load and run your program. As a registered owner

of BASIC 8.0, you may give away this Run Time Disk, or sell it if

you wish. Remember, this is the only way you may give away

QKQS.rams using the BASIC 8.0 language!

Chapter Seven

(44)

Chapter Eight
BASIC PAINT

The 80 Column Color Paint Program

Along with all the added programming capabilities of BASIC

8.0, you also get a complete graphics application. This program,

written completely in BASIC 8.0, is called BASIC PAINT ((c) 1987

WALRUSOFT). BASIC PAINT has several very important uses. First

and foremost, it is meant to be a stand alone graphics paint

program, complete in every detail. You can use it simply to draw

or paint pictures for your amusement or as a means of artistic

expression. Secondly, it is meant to be an accessory to the

BASIC 8.0 programmer. You can use it to create pictures,

brushes, icons or patterns that can be used later in your own

BASIC 8.0 programs. And finally, BASIC PAINT is meant to be an

example of what you can do with the programming power offered by

BASIC 8.0.

As mentioned, BASIC PAINT offers all the standard computer

paint package graphic functions (freehand draw, line, box, circle

and polygon) found in most commercial programs. You can add

text, fill areas (with solids and patterns) and print your

pictures. But BASIC PAINT goes further than that. You can add

3D solids to your pictures, cut and paste to and froIT a

clipboard, zoom in for precise editing, and even lock your image

for later recall (lock acts like an oops function). You control

the program with a pointer using either a mouse or joystick, you

can change your pointer to eight different shapes, and can set

the drawing modes in many combinations of draw, erase, complement

and pattern. You can also draw using thick lines or very thin

lines, with the exact size being up to you.

BASIC PAINT works in all five graphic modes supported by
Chapter Eight

(45)

BASIC 8.0. You have your choice of monochrome and the four color

resolutions (8 x 16, 8 x 8, 8 x 4 and 8 x 2). And just like

BASIC 8.0, BASIC PAINT supports the 1700 and 1750 external ram

expansion modules. Even more exciting, if your C12B has the full

64K of video ram you can use BASIC PAINT to draw on several size

virtual vertical screens.

BASIC PAINT is designed to be simple to use, even intuitive

in nature. It is essientially a mouse driven program, controlled

by the mouse, the left and right mouse buttons and graphic icons.

(Icons are pictures that represent a particular function.) By

pointing to a icon and pressing the left mouse button (or the

joystick button) you select that icon's function. At times you

will want to indicate that you are finished doing something, or

perhaps you will want to change your mind and return to the

previous option. This is accomplished by clicking the right

mouse button (or the ESCAPE key if you are using a joystiCk).

This left button (for selection) and right button (for ESCAPE)

system becomes very natural after a while. In fact, if you are

using a mouse, the only keyboard input is when you are saving an

image or if you want to shear a box. (If you are using a

joystick the keyboard ESCAPE key is used instead of the mouse

right button.)

To use BASIC PAINT, simply insert the BASIC PAINT Work Disk

in your C128 and boot it, either by turning on the computer or

(if it is already on) by pressing the reset button. The program

will autoboot, and you will quickly be presented with a special

type of menu called a requestor (see Figure 1). This requestor

menu is requesting information on how your computer is equipped,

so BASIC PAINT will work best with your system.
Chapter E1ght

(You should

(46)

always keep your working copy of the BASIC PAINT disk in drive 8

when using it as it will often need to load requestors and menus

from the disk.)

Vid~o RaM: • iGK 0 G4k

SysteM RaM : • 128k 0 25Gk

Cont i nue II i ================:d:
Figure 1

The first thing to do is indicate what type of controller

you are using (see figure 1). If you have the 1351 mouse

(inserted in port 1 only), press M. If you are using a joystick

(inserted in port 2 only), press J. Once you have done so, you

will notice an arrow pointer appear on the screen. You can now

use your chosen control device to move this pointer, and the

select button (left mouse button or the joystick button) to

indicate your choices to the computer.

Next tell the computer how much ram your 80 column video

chip has installed. If your computer is a standard C128 ~hd has

not been modified, you have 16K. That is the default selection.

If your C128 has had the 64K video ram installed (the C12BD comes

with the extra ram), point to the 64K box and click the select

button (left mouse button). Notice how the box becomes black.

This indicates you have now selected 64K of video ram. (WARNING!

If you do NOT have 64K, it does no good at all to make this

choice and choosing it will cause the program to work

incorrectly.)

Next, choose the amount of system ram your C128 has
Chapter Eight

(47)

installed. If your computer does not have any extra ram you have

12BK, the default. If you have the 1700 expansion cartridge you

have a total of 256K, and if you have the 1750 cartridge you have

a total of 640K. Point to the appropriate box and click the

select button.

If you have made a mistake and selected the wrong options,

you can change them quite easily by simply pointing to the

correct box and clicking the select button. Once you have the

proper settings, point to the CONTINUE box and click the select

button, and these values will be used by BASIC PAINT during this

session.

Once you have selected the CONTINUE box, BASIC PAINT will

display a new requestor menu. Depending on your previous

choices, you will be offered a selection of graphic screen type

to choose from.
• &-18 X 288 IIOnochro~

o &-18 X i92 color 8 x is

o &-18 x m color 8 x 8

o &.f8 x i52 color 8 x ~

o G.f8 x i8~ color 8 x 2

~ -
Figure 2

If your system has 16K of video ram, the second requestor

menu (Figure 2) allows you to choose one of five different

screens. These are the same screens allowed in MODE 0 of BASIC

8.0. They differ on the size of the color cell and the total

size of the screen. (See Chapter Two for more information on
Chapter Eight

(48)

screens.) Choose the screen you wish to work with by pointing to

the proper box and clicking the select button, then click on the

CONTINUE box. You will then proceed to the main drawing screen.

I [J IIonochro';;-­

::::J 8 I 16 C,Q 1 or
ice x e Coior ,

1 ~8I~Color 1
~ 1 I c 8 x 2 Color I

II,con..,; nv..,:

Figure 3

If your system has the full 64K of video ram, you are also

presented with a requestor menu (Figure 3) asking for the screen

type, however no screen sizes are listed. Choose the screen type

you want, you will then be presented with a third requestor menu

that asks for the actual size of the screen you want. These

third menus (see Figure 4-8) offer screens greater than 200

pixels high, although only a viewport of 640 x 200 pixels is

visible at one time. When you are drawing the screen will

automatically scroll up and down to keep up with the mouse.

P\onochroMe

64B x 286

648 x 356

648 I 488

648 x S88

j~ 8x is Color

I I [J 64B. 286
64B x 4B6

648 • 666
,~

l~

1=

8x8Coior ,: ex4Coior

646 x zoe· i i =::; G48 x zoo
64B x 3BB ! I [J 648 • 386

~ 646 x 486 ! ::::::J 646 x 466

8 • 2 Color

'--' 64B. 26B

ii4B x JBB

::J 648 x 4B8

64B x S88

j ,
C 64B. 688

C 648 x 886

I ~ 64B x 786

j!ICont i n e':

[J 648 x 606 if i [J 648. 688

~_n_~ I "ve;,!~; ~ !rcon~ i nued i ~==:====' ileo-not .. n e'~!

Chapter Eight

(49)

Figure 4-8

At this point the screen will display the WALRUS logo screen

and indicate the amount of video ram you have choosen. It then

clears and the BASIC PAINT drawing screen is created.

Figure 9

This screen consists of the drawing area and a strip of

icons (pic~ures) at the top of the screen (Figure 9). Each icon

represents one or more graphic functions, and they can be

selected by pointing with the arrow and clicking the select

button. When additional choices are required, submenus will

appear. You can make the additional selections, or use the right

button to ESCAPE back one step. Once you have made your

selection, the icon strip disappears and the screen is made

available for your drawing activity. When you are finished with

that function, click the right button of the mOuse to escape back

to the rnenu(s) (or use the ESCAPE key if you are using the

joystick). Here is a description of each function.

FREEHAND DRAW

To draw in a freehand mode, move the pointer to the first

icon in the icon strip. The wiggly line represents drawing.

With the pointer on the icon, click the select (left mouse)

button. The icon strip will disappear, leaving the entire screen

available for drawing. To draw hold down the left mouse button

and move the mouse. A line will follow the pointer's tip. When

you wish to stop drawing, let off the button. You can then move

Chapter Eight

(50)
to another location and start drawing again, or click the right

mouse button (or ESCAPE key if using a joystick) to restore the

icon strip. You will notice that the lines you have drawn are

black on the grey screen. These are the default colors. You can

change them with the color icon (be sure and set the JAM options

in the drawmode icon properly).

LINE

The second icon represents the line function. To draw

lines, point to this icon and click the select button on your

controller. As before, the icon strip disappears. Point to

where you want the line to start and click the select button.

The pointer will disappear, leaving you with a flashing line. As

you move the mouse this line will follow you, a process called

rubber-banding. Move the tip of the line to where you want it to

end, and click

rubber-banding,

the

but

select button. The

will continue to flash.

line will quit

At this point you

can click the select button to accept this line, causing it to be

drawn in the current color and mode, or if you decide it is not

what you want you can click the right mouse button ano it will

disappear. You can then either draw another line, or click the

right button and escape back to the icon strip. You can also use

the right button to escape while actually rubber-banding the

line. You will notice that when you escape while rubber-banding

the pointer returns to the exact spot where you started the line.

And when you have actually drawn a line, it starts exactly where

the line ends.

BOX

Box allows you to draw rectangles and works very much like

the line function. Point to the box icon and click the select

Chapter Eight

(51)
button. The icon strip disappears, and you are free to move the

pointer to any spot on the screen. When you have the pointer

where you want one of the corners of the rectangle to be, click

the select button. Just as with line the pointer goes away, only

this time you have a box that rubber-bands, not a line. If the

starting location was not correct, click the right button to

escape and start the box again, otherwise move it's corner to

create the size and position you want. When it is just as you

want it, click the select button and again you have a flashing

box that is waiting for the select button to accept and be drawn

or the escape button to cause it to be erased. However, box has

a couple of extra features at this point. You can press the X or

Y key, and this will allow you to shear the flashing box in the

indicated direction. (Shearing means to move one side while

holding the opposite side still.) This allows you to create more

complex shapes. Once you have begun shearing you have the same

options as in normal box mode, that is to select or escape. Once

selected you can still escape and start over as before. When you

have finished drawing your boxes you can use the right button to

escape back to the icon strip.

POLYGONS

Figure 10

The circle icon represents the polygon menu. Select this

icon and a new submenu (Figure 10) appears. This submenu has six

icons, circle, ellipse, triangle, diamond, hexagon and octagon.

You can select one of these by pointing and clicking at the
Chapter Eight

(52)

desired object, or use the right button to escape back to the

icon strip.

If you chose circle, the icons disappear and you are free to

move anywhere in the screen. Place the pointer on the spot where

the center of the circle is to be and click the left button. The

pointer is replaced with a rubber-banding line. This line

represents the radius of the circle, which is the distance from

the center of the circle to its edge. When you have the radius

the size you want, click the left button and the circle will be

drawn over and over. If it is correctly sized and placed, click

the left mouse button, otherwise use the right button to escape

and start over. You can repeat this as often as you wish. When

you are finished, use the right button to escape back to the

polygon submenu, where you can select another shape or escape

again back to the main icon strip.

The other five shapes (ellipse, triangle, diamond, hexagon

and octagon) work somewhat differently. When they are selected,

you again point to where the center is to be and click the left

button. Only here, instead of a single line you get two lines.

These represent the two different radius required for these types

of shapes, the X radius and the Y radius. As you move the mouse

(or joystick) you will notice they each change in length. With a

little practice you can quickly become quite skilled at using

this technique for these complex polygons. And as always, use

the left button to select and the right button to escape back to

the polygon submenu and main icon strip.

SOLIDS

chapter Eight

Figure 11
The solids icon also represents a more complex submenu.

When the solid icon is selected, a submenu (Figure 11) is

presented that offers eight different shapes and two drawing

styles. The shapes are sphere, horizontal, vertical and topview

toroids, horizontal and vertical spools and horizontal and

vertical cylinders. The two style options on the right side of

the menu represent the type of texture (random or halftone). You

can change the texture freely from the menu by pointing and

clicking with the left selection button.

Sphere is controlled just like circle. Point to where the

center is to be and click the left button. The pointer is

replaced with a single line, (the radius). Move the line to make

the proper radius, then click the left button. A beautiful solid

sphere will be quickly drawn. Once it is finished, you can

create another or click the right button to escape back to the

solids submenu.

The other solids use the two line radius method. In the

case of the horizontal and vertical spools, cylinders and

toroids, they are fairly straight forward and easy. The topview

toroid also uses two lines, but in this case they represent the

inside radius and the outside radius. It is possible to select

it such that the outside radius is smaller than the inside, an

obvious impossibility. In that case the pointer appears as a

question mark for a couple of seconds, meaning essientially "Say

What?". Practice using the solids for a while and their use will
Chapter Eight

(54)

become quite clear and easy.

Use the right button to escape to the submenu, where you can

select a dif(erent shape or escape again to the main icon strip.

CUT

The icon shaped like a pair of sissors is used to cut a

rectangular area of the screen to the clipboard area, where it

can be copied (pasted) to another location, or saved to disk as a

brush (from the disk menu), or even used as a pattern for the

fill function. CUT does Dot erase the area you have selected.

To cut an area, select the cut icon and position the pointer

at one corner of the desired rectangle and click the left button.

The pointer is replaced with a rubber-banded box, which you then

use to enclose the area you want to put in the clipboard. Again

use the left button to select, and the box will be adjusted to

the boundaries required by the graphic mode you are in (color

modes always round up and down to the edges of the color cell,

and the rectangle must always begin and end on an even byte

boundary. For more information on this see GRID mode in the

drawrnodes section.) At this point you can accept by clicking

with the left button, or reject and escape with the right button.

Once you have selected, you can then escape back to the icon

strip, or replave the current contents of the clipboard with a

new object. You can only have one item in the clipboard at a

time.

P~STE

The paste jar icon is used to paste (copy) the contents of

the clipboard back on the screen. To use point to the paste jar
Chapter Eight

(55)

icon and click the left button. Then point to the position where

you want the upper left corner of the clipboards object to be and

click the left button to paste it on the screen. You can repeat

this as often as you ~ish, making many copies of a single object.

When you are finished, click the right button to escape back to

the icon strip.

When pas~ing while in the color modes, keep in mind that the

color memory of the object has been stored in the clipboard as

well as the bitnap. So if your pasted object overlaps upon an

area with a different set of coiors than that found in the

clipboard, ·the old screen colors in that area will be replaced

with those of the stashed object.

TEXT

Choosing the text icon loads another submenu. This one

offers a number of different fonts, as well as allowing you to

set the height and width of the font you are using. To select a

font, point to the one you want and click the select button. It

will be loaded into the memory of the computer where it can be

used. To change the height, point to the letters Ht and click

once. Then click on the up or down arrows to change the height.

To change the width, point to the letters Wd and click once.

Again, the arrows are used to increase or decrease the width of

the character.

If you have selected the special 160 column font, set your

width to o. (This is the only time the width should be less than

1.)

When you are ready to type your characters, point to the

word DRAW and click once. The menus disappear, and you can

position your letters with the mouse ~ointer or with the keyboard
Chapter E1qht

(56)

cursor keys. Wherever the pointer rests is the top of the

character cell. You may type whatever you wish. Pressing RETURN

moves the cursor down one line and flush,left on the screen (if

there is enough room to do so). To exit this mode press the

escape button. Remember, the text responds to the draw modes

DRAW and COMPLEMENT in the DRAWMODE submenu.

FILL

The FILL icon is used to paint an enclosed area with either

a solid color or the current pattern, depending on the drawmode

in use at the time of the fill action. To fill just point at the

icon and click with the select button. The icon strip disappears

and the pointer can be moved to any spot on the screen. Point to

a spot within the area to fill and click the select button.

(Remember to only fill a completely enclosed area, as it will

leak out and fill the whole screen!) The area will then be

filled. When it is finished you can repeat it again, or escape

back to the main icons.

ZOOM

The ZOOM icon (it looks like a magnifying glass) allows you

to zoom into a small area for editing. Point to it and click on

the select button. The icon strip is removed and you can then

move to the general area you wish to edit. Once there click the

select button and a box will appear. You can then move the box

to enclose the exact area you wish. Click the select button

again, and a ZOOM window will appear, and it will fill with the

magnified image of the smaller box's contents.

Once it is filled you can move the mouse to the points you

wish to edit and change them by clicking with the select button.

If the pixel is already on it is turned off, if off it is turned
Chapter Eight

(57)

on. The dot will be in the current color and drawmode. To

change these there are icons to change color and drawmode outside

the ZOOM window. Once you are finished editing, use the escape

button to close the ZOOM window. You can then ZOOM into another

area, or escape back to the main icon strip.

not work in a x 16 mo~e!

DRAWMODE

Figure 12

NOTE: ZOOM does

The DRAWMODE icon represents a second submenu (Figure 12).

Once selected this menu appears and you can select the functions

you want. One set of functions is called the COLOR JAMS. These

set the various JhH modes. JamO uses the color information found

on the screen, and it ignores your choice of colors in the icon

strip. Jaml uses your foreground color choice, but ignores your

background color. Instead it uses the background colors it tinds

in the area you are drawing in. JAM2 uses both of your current

color choices, foreground and background.

The other set of modes concern the type of bitmap drawmode

you wish.

GRID.

These are DRAW, ERASE, COMPlement,pattern,Trail and

Draw is the normal drawing mode. This simply means you want

to draw in normal mode using a solid line.

Complement mode produces a reverse image. The points that

Chapter Eight

(58)
are already off are turned on, those on are turned off. (You

will notice that the pointer also responds to this mode.)

Erase sets the mode to turn off all points that you draw on.

Use this mode to remove (unpaint) an area. If you want you can

change the pointer from the arrow to another defintion (from the

main icon strip) in order to make a larger eraser.

Pattern mode turns on and off the pattern drawmode. When

off all drawing and filling is done in solid mode. When on the

current pattern is used when drawing.

Trail mode is used when in freehand drawing. Instead of

drawing it leaves a trail of the current pointer definition.

Trail always uses the JAMO mode, regardless of the settings in

the JAM options.

Grid sets the drawing mode to a grid. The grid is always

8 pixels wide, and is as tall as the color cell size. This is

very useful when cutting and pasting, as it allows you more

precision when performing these functions.

One addition feature is found in the DRAWMODE menu. This is

the line height. You can change the line thickness by pointing

to the up or down arrows, changing the line size found in the

box.

LOCE

Lock

you have

allows you to store a copy of the screen in memory (if

the available memory free in the form of the 1700 or

1750 ram cartridges) in case you wish to restore it later after

making some change you don't like. Once a screen is locked, you

can restore it by choosing the CLEAR SCREEN option.

UNLOCE

Unlock turns off LOCK mode, allowing you to completely clear

Chapter Eight

(59)
the screen.

DISK

The DISK icon loads a submenu that makes available many disk

functions, as well as the ability to convert brushes in the

clipbudrd into patterns.

LOAD PICTURE Loads a directory of available brushes to
be loaded as pictures. Just point and
select, or return to the MAIN KENU.

SAVE PICTURE A input box opens where you type in a
filename to save the current picture to
the currently selected drive. The name
should start with 'PICT.'.

LOAD BRUSH Load a directory of brushes that can be
loaded into the clipboard as brushes, or
you can return to the MAIN KENU.

SAVE BRUSH A input box opens where you type in a
filename to save the current clipboard
to the currently selected drive. The name
should start with 'BRUS.'.

LOAD PATTERN Load a directory of patterns that can be
loaded into the pattern clipboard, or
you can return to the MAIN MENU.

SAVE PATTERN A input box opens where you type in
a filename to save the current pattern
clipboard to the current drive. The file
should begin with 'PATR. '.

BRUSHTOPATTERN This copies the contents of the brush
(CUT & PASTE) clipboard to the pattern
clipboard, where it can be used as a
pattern (if pattern is set in DRAWMODES)
or it can be saved as a pattern using
SAVE PATTERN.

DIRECTORY Loads a directory of all files on the
current disk.

CHANGE DEVICE Change your disk drive from drives 8-12.
CAUTION: BASIC PAINT requires the disk
with it's files and requestors to always
be in device 8. By changing the device,
you only change the input/output of user
created files (brushes, pictures and
patterns). When a menu requestor is
needed it will still be loaded from
device 8.

CHANGE DRIVE Switches between drive 0 and 1 for users
of dual drives. BASIC PAINT menu
reguestors will always be loaded from
dr~ve O.

PRINT

The PRINT icon displays a submenu that requests several

Chapter Eight

types of information.

which can be up to 4.

(60)
It asks for the HEIGHT of the printout,

It allows you to set the DENSITY of the

printout from 1-7. You can set the hardcopy to be rotated or

unrotated, and you can set the secondary address to whatever your

printer (and interface) requires for graphics screen dumps. And

it allows you to switch between the various printer drivers. (If

you change the printer type the appropriate driver will be loaded

from disk and installed.) When you have the settings you want

press the ESCAPE button and you will be presented with a small

requestor t. ,,,: simply says PRINT. If you still want to print,

point at i~. ,IG ,:l1.cy. the select button. (Make sure you have your

printer hooked up and turned on.) If you wish to change your

mind click the ESCAPE button and you will abort the printing

process. The next time you return to the PRINT submenu it will

remember your last settings.

See Chapter 11 on printers for information on your

specific printer.

COLOR

Colors are set by the FG/BG color box. To chpnge these

colors, point at the top of the box (for ForeGround) or the

bottom (for BackGround) and click the select button. If you are

using monochrome, the entire display will change as a result. If

you are in color mode, only the contents of the color box will

reflect the new colors. However, if you draw (while in JAM1 or

JAM2 DRAWMODES) you will use these selected colors.

CLR

The CLR icon is used to clear the display. If in color mode

it clears the image using the current colors for foreground and

background. However, if the screen has been LOCKed, clicking on

Chapter Eight

(61)
clear will simply restore it to the LOCKed image.

EXIT

The EXIT icon will open a small window in the upper left

side of the screen. You may exit the program completely start it

again (perhaps to draw in a different mode). Or, if you change

your mind you can click the ESCAPE button and return to drawing.

Finally, if you are at the main icon strip there are a

couple of additional features you can access from the keyboard.

1) If you are using a joystick, you can change your drawing

speed by .pressing the +/- keys. (The faster you draw with the

joystick, the coarser the resolution.)

2) You can change the pointer to one of eight definitions

by pressing the ALT key and one of the keys 0-7 (at the same

time) . There are several interesting shapes, some of which you

may prefer to the arrow.

If your pointer seems to disappear when it is inside a solid

color area, remember it is NOT a sprite. It shares the same

color memory as the image it rests upon. To make it always

visible, set the draw mode to COMPo However, when drawing the

complement mode draws on areas where the bitmap is empty, and

reverses where it is already on. COMPLEMENT mode is not always

the best choice when drawing, but it does offer some interesting

effects.

If you have questions about BASIC PAINT's screens and modes,

see Chapter 2 for further information.

Chapter Eight

WIOS WORKBENCH

(62)
Chapter Nine

WI OS WORKBENCH
And Other supplied utilities

The WIOS (Walrusoft Icon Operating system) WORKBENCH is

really nothing more than ~ oASIC 8.0 program. It uses a few of

the new commands, along with some standard BASIC 7 commands, to

emulate the increasingly popular graphics user interface. It

will load and run any program written in BASIC 8.0 that starts

with the letters B8. and are followed by a filename that does not

exceed 12 characters.

The WIOS WORKBENCH supports up to 4 disk drives, including

the 1541, 1571 and 1581 drives. When it is first run it checks

to see how many disk drives are present, then puts up on the

screen a simple requestor that asks if you are using a mouse

(port 1) or a joystick (port 2). Press the appropriate key (M or

J) and you will then see one or more disk icons labeled DRIVE N

(N is 8-11). The arrow pointer is also active. By moving the

control device (mouse or joystick) the pointer will move. To see

the contents of a drive, move the pointer to the drive you want

and press the left mouse button (or the joystick firebutton).

(Make sure there is a disk in the drive!)

Once you have pressed the button, a window will open and

some brief disk activity will occur. If any files are found

(that start with B8.XXXXX) the name of the file and a small icon

that looks like a flowchart is shown in the window. A total of

tern files can be seen in the window at one time. If there is

more than 10 files, you can see them by putting the arrow pointer

on the little scroll arrows (at the bottom of the window) and

clicking the left mOuse button (or joystick firebutton). If

Chapter Nine

(63)
there are any more files, the screen will shift and the new files

will be displayed. To move back the other direction, click on

the other scroll arrow. If you see the program you want, just

point to it and click the button and it will load and run.

If the file you want is not there, point to the close gadget

in the upper left corner of the window (NOT THE SCREEN!) and

click the button. This will instantly close the window. You can

then point to another disk icon, or remove the disk from the

drive and insert another and repeat the process.

If you want to exit the WIOS WORKBENCH, use the close gadget

in the upper left corner of the screen. Clicking on this gadget

will close the screen and return to text mode. If you want to

run it again, insert the disk with the WORKBENCH and type:

RUN "WORKBENCH"

The WORKBENCH program, like many of the supplied programs

written in BASIC 8.0, is meant to be both useful and instructive.

It is a real (although somewhat limited) graphic interface. It

allows a user to load BASIC 8.0 applications quickly and easily,

ev~n if they don't even know how to find a directory by the

normal methods. For that reason, it is the standard startup

program on your BASIC 8.0 RUNTIME DISK (It is also on the BASIC

8.0 WORK DISK). All you (the BASIC 8.0 programmer) have to do to

share your programs is to DSAVE them to the runtime disk with the

name B8.XXXXX and the WORKBENCH will allow users to simply boot,

point, click and go!

However, like all the supplied BASIC 8.0 programs, the

WORKBENCH is meant to be instructive. It demonstrates many

aspects of programming in BASIC 8.0, and is a good place to look

for examples of using the language.

Chapter Nine

(64)

BASIC 8.0 utilities
PICT CONVERTER/FONT CONVERTER/LOGO MAKER

This,is a set of utility programs that are used for various

special functions.

The PICT CONVERTER allows you to convert pictures made with

ULTRA HIRES (a early graphics language for the 80 column C128) to

BASIC 8.0 format.

The FONT CONVERTOR will convert a standard 40 column font

created with any C64/C128 font editor to the BASIC 8.0 structure

format. The font must be a simple binary file. Once converted,

it can be loaded with the @LSTRUCT command in BASIC 8.0 programs.

The LOGO MAKER utility allows you to make LOGO structures

that can be loaded directly with the @LSTRUCT command. Just

follow the prompts and it will do all the work of creating your

LOGO.

Chapter Nine

(65)
CHAPTER TEN - THE BASIC 8.0 COMMAND ENCYCLOPEDIA 04/10/87

SYNTAX:

Angle will perform a rotation of how your object (line,
box, circle, dOL and arc) is viewed around the X,Y,Z axis.
Your data remains unchanged, but the result is one of a 3D
transformation around the given axis in the given rotation
sequence. This rotation occurs when you render graphics.

@ANGLE,X angle, Y angle, Z angle, Rotation Sequence

X angle -360

Y angle -360

Z angle -360

Rotat.ion Sequence

Sequence t

o
1
2
3
4
5

to

to

to

360

360

360

0-5

X angle of rotation

Y angle of rotation

Z angle of rotation

Order in which rotation about the
various axis is performed. Different
sequences give dIfferent results. If
rotation sequence is greater than 5
than rotation sequence defaults to O.

Rotation Sequence

XYZ
XZY
YXZ
YZX
ZXY
ZYX

Chapter Ten - Basic 8.0 Encyclopedia

(66) ~
Used to draw ellipse, arcs, polygons, pie wedges, subtended arcs ~

SYNTAX:

@ARC,Center X,Center Y,Center Z,X radius,Y radius, Starting angle,
Ending angle,Increment,Thickness,Subtend Flag

center X - 0-65535
Center Y - 0-65535
Center Z - -32768 to 32767

X center of arc
Y center of arc
Z center of arc

X radius 0-65535
Y radius 0-65535

radius of arc in horizontal direction
radius of arc in vertical direction

Starting angle -36C to 360
Ending angle -360 to 360

angle at which to start arc
angle at which to end arc

Increment 1-180
1-8
30
45
60
90

120

smoothness of
very smooth
12 sides
8 sides
6 sides
4 sides
3 sides

the arc (angle between lines)

Thickness - 0-65535 Number of times the @ARC is drawn stepping
by the value defined by the @GROW command.

Subtend Flag - 0-1 0 do not sUbtend arc e
non 0 = draw lines from starting and ending angle

to center of arc.

ARC is rotated, scaled and clipped (if necessary) before being drawn.

Chapter Ten - Basic 8.0 Encyclopedia

e (67)
@BOX Draw a box or rectangle

SYNTAX:

@BOX,Xl,Yl,Zl,X2,Y2,Z2,Shear direction, Shear value,Thickness

Xl 0-65535 Corner 1 X coordinate of box.
Yl 0-65535 Corner 1 Y coordinate of box.
Zl - -32768 to 32767 Corner 1 Z coordinate of box.

X2 0-65535 opposite diagonal corner X coordinate of box.
Y2 0-65535 opposite diagonal corner Y coordinate of box.
Z2 - -32768 to 32767 opposite diagonal corner Z coordinate of box.

Shear direction 0-2 O=no shear
l=X shear (move corners 3&~ right or left)
2=Y shear (move corners 2&3 up or down)
3=X & Y shear
4 or greater produces a value of 0-3, depending

on the valueAND3.

Shear valu~ -32768 to 32767 number of pixels to move the affected
corners depending on direction of shear.

Thickness - 0-65535 Number of times the box is drawn stepping
by the value defined by the @GROW command.

BOX is rotated, scaled and clipped (if necessary) before being drawn.

Chapter Ten - Basic 8.0 Encyclopedia

(68) ~
@BRUSHP~TRN Convert a brush to a pattern. Allows any piece of a screen ~

to be used as a pattern for the paint command.

SYNTAX:

@BRUSHPATRN,Brush Structure I, Pattern Structure I, Buffer t, Address

Brush Structure ~
Pattern Structure
Buffer #
Address

- Brush • to convert to pattern
- Destination pattern structure 0-191
- Buffer to store the structure
- Address in Buffer for pattern

@BRUSHPATRN works on any uncompressed brush that is no more than
255 bytes (2040 pixels) wide and 255 scan lines (pixels)
deep. If the brush is color, the pattern is color.

A=@BRUSHP~TRN,0,1,2,102.
IF A=-l then wrong structure ty~e or brush is compressed.
ELSE A=next address in the dest1nation pattern buffer.

Chapter Ten - Basic B.O Encyclopedia

~@BUFFER
SYNTAX:

(69)
Defines an area in each bank to be used as data storage of

Structures.

@BUFFER, Buffer t, Beginning Address, Size

Buffer # 0-9
o
1
2-9

Indicates which of the 10 banks to use
System Ram Bank 0
system Ram Bank 1
Expansion Ram Banks 0-7

* Buffer numbers greater than 9 default to 9. *

Beginning Address

Size 0-65535

0-65535 Indicates where BUFFER will begin
in designated bank.

Indicates the amount of continuous ram
to be used as a BUFFER.

NOTE: @BUFFER doesn't check if size is 9reater than the amount
left after the beginning address 1S defined.

For example:
@BUFFER,1,32000,65535 Buffer starts at 32000 for 65335 bytes
This will give unpredictable (and probably unpleasant) results

Chapter Ten - Basic 8.0 Encyclopedia

(70)
@CBRUSH change a non-compresse~ BRUSH in memory

SYNTAX:

@CBRUSH,STRUCTURE _,REVERSE, REFLECT, FLIP

Structure ~ 0-191 Number of STRUCTURE with BRUSH data

REVERSE 0-1 0 No Reverse
1 Reverse

REFLECT 0-1 0 No Reflect
1 Reflect

FLIP 0-1 0 No Flip
1 Flip

Once a BRUSH is modified with @CBRUSH, you can @FETCH it to the screen
in its new form. You can combine the commands to do several
actions at once.

If structure is wrong type or compressed, -1 is returned.

ex., e=@cbrush,structuret,reverse,reflect,flip

Chapter Ten - Basic 8.0 Encyclope~ia

(71)
outputs a text string to the 8563 bitmap screen.

SYNTAX:

@CHAR,Structuret,Column,Row,Height,width,Direction,"Character string"

Structure#

Column
Row
Height
Width

Direction

String

0-191

254

255

0-255
0-819
1-16
0-16

indicate a ram resident font
in a user defined structure.
indicates uppercase/lowercase
ROM font.
lndicates uppercase/graphics
ROM font.
Horizontal column number
Vertical scan line (pixel)
height of character
Width of character
o indicates 160 col char set
Values greater than 16 default
to 16.

0-7 Indicates direction to print
o Print up
1 Print up & right
2 Print right
3 Print down & right
4 Print down
5 Print left & down
6 Print left
7 Print left & up
Greater then 7 becomes 0-7

Text string to print.
string can contain special
control codes embeded within
the character string to be
printed. These control
codes are created by ~ressing
the CTRL key and the lndicated
letter.

CONTROL CODES

CTRL-B Blank cell under character
CTRL-I Inverse cell (AND) with character
CTRL-O Overwrite cell (OR) with character
CTRL-X Complement cell (XOR) with character
CTRL-F Flip character upside down (Toggle)
CTRL-P Pattern character (Toggle)
CTRL-U Underline character (Toggleo
CTRL-Y+ Rotates character left 90 degrees
CTRL-Y- Rotates character ri9ht 90 degrees
CTRL-Y Resets character uprlght
CTRL-Z Mirror Image character (toggle)
CTRL-RVS ON Reverse on
CTRL-RVS OFF Reverse off
COLOR CTRL CODES
CTRL-C By itself turns Jam 0 color control on
CTRL-cForeground Color Sets character color (Jam 1)
CTRL-CForeGroundBackground Color This is Jam 2 mode.
Foreground or Background color is set by pressing

Chapter Ten - Basic 8.0 Encyclopedia

(72)
the CTRL Key or CBK Key and the approriate color key.

CTRL-Cursor

SHIFTED CLR

HOME

Up,down,left,right
These work on a 8 X 8 cell only
Clears screen with last FC/BG
colors.
Places cursor at 0,0 position
in window.

FULL CHARACTER WRAP IS SUPPORTED IN OUTPUT WINDOW IN ALL DIRECTIONS.

Chapter Ten - Basic 8.0 Encyclopedia

~@CIRCLE
SYNTAX:

Draws a fast circle.
(73)

@CIRCLE,Center X,Center Y,Center Z,Radius,Thickness

Center X - 0-65535
Center Y - 0-65535
Center Z - -32768 to 32767

X center of circle
Y center of circle
Z center of circle

Radius 0-65535 radius of circle

Thickness - 0-65535 Number of times the circle is drawn stepping
by the value defined by the @GROW command.

CIRCLE is rotated, scaled and clipped (if necessary) before being drawn.

The @CIRCLE command produces a symetrical circle, but in SCALE 0 it
will appear to be an ellipse (due to the unsymetrical y direction) .
Setting SCALE to 1 or 2 will allow you to make a proper circle. Or
use @ARC with the x radius and y radius adjusted accordingly.

Chapter Ten - Basic 8.0 Encyclopedia

(74)
@CLE~R Clear the bitmap screen

SYNTAX:

@CLEAR,Bitmap Fill Value[,Background Color, Foreground Color]

Bitmap Fill Value - 0-255
o
1

255
2-254

Fills bitmap area with given value
clear window
Only the windows color inforrnatio~
is affected, bitmap image is untouched.
solid window
various vertical striped windows result

Color parameters are optional. It omitted current colors are used.

Background Color 0-15 Sets Background color

Foreground Color 0-15 Sets Foreground color

If a window was opened with the border flag set, every time the
window is cleared the border is drawn in the current drawrnode on the
inside boundaries of the window. This will continue to occur until
the window is closed.

Chapter Ten - Basic 8.0 Encyclopedia

e (75)
@COLOR Defines colors for foreground, background and border

SYNTAX:

@COLOR,background color, foreground color, outline (border) color

Background color

Foreground color

Outline Color

0-15 See color table

0-15 See color table

0-15 See color table

NOTES: Outline color achieved only in multicolor modes.

COLOR TABLE
o Black
1 Dark Grey
2 Blue
3 Lite Blue
4 Green
5 Lite Green
6 c¥an
7 Ll te cyan
8 Red
9 Lite Red

10 Purple
11 Lite Purple
12 Brown
13 Yellow
14 Lite Grey
15 White

If using monochrome mode the effect of the @COLOR command will be
to change the display colors immediatly. In color modes the border
will change at once, but only subsequent graphic commands will use the
new colors.

Chapter Ten - Basic B.O Encyclopedia

SYNTAX:

(76)
@COPY moves a rectangular area of screen to any other defined
screen area. It uses the 8563 block write capabilities, and
is very fast. It works on the column (8 ~ixel) level
horizontally and scan lines (pixels) vert1cally when in
monochrome. When in color the y values are adjusted to the
color cell size.

@COPY,Source Screen,Start X, start Y,DX,DY,Destination Screen,EX,EY

Source Screen

Start X

Start 'l

DX

DY

0-7 as defined by @MODE or @SCRDEF

0-2047 Defined as pixels, but rounded down
to nearest column.

0-819 Defined as scan lines (pixels) but
rounded down to color cell.

Distance in pixels, rounded up to columns

Distance in scan lines (pixels) rounded up
to next color cell.

Destination Screen : 0-7 as defined by @MODE or @SCRDEF

EX Ending X at destination screen, rounded down
to nearest column

EY Ending 'l at destination screen, in scan lines ~
(pixels) _

•••• NOTE •• ** @COPY WILL NOT WORK RELIABLY WHEN VIEWING A
VIRTUAL HORIZONTAL SCREEN GREATER THAN 640 PIXELS.
YOU MAY USE @COPY ON A VERTICAL VIRTUAL SCREEN,
BUT @COPY WILL ONLY WORK ON VIRTUAL HORIZONTAL
SCREENS IF YOU ARE VIEWING A NON-VIRTUAL
HORIZONTAL SCREEN. FOR EXAMPLE, IF YOU MAVE
TWO SCREENS, ONE TMAT IS A HORIZONTAL VIRTUAL
OF 1280 X 200 AND ANOTHER THAT IS 640 X 400
VERTICAL VIRTUAL. YOU CAN @COPY ON THE 1280 X 200
IF YOU ARE VIEWING THE 640 X 400. ATTEMPTS TO
@COPY ON THE 1280 X 200 WHILE VIEWING IT WILL
CAUSE THE COPIED BITMAP TO BE DISTORTED. THIS
IS DUE TO A BUG IN THE 8563 ADDRESS INCREMENT
PER ROW REGISTER.

IF START X,Y PLUS DX,DY IS OUT OF BOUNDS THEN
SOURCE RECTANGLE COPIED IS CLIPPED. IF END X,Y
PLUS DX,DY IS OUT OF BOUNDS THEN DESTINATION
RECTANGLE IS CLIPPED, AND X,Y,DX,DY,EX,EY ARE
SCALED IF NECESSARY.

Chapter Ten - Basic 8.0 Encyclopedia

@CYLNDR Draw solid cylinder
(77)

SYNTAX:

@CYLNDR,X,Y,Radius,Haltlen,View

X
Y

Radius
Halflen -
View

O-XMax
O-YMax
1-255
1-128
011 type of cylinder
o horizontal
1 vertical

Chapter Ten - Basic 8.0 Encyclopedia

(78)
Read a directory entry
Requires considerable setup from basic

SYNTAX:

L=@DIR$

@DIR$ returns a string to the first variable in your
progzam. The variable must be a string type. @DIR$ returns a
value equal to the length of the string found. You must use the
LEFT$(VAR$,L) to remove any trailing null values. Here is an
example routine that will search the directory for all BRUS.
files.

VARIABLE DESCRIPTIONS

dn=device#
sd=drive side (0 or 1)
dp$=directory pattern to seek
de=directory index variable = ends up as last index in de$()
de$=directory entry variable ••• This must be first variable

in your progr2IJII.

10 de$=" ": rem de$=16 spaces
20 dim de$(244):rem maximum number of possible files
30 dp$="brus.":rem look for brush files
40 dn=8:sd=O:rem drive 8, side 0
50 de=O:rem number of directory entries
60 open 3,dn,O, .. $.. +mid$(str$(sd),2)+ .. : .. +dl?$+ :rem open file
70 l=@DIR$:rem 1 is the length of the str1ng now in deS
80 if st<>o then 110
90 de$(de)=left$(de$,l)

100 de=de+1:qoto 70
110 close 3
120 rem I?rint out all found entries
130 for 1=0 to de:print de$(i):next i

The pattern used in the open command is a wildcard used to
search for specific files. To get all the files on a directory,
just use the $ as the search string. The variable sd is used in
case of a dual drive. And the array used to store the filenames,
DE $ (244) is d imens ioned to the number 244 in order to work with
the 1581 disk drive, which can store a larger number of file
entries than the 1541 or 1571 disk drives (144 each).

Chapter Ten - Basic 8.0 Encyclopedia

_ @DISPLAY

SYNTAX:

(79)
Recalls a @STOREd screen or brush to the designated screen
at the location from which it was stored or a specified
location.

@DISPLAY,SCREENt,DEVICE t,DRAWMODE,"FILENAME"[,X,Y]

SCREEN# The number of the screen the file is to be
loaded to. It does not have to be the screen
you are currently viewing.

DEVICE # - The drive number you are using, ex. 8
DRAWMODE - 0-3

o Erase under (replace)
1 Merge with (OR)
2 Common (AND)
3 Complement (XOR)

FILENAME - The name of the screen or brush to load. It will
be loaded to the area of the screen it was saved
from (ie., the same X,Y coordinates).

X,Y Optional screen locations to display brush to.

NOTE: If you use the optional X,Y parameters for displaying a brush to a
position other than the default values, there is one thing to watch for.
If Y is greater than the original Y it was saved from, (0 in the case of a
picture, the Y hotspot in the case of a brush), then THERE IS NO CLIPPING
PERFORMED IN THE Y DIRECTION!. So be sure your brush or picture will fit

_ in the area and not overrun the bottom of the current screen display. If
it does, unusual (and probably visually unpleasant) screen effects occur.
This will happen only with @DISPLAY.

Chapter Ten - Basic B.O Encyclopedia

(80)
@DOT Plots a single pixel in 3 space

SYNTAX:

@DOT,X,Y,Z

X 0-65535 X coordinate of point. Highest visible X is
equal to Xmax of virtual screen, or Window width.

Y 0-65535 Y coordinate of point. Highest visible Y is

z
equal to Ymax of virtual screen, or Window depth.

-32768 to 32767 Z coordinate of point. Z value of 0 is
the plane of the screen. Positive values
are directed into the screen, while
negative vales are directed towards the
Vlewer.

DOT is rotated, scaled and clipped (if necessary) before being drawn.

Chapter Ten - Basic 8.0 Encyclopedia

~ (81)
DRWMOD TWo Commands to define global drawing modes to be used

with graphic commands.
SYNTAX:

@DRWMODA,Jam,Inversevideo,comp1ement,undraw,pattern,Merge,C1ip
@DRWMODB,zview,Unplot1ast,Unplotvertex

Jam 0-2 Updates color memory when drawing on a color screen.
o Uses foreground/background colors found in cell. (Fastest)
1 Uses background color in cell and foreground color set

by @COLOR command.
2 Uses foreground/background colors set by @COLOR command.

InverseVideo

Complement

Undraw

Pattern

Merge

0-1 Reverses colors set by Jam option.
o off
1 on

0-1 Turns on XOR mode. Pixels on are turned off,
pixels off are turned on.

o off
1 on

0-1 Turns on erase mode. Actually unplots all
pixels.

o off
1 on

0-1 Uses previously defined pattern when drawing.
o off
1 on

0-1 Merge pattern with screen using OR mode,
pixels on are unaffected.

o off
1 on

Clip 0-1 Turns on and off global screen/window clipping.
o qn
1 off

NOTE The default is 0, CLIPPING ON. Turn it off for
an increase in drawing speed.

***** DRWMODB values may be used in any combination *****
Zview 0-1 Turns on either parallel or perspective 3D

Unplotlast

Unplotvertex

o Perspective on (objects drawn toward vanishing
point appear smaller as they approach it).
Parallel on. Retains object shape and size but
it is offset based upon Z coordinate.

0-1 Unplots last iteration of a multi-height
drawing of a graphic primitive (i.e., lines,
circles, boxes etc). Used to make 3D bars
from boxes.

o off
1 on

0-1 Unplots vertexs of graphic primitives (i.e.,
circles, arcs, boxes etc) Also used to
give 3D appearances of bars, tubes etc.

Chapter Ten - Basic 8.0 Encyclopedia

(82)
To recall a @STASHed area to the display screen.

SYNTAX:

@FETCH,STROCTORE',X,Y,DRAW MODE

STRUCTURE #
X

y

Draw Mode

- 0-191 The structure # used when @STAsHing
The screen X location to recall the
BRUSH to. X is rounded down to the
start of the current byte.
The screen Y location to recall the
BRUSH to. Y is rounded up to the top
of the current color cell.
0-3
o Erase under (replace)
1 Merge with (OR)
2 Common (AND)
3 Complement (XOR)

Chapter Ten - Basic 8.0 Encyclopedia

(83)
~@FLASH Reverse a rectangular area of the screen 1-255 times

SYNTAX:

@FLASH,X,Y,DX,DY,Number Of times to flash[,FAST]

X - Screen X 0-639
Y - Screen Y O-Ymax

OX - Number of pixels wide (X+OX)<640
DY - Number of pixels down (If using color, rounded up

to color cell)
Number - Number of times to reverse the rectangle

1-255
FAST 0-1 OPTIONAL PARAMETER (DEFAULT IS 1)

WARNING

o No fast FLASH, use bitmap regardless of graphic
mode.

1 Use fast FLASH, means reverse color cells only
when in color graphic mode.

.*** •• @FLASH, like @COPY will not work on a
horizontal virtual screen. The screen
must be 6~0 pixels wide, no wider. Y depth
is irrelevent.

Chapter Ten - Basic 8.0 Encyclopedia

SYNTAX:

(84)
Loads a custom font to 8563 chip ram for use on the text screen. ~
Two complete fonts can be resident at one time (512 total chars). ~

@FONT,Charset .,structure f

Charset #

Structure #

0-1 Indicates which character set to replace
(Character set consist of 256 characters)
Value greater than 1 defaults to 1

0-191 Indicates the data structure that contains
the ram resident character font data.

254 Uppercase/Lowercase ROM font in bank 14
255 Uppercase/Graphics ROM font in bank 14

Chapter Ten - Basic 8.0 Encyclopedia

(85)

@GROW Step value for the X, Y and Z axis when using the multidrawing
(thickness) parameter of the graphic drawing commands. Minus value
indicates negative direction.

SYNTAX:

@GROW,X step, Y step, Z step

X step -32768 to 32767 Step value in X direction (i.e.,
left and right). A value of 1
indicates a solid line, n>l steps
lines by n.

Y step same as X step except up and down

Z step same as X step except towards or away from viewer.

Chapter Ten - Basic 8.0 Encyclopedia

(86) _
@HCOPY Print a hardcopy of the current screen on a dot matrix printer. ...,

SYNTAX:
@HCOPY,Sec Address,heiqht,density,rotation

Sec Address
Heiqht 1-4
Density 1-7

Rotation 0-1

See chapter on printer drivers for specifics
Heiqht of printed output
Allows for variable densities, if printer

supports different densities. See chapter
on printer drivers for specific capabilities
of supported printers.
o means no rotation
1 means rotate 90 deqrees. Some printers

(like MPS 801) are ALWAYS rotated.

Chapter Ten - Basic 8.0 Encyclopedia

(87)
@LINE Draw a line in 3 space

SYNTAX:

@LINE,Xl,Yl,Zl,X2,Y2,Z2,Thickness

Xl 0-65535 Starting X coordinate of line.
Yl 0-65535 Starting Y coordinate of line.
Zl - -32768 - 32767 Starting Z coordinate of line.

X2 0-65535 Ending X coordinate of line.
Y2 0-65535 Ending Y coordinate of line.
ZZ - -32768 - 32767 Ending Z coordinate of line.

Thickness - 0-65535 Number of times the line is drawn stepping
by the value defined by the @GROW command.

LINE is rotated, scaled and clipped (if necessary) before being drawn.

Chapter Ten - Basic 8.0 Encyclopedia

(88)
@LOGO Draws a 1090 using the @CHAR command. LOGO screen position is

defined wlthin the LOGO itself.

SYNTAX:

@LOGO,structure number

Structure number 0-191 selects which structure to use as @LOGO data.
If Structure is of wrong type it returns a value of -1

example A=@LOGO,STRUCTURE Number
IF A=-l THEN ERROR IN STRUCTURE TYPE

Because LOGO uses the CHAR command, (which qet string data from
the varia~le bank 1) all LOGO structures MUST be in BUFFER 1
(system Bank 1). Use the @BUFFER command to define a buffer
in bank 1.

Chapter Ten - Basic 8.0 Encyclopedia

(89)
@LSTRUCT Loads a structure into memory

SYNTAX:

@LSTRUCT,STRUCT " DEVICE ',BUFFER ',BUFFER ADDRESS,FILENAME

STRUCT # - 0-191
DEVICE # - 8-11
BUFFER # - 0-9
BUFFER ADDRESS - 0-65500
FILENAME - name of structure on disk you want to load

.*. @LSTRUCT MUST BE FOLLOWED BY @SEND .**

Chapter Ten - Basic 8.0 Encyclopedia

(90)
Specify's which of the four group of predefined screens

(graphic modes) to be used as display areas. For unexpanded
8563 chip ram (16K) only MODE 0 (default) is available.

SYNTAX:

@MODE,mode'[,Inter1ace Flag)

Mode# 0-3 Which of the 4 screen sets to use

Interlace Flag - 011
o
1

Interlace option [Optional parameter
No Interlace Sync
Use Interlace Sync (Not all monitors
can display interlace sync.)

MODE' 0-3

0 For use with 16K or 64K chip ram Mixed Types

NOTE *** only 1 screen is available at a time in Mode 0

@SCREEN,O - 640 X 200 Monochrome screen
@SCREEN,l - 640 X 192 Color 8 X 16 cell
@SCREEN,2 - 640 X 176 Color 8 X 8 cell
@SCREEN,3 - 640 X 152 Color 8 X 4 cell
@SCREEN,4 - 640 X 104 Color 8 X 2 cell
@SCREEN,5 - 640 X 176 Color 8 X 8 cell interlaced
@SCREEN,6 - 640 X 152 Color 8 X 4 cell interlaced
@SCREEN,7 - 640 X 104 Color 8 X 2 cell interlaced

1 For use with 64K chip ram only - Mixed Types

NOTE *** SCREENS 0, 1, and 2 can be used at the Sal!le time, or
SCREENS 0, 1, and 3 can be used at the Sal!le time, or
SCREENS 4, 5, and 6 can be used at the Sal!le time, or
SCREEN 7.

@SCREEN,O - 640 X 200 Monochrome
@SCREEN,l - 640 X 200 Color 8 X 8 cell
@SCREEN,2 - 640 X 200 Color 8 X 2 cel·~

@SCREEN,3 - 640 X 300 Monochrome Virtual
@SCREEN,4 - 640 X 200 Color 8 X 8 cell
@SCREEN,5 - 640 X 200 Color 8 X 8 cell
@SCREEN, 6 - 640 X 200 Color 8 X 8 cell
@SCREEN,7 - 640 X 728 Color 8 X 8 cell Virtual

2 For use with 64K chip ram only

*** NOTE .** SCREENS 0, 1, 2 and 3 can be used at the same time, or
SCREENS 3, 4 and 5, or
SCREENS 4, 6 and 7, or

@SCREEN,O - 640 X 200 Monochrome
@SCREEN,l - 640 X 200 Monochrome

Chapter Ten - Basic 8.0 Encyclopedia

-

••• NOTE •••

(91)
@SCREEN,2 - 640 X 200 Monochrome
@SCREEN,3 - 640 X 200 Monochrome
@SCREEN,4 - 640 X 200 Color 8 X 2 cell
@SCREEN,5 - 640 X 200 Color 8 X 2 cell
@SCREEN,6 - 640 X 200 Color 8 X 4 cell
@SCREEN,7 - 640 X 200 Color 8 X 4 cell

3 For use with 64K chip ram

ONLY ONE SCREEN CAN BE USED AT ONCE!

@SCREEN,O - 1280 X 409
@SCREEN,l - 640 X 819
@SCREEN,2 - 2040 X 252
@SCREEN,3 - 800 X 655
@SCREEN,4 - 640 X 546
@SCREEN,5 - 640 X 655
@SCREEN,6 - 640 X 728
@SCREEN,7 - 640 X 768

Monochrome Virtual
Monochrome virtual
Monochrome Virtual
Monochrome Virtual
Color 8 X 2 cell Virtual
Color 8 X 4 cell Virtual
Color 8 X 8 cell Virtual
Color 8 X 16 cell Virtual

••• NOTE ••• Interlaced mode screens merely change the display
to Interlaced sync Mode. These SCREENS are
duplicates of a non-interlaced display. For more
information on Interlace Sync mode see the appendix.

Chapter Ten - Basic B.O Encyclopedia

SYNTAX:

(92)

Commands to turn on and ott the interrupt Mouse and Joystick, and ~
return the current X and Y position,

@MOUSE,l,DEVICE,X,Y[,Joystick Increment]

1 Activate IRQ reader

DEVICE 0/1

X

Y

o mouse (Port 1)
1 joystick (Port 2)

0-2047 horizontally, depending on Screen XV-ax

0-819 Vertically, depending on Screen Y Max

Joystick Increment Required ONLY FOR JOYSTICK - NOT MOUSE!
1-255 Controls number of pixels the
arrow moves when using the joystick.
If increment=O then no movement is
possible.

@MOUSE,O Turn OFF interrupt reader

@MOUSE,2,O Returns X coordinate of mouse (or joystick)

X=@MOUSE,2,0

@MOUSE,2,1 Returns Y coordinate of mouse (or joystick)

Y=@MOUSE,2

READING THE MOUSE BUTTONS (PORT 1)

To read the LEFT MOUSE button on the 1351 mouse:
10 IF JOY(1»127 THEN PRINT "LEFT MOUSE BUTTON IS PUSHED'

To read the RIGHT MOUSE button on the 1351 mouse:
10 IF JOY(l)=l THEN PRINT "RIGHT MOUSE BUTTON IS PUSHED"

READING THE JOYSTICK BUTTON (PORT 2)

To read the JOYSTICK FIREBUTTON:
10 IF JOY(2»127 THEN PRINT "JOYSTICK FIRE BUTTON PRESSED!"

Chapter Ten - Basic 8.0 Encyclopedia

(93)
@ORIGIN Establishes center of rotation and vanishing point (used

for perspective draw mode). Vanishing point determines
where an object will appear as a single point if drawn in
perspective drawmode. Allows varied depths in Z axis.

SYNTAX:
@ORIGIN,Center X, Center Y, center z,vanish X, Vanish Y, vanish z

Center X 0-65535 (Value can be larger than Virtual

center Y 0-65535 (Value can be larger than Virtual

Center Z -32768 to 32767

Vanish X 0-65535

vanish y 0-65535

Vanish Z -32768 to 32767

NOTE: All X,Y coordinates are scaled to current scale factor.

Chapter Ten - Basic 8.0 Encyclopedia

Xl

Y)

@PAINT

SYNTAX:

(94)
Paint an area with pattern or solid.

@PAINT,X,Y,Bankf,Address,size

x
Y

Bank~

Address
size

O-XMax
O-YMax
0-1

0-65535
0-65535

x coordinate to start paint from.
y coordinate to start paint from.

C128 system ram bank for PAINT stack area. The more
complex the area to be filled, the larger the stack
area you need. If the stack fills up the paint action
stops, but the program continues from the next
statement. Make sure you don't use memory where your
program resides.
Starting address in designated bank for stack area
Size of stack area in bytes

To determine if an error condition occurs, use;

ER=@PAINT.X,Y,BANK',BANK ADDRESS,STACK SIZE
IF ER=O then no error occurs
IF ER=-1 then an error occured, PAINT aborted.

NOTES:
1. @PAINT works on SCALED coordinates.
2. For many programs we suggest you use 1K of ram in Bank 0

starting at 57343.
ex; @PAINT,X,Y,O,57343,1024 :REM Use lK stack at 57343

Chapter Ten - Basic 8.0 Encyclopedia

@PATTERN

SYNTAX:

(95)

@PATTERN,strueture number

Structure number 0-191 Indicates which of the possible 192
STRUCTURES to use as pattern data. If
indicated STRUCTURE is not of a pattern
type then error status is -1.

example A=@PATTERN,STRUCTURE number
If A=(-l) then Stucture was wrong type.
If A <>(-1) then Pattern was successfully defined.

Chapter Ten - Basic 8.0 Encyclopedia

(96)
@PIXEL Function to tell if a pixel is on/off or the color of that cell.~
SYNTAX:

@PIXEL,X,Y,HOde

x - 0-65535
Y - 0-65535
Mode - 0-1

x coordinate of point to get value of.
y coordinate of point to get value of.
o Bitmap pixel status returns

O~off l=on -l=out of bounds

1 Color attribute status returns value
with foreground/background color combined

foreground color = value and 15
background color = (value and 240)/16

PIXEL is rotated, scaled and clipped (if necessary) before being drawn.

A=~PIXEL,320,100,0
IF A=O THEN PIXEL NOT ON ELSE PIXEL IS ON

A=@PIXEL,320,100,1
FC=A AND 15:REK Foreground color = Fe
BC=INT«A AND 240)/16)

Chapter Ten - Basic 8.0 Encyclopedia

(97)
@PTR Plots a sprite-like pointer at position X and Y

SYNTAX:

@PTR,O Turns off the pointer

@PTR,l,X,Y,DEF'[,hgt] Turns on the pointer and positions it at X,Y
The mode of 1 indicates the pointer 'floats' over
the bitmap images.

X
Y

DEF#
HGT

X coordinate of arrow
Y coordinate of arrow
0-15 Sixteen pointer definition shapes
1-16 Height of pointer, system defaults to eight but

you can change it to be larger. By settin9 it to
16 you can use two definitions as one. Th~s allows
pointer defintions of 16 x 16 pixels. In this case
the pointers are paired, with nand n+1 acting as a
single pointer.

POINTER will automatically restore what was underneath it
when moved or turned off when using mode 1.

@PTR,2,X,Y,DEF' Turns on the arrow pointer and positions it at X,Y
The mode of 2 indicates the pointer leaves a trail
on the bitmap of the pointer image.

X
Y

DEF#
HGT

see above
see above
see above
see above

POINTER will not restore what was underneath it when moved using mode 2.

See Appendix C for information on defining your own pointers.

NOTE: POINTER RESPONDS TO DRAW MODES UNDRAW AND COMPLEMENT.

Chapter Ten - Basic 8.0 Encyclopedia

(98)

RYLANDER SOLIDS

These are a special subset of BASIC 8.0 commands. They

were developed by Richard Rylander for the Commodore 64, and he

allowed us to adapt them to the BASIC 8.0 graphics system.

However, they are not an integral part of the language, and do

not respond to all the possible 3D parameters. We consider them

important enough to have included them, and have made a number of

changes to allow them to work on the C128 BASIC 8.0 hires display

screen. You will find they offer a very powerful graphics

capability, and we wish to thank Mr. Rylander for his gracious

permission for their use.

For more information on the Rylander Solids, see the

commands @SPHERE, @TOROID, @SPOOL, @CYLNDR, @SCLIP and @STYLE.

Chapter Ten - Basic 8.0 Encyclopedia

(99)

@SCALE Changes bitmap plotting area to logical equidistant units. This
results in X and Y coordinate ranges being equally proportioned.

SYNTAX:

@SCALE,scale number

Scale number 0-2
o
1

2

Sets scale units.
No scale, screen remains pixel oriented.
Sets Y pixel values to .39 of a real pixel.
For example, a 640 X 200 physical screen
becomes a 640 X 512 logical screen.
Doubles logical screen size. Same logical
screen (640 X 512) at SCALE 1 becomes
1280 X 1024 logical points at SCALE 2.

* NOTE! ~oqical screens are not the same as Virtual screens.
Larger Virtual screens result in larger logical
screens. Scale values greater than 2 default to O.

Chapter Ten - Basic 8.0 Encyclopedia

(100) ~
@SCLIP Solids Clip, sets the clipping boundaries for the Rylander SOlid1llJ

SYNTAX:

@SCLIP,left,right,up,down

left
right
up
down

0-255
0-255
0-255
0-255

based upon center of solid object
based u~on center of solid object
ba~ed upon center of solid object
based upon center of solid object

Chapter Ten - Basic 8.0 Encyclopedia

(101)
@SCRDEF Defines an area of memory in the 8563 chip ram to be used as

~ a custom screen for display. This overrides the @MODE command
~ for the specified screen #.

SYNTAX:
@SCRDEF,screent,display type, color size, size x,size y,

bitmap beg. addr,color beg. addr

screen# : 0-7

display type

indicates which screen definition to
@SCREEN command. Values greater than
to 0-7 (eg., 8=0, 9=1, 10=2 etc.).
the case.

o = normal RGB

be used by the
7 are converted
This is always

non a = Interlace Sync - area between scan lines
filled to yield a sharper i~age.

(some monitors will not display this mode
properly)

color size 0-4 Indicates the color resolution to be used.
o Use monochrome mode
1 Use 8 X 2 color cell requires 8000 bytes
2 Use 8 X 4 color cell requires 4000 bytes
3 Use 8 X 8 color cell requ~res 2000 bytes
4 Use 8 X 16 color cell requ~res 1000 bytes

Number of bytes is in addition to 16000 required for screen bitmap
of 640 X 200 pixels. Larger virtual screens require more ram.
Color sizes greater than ~ default to type 4. To determine the amount
of ram needed for a bitmap, use the formula;

SizeX

SizeY

Bitmap Ram = ((maximum X)/B) * (maximum y)
Color Ram = BO*(maximum Yl/sizecode

Screen Type Sizecode

Total

mono no color ram
color B X 16 16
color B X 8 9
color 9 X
color 9 X 2 2

ram for a color screen=Bitmap ram + color ram

640 to 2040 in increments of 8 pixels
Indicates horizontal size of virtual screen area.
Only 640 pixels can be seen on one line at time.
Values greater than 640 only possible if 64K 8563
chip ram installed. Virtual screens greater than
640 pixels work in monochrome mode only.

200 X 819 in increments of scan lines (1 pixel)
Indicates vertical size of virtual screen area.
Only 200 lines can be seen at one time. Values
greater than 200 only possible if 64K 8563 chip
ram is installed. Virtual screens greater than
200 are allowed in both color and monochrome modes.

Bitmap Address o if only 16K 8563 chip ram installed.
0-65535 lf 64K 8563 chip ram installed.

Color Address

49535 last available address for a contiguous
16K bitmap. (65535 - 16000 = 49535)
0-16383 if only 16K 8563 chip ram installed.
o - 63535 if 64K 8563 chip ram installed.

Chapter Ten - Basic B.O Encyclopedia

(102)
@SCREEN

SYNTAX:

select which screens to use when drawing and/or viewing.

@SCREEN,draw screen '[,view screen ']

draw screen #:
view screen ~:

0-7 Indicates which is active drawing screen.
0-7 Indicates which screen is displayed.

If both parameters are the same or view screen # is omitted then the
view screen becomes the active drawing screen. If they
differ this allows you to draw on one screen while viewing another.
This can be used for DOUBLE BUFFERING, which is a common animation
technique.

Chapter Ten - Basic 8.0 Encyclopedia

(103)
@SCROLL Scroll bitmap area

SYNTAX 1:

@SCROLL,Direction,Number of Onits,speed

Direction - 0-7 0 up
1 up & right
2 right
3 down & right
4 down
5 down & left
6 left
7 up & left
Greater then 7 becomes 0-7

Number of Units - 0-255 number of columns and/or color cells to
move in given direction.

Speed 0-255 time delay between each scroll increment
o = no delay
255 = .255 seconds

(delay = Speed * .001 seconds)

SYNTAX 2: Move the display immediately

@SCROLL,255,LByte of Color Cell,HByte of Color Cell

255
LByte -
HByte -

Indicates you want Absolute Positioning
Lo byte of color cell (Color Row) to move to
Hi Byte of color cell (Color Row) to move to

This @SCROLL allows you to move directly to the start of any color cell
or scanline (in monochrome).

For Example:
(In monochrome)

@SCROLL,255,25,0 Move to scanline 25

(In Sxs color)
@SCROLL,255,2,0 Move to scanline 16 (color row 2)

Chapter Ten - Basic s.o Encyclopedia

(104)

Structure DATa statements to read data into cur=ent structure
buffer

SYNTAX:

@SDAT,required parameters tor the Structure Type
@SDAT,optional data depending on structure Type

*** Required parameters MUST be on a separate @SDAT command line

•

*

than the optional data. It butfer tills before end of structure
data then status ot -1 is returned to status variable. If variable
is not -1 then variable contains the next available address in
butter. (16 bit address, C-65535) --

example A:@SDAT,data ••.
IF A=-1 then BUFFER ERROR, ELSE A=next available address

Required Parameters •

Type 1 @SDAT,pattern width, pattern height,color width, color height
Pattern width is in BYTES (S pixels)
Pattern height is in PIXELS

Type 2

Type J

Type 4

Color width is in BYTES (S pixels)
Color height is based on size of

NO Required Parameters

NO Required Parameters

No Required Parameters

current color cell height. For
example, if color cell height is 4
pixelS, then each color height of
I is equal to 4 pixels.

Optional Parameters *
Type 1 @SDAT,Pattern bitmap data pattern width X pattern height

optional parameters needed.

For example, to define a brick wall pattern
which is 2 bytes wide and 8 pixels deep you
would use

@BUFFER,2,O,65535 : rem Bufter 2 is 64K butfer in ext. ram bank 0
@STRUCT,O,l,2,O : rem struct 0, type pattern, buffer 2, address 0
@SDAT,2,8,1,1 : rem 2 bytes X 8 pixels, 1 X 1 color
@SDAT,255,255,128,O,128,0,128,0,255,255,O,12B,O,12B,0,128
@SDAT,206 : rem brown on lite grey using JAM 2 color
@SEND

Type 2 @SDAT,Fla~,Structure ',column,y(Lobyte),y (Hibyte),char
hel.ght,char width,direction,length,"strl.ng at
characters"

Chapter Ten - Basic B.O Encyclopedia ~

Type 3

Type 4

(105)

If Flag = 0 then structure is done, else if
not 0 then continue.

Other parameters described in @CHAR command.

No optional parameters as character set should be loaded
from disk.

No optional parameters as brushes should be loaded from
disk.

Chapter Ten - Basic 8.0 Encyclopedia

(106)
@SEND Terminates the current structure (structure END).

SYNTAX:

@SEND
special note: The @STRuCT @SDAT @SEND commands are to be used together.

Once a @STRUCT command has been given @SDAT commands and then
a @SEND command is expected. BASIC 7.0 co~~ands only can be
used in between these commands such as:

FOR .. NEXT loop to pass data to the @SDAT command.
Use variable to find next byte in buffer with I/O

@LSTRUCT,0,S,2,0,"FNT.ROMAN":AD=@SEND
AD=next free byte in BUFFER.

USING BASIC S.O COMMANDS WITHIN THE @STRUCT @SDAT and @SEND
COMMANDS WILL GIVE UNPREDICTABLE RESULTS.

Chapter Ten - Basic 8.0 Encyclopedia

a@SPHERE

,., SYNTAX:

Plot a 3D solid sphere

@SPHERE,X,Y,Radius

X
Y
Radius -

0-2047
0-819
1-255

(107)

Depending on Screen Max X
Depending on Screen Max Y

Chapter Ten - Basic B.O Encyclopedia

(108)
Draws a solid spool structure

SYNTAX:

@SPOOL,X,Y,Inner Radius,outer Radius,View

X
Y
Inner Radius
Outer Radius
View

O-Xmax Center X of spool
O-Ymax Center Y of spool
1-255 inner radius of spool
1-255 outer radius of spool
0-1 Type of spool

o Horizontal
1 Vertical

Chapter Ten - Basic 8.0 Encyclopedia

A @SSTRUCT

• SYNTAX:

(109)
Saves a structure from memory to disk

@SSTROCT,STROCT ',DEVICE ',FILENAME

STRUCT # - 0-191
DEVICE # - 8-11
FILENAME - filename to store to disk

••• @SSTROCT MUST BE FOLLOWED BY @SEND ••••

Chapter Ten - Basic 8.0 Encyclopedia

SYNTAX:

(110)
Used to place a designated rectangle of screen display in a
brush structure for later recall or storage to disk.

@STASH,STRUCTUREt,BUFFERt,BUFFER ADDRESS,X,Y,DX,DY,COMPRESSION

STRUCTURE # - 0-191 The designated structure number used
to cecal 1 the data with the @FETCH
command.

BUFFER I - 0-9 The ram bank to be used as a buffer.
This parameter is just like the @BUFFER
command.

Buffer Address - 0-65535 The address within the buffer
to begin storing the data.

X O-Virtual X The beginning X coordinate
of the rectangular area to s~ore. X
will be rounded do~n to an even byte
boundary. For example, if X=26 then
the actual X will be 24 (INT(2G/8)=24)

Y a-Virtual Y The beginning Y coordinate
of the rectangular area to store. Y
will be rounded down to the top of the
current color cell.

DX The length in pixels of the rectangle.
The right side of the rectangle will
be adjusted to the end of the byte
it falls on.

DY The height in pixels of the rectangle. e
The endpoint in Y will be adjusted to
the end of the current color cell.

Compression - 0/1 a indicates no data compression,
while 1 instructs the system to
compress the data. The"amount of
cOQpression depends upon the data
itself.

To find the next address in the buffer use the syntax
AD=@STASH,STRUCURE#,BUFFERI,BUFFER ADDRESS,X,Y,DX,DY,COMPRESSION
AD=Next available acdre,s, or -1 indicating STASH failure.

The X,Y,DX,DY coordinates are scaled if necessary.

Chapter Ten - Basic B.O Encyclopedia

(111)
~ @STORE Saves an entire screen as a BRUSH to disk for later @DISPLAY as a
,.., screen or loading into a STRUCTURE as a BRUSH for use with @FETCH.

SYNTAX:

@STORE,SCREENt,DEVICE .,COMPRESSION FLAG,"FILENAME"

SCREEN# The number of the screen to store. See @SCREEN
command for information on screen numbers.

DEVICE # - The drive number you are using, ex. 8
COMPRESSION - 0 No data compression

1 Compress data
** NOTE •• See appendix for data compression algorithm

FILENAME - The name the screen display is to be stored
under on disk. It must be within double
quotes (").

Chapter Ten - Basic 8.0 Encyclopedia

(112)
@STRUCT Defines data structure used in various BASIC 8.0 commands

and where in the indicated BUFFER it is at.

SYNTAX:

@STRUCT,structure t,Type,Butter t, Beginning address in butfer

Structure # 0-191 Indicates which of 192 possible structures
you are defining. Structure numbers
greater than 191 are converted to 0-191.

Type

Buffe~

1-4 Indicates Structure data type
1 Pattern type
2 Logo type
J Character Font type
4 Brush type

0-9 Indicates which of ten buffer banks to use.
0-1 is internal ram banks 0 and 1
2-9 are external ram banks 0-7

Buffer Address - O-Buffer Size (Address to store data in buffer.)

Chapter Ten - Basic 8.0 Encyclopedia

e @STYLE

SYNTAX:

(113)
Define characteristics for Rylander Solids

@STYLE,SHADE,SCALE,LIGHTING

Shade - 0/1
0
1

Scale - 0/1
0

1
Lighting - 0/1

0
1

Sets shade style
textured
halftone

Indicates no scaling, images are
elongated
Images are symetrical
Set lighting style
Normal
Backlite

Chapter Ten - Basic 8.0 Encyclopedia

@TEXT

SYNTAX:

@TEXT

(114)

Clears text screen, initializes standard fonts, enters text mode.
It also turns off the window border flag. @SCALE is set to 0,
all parameters of drawmodes A and B are set to 0, @ANGLE
is set to 0,0,0,0 and current @MODE is removed from system,
so @KODE must be re-issued or another @SCRDEF issued.

Chapter Ten - Basic 8.0 Encyclopedia

@TOROID

SYNTAX:

(115)
Draw a solid toroid shape

@TOROID,Z,Y,Inside radius,Outside radius, view

X O-XMax
Y O-YMax
Inside radius - 1-255
outside radius - 1-255
View - 0/1/2

o horizontal
1 vertical
2 top

Chapter Ten - Basic 8.0 Encyclopedia

@VIEW

SYNTAX:

@VIEW,Angle

(116)

Angle - -360 to 360 Angle of view used when drawing
in parallel draw mode (zview flag of
@DRWMODB is equal to 1). Angle
is the rotation of your eye around
the Y axis. Angle is given in degrees.
Angles between -360 and 360 yield
all possible results. Greater values
are redundant.

Chapter Ten - Basic 8.0 Encyclopedia

(117)
@WALRUS WALRUS logo,sets up the BASIC B.O system for 16K or 64K video ram

@WALRUS must be executed at the beginning of a program.
Logo screen can be used as a title screen for BASIC 8.0 programs

SYNTAX:

@WALRUS,RAM TYPE

NOTE:

RAM TYPE 0-1
0=16K 8563 video ram
1=64K 8563 video ram

WALRUS command automatically goes to graphic mode and should
be used before any other BASIC B command.
If used within a program more than once, the @MODE command will
need to be issued again.

Chapter Ten - Basic B.O Encyclopedia

(118)
@WINDOWOPEN Wlndowopen allows you to define a subscreen within the ~aln

virtual screen area. The upper left corner of the window
becomes the pixel coordinates 0,0. All graphic commands
translate to this new origin. Any drawing that falls
outside the window boundaries is clipped (not rendered).
This new window remains active until a @WINDOWCLOSE command
is encountered ,a new window is defined or a @SCREEN
command is issued.

SYNTAX:

@WINDOWOPEN,X,Y,window width,window height,border flag

X 0-2046 This is top lefthand corner of window. Value
indicates a pixel number of the virtual screen. Values
greater than 639 only possible with 64K 8563 chip ram
installed. While X is given in pixels, it rounds down to
the next lowest column value. (1 colum~ - 8 pixels)

Y 0-818 This is the top scan line (pixel) of the window.
Values greater than 200 are only possible with G4K 3563
chip ram installed.

window width : 1-2040 This is the width of the window in pixels and
rounds up to the nearest column number. Values greater

window height

border flag

than 640 only possible with 64K 8563 chip ram ~
installed. ~

1-819 This is the height of the window in scan
lines (1 pixel). Values greater than 200 are
only possible with 64K 856] chip ram installed.

0-1 If set to one the window will have a border
draw at the outer coordinates of the window whe~
a CLEAR command is issued.

NOTE: If window is opened in a color screen, the beginning scan line
number is rounded down to the closest color cell boundary.
The window height is rounded up to the closest color cell
boundary. This is done in order to prevent color bleed outside
the window. @WINDOWOPEN does not save the contents of the area
underneath the new window. Programmers who wish to preserve and
restore this area should use the @STASH & @FETCH as appropriate.

Chapter Ten - Basic 8.0 Encyclopedia

~ @WINOOWCLOSE
(119)

Closes last window created with @WINDOWOPEN command and
redirects graphic output of screen to the current
virtual screen boundaries.

SYNTAX:

@WINOOWCLOSE

NOTES: Turns border flag off, does not remove contents of window
from screen viewing. You must have previously @STASHed the
screen area where the new window will appear and then restore
the old screen area with a @FETCH command.

Chapter Ten - Basic 8.0 Encyclopedia

SYNTAX:

(120)
This command enlarges a STASHed structure frorn rnernory to the
screen.

E=@ZOOM,8TRUCTUREt,SIZE,DestX,DestY

STRUCTURE# - 0-191
SIZE - 1-15
DestX - O-MaxX
DestY - O-MaxY

Number of an uncornpressed
Height of ZOOMed brush in
Destination X of enlarged
Destination Y of enlarged

brush structure
color cells
brush structure
brush structure

ZOOM does little in the way of error correcting. YOU rnust make sure
the new enlarged brush will fit into the destination area. The
enlargement is constant in the X direction (1 pixel->8 plxels)
and is variable in the Y. For exarnple, a SIZE of 2 for a brush
in the 8x2 mode would make each pixel in the Y direction enlarge
a total of 4 pixels (2 scanlines per cell * size 2 = 4 pixels).
For a brush in the 8x8 mode, a SIZE of 4 would rnake each pixel
equal to 32 pixels. (8 scanlines per cell * size 4 = 32 pixels

Chapter Ten - Basic 8.0 Encyclopedia

COMMAND ROTATION

ANGLE
ARC +
BOX +
BRUSHPATRN
BUFFER
CBRUSH
CHAR
CIRCLE +
CLEAR
COLOR
COPY
CYLNDR
DIR$
DISPLAY
DOT +
DRWMODA
DRWMODB
FETCH
FLASH
FONT
GROW
HCOPY
LINE +
LOGO
LSTRUCT
MODE
MOUSE
ORIGIN
PAINT
PATTERN ,
PIXEL
PTR • i
SCALE
SCLIP
SCRDEF
SCREEN
SCROLL
SDAT
SEND
SPHERE
SPOOL
SSTRUCT
STASH
STORE
STRUCT
STYLE
TEXT
TOROID
VIEW
WALRUS
WINDOWCLOSE
WINDOWOPEN
ZOOM

XYZ2XY

+
+

+

+

+

(121)
CHART OF COMMANDS

EFFECTS AND RETURN VALUES

SCALE CLIP WINDOW V RETURN KMU

+ + +
+ + +

-1

-1
+ + -1

+ AL +
+

+

+ -1
+ AL +

+ + -1
+ + +

-1
I

i
+ + +

+ + -1

+ + + -1
-1

+ + +

I

-lIAdr

+ -1/Adr
+ -1

-1
Chapter Ten - BaSIC 8.0 Enc clo e y p ia

BUFFERS/BANKS

0-10

0 10 14

0-10

0-10 ,

0-1

0-10
0-10

0-10

(122)
CHAPTER ELEVEN
PRINTER SUPPORT

BASIC B.O has some of the most flexible printer drivers

available to users of computer graphics. It supports most of the

major printers used by Commodore 128 owners. Since the different

printers have different capabilities and require different

programming techniques to print bitmap graphics, different

printer specific drivers are required. These are installable

printer drivers, which means you (or a program written by you)

can easily change the specific pr~nter being used by loading a

driver with the command BLOAD "PRINTER NAME",BO,P26064.

You access the printer with the BASIC 8.0 cc~~and called

@HCOPY. This command is the same regardless of what printer you

are using, so your programs will always be compatible. The

parameters of @HCOPY control the secondary address of the printer

you are using, the size of the printout, the printer density to

use, and the orientation of the printout (rotated or unrotated).

Since not all prlnters are the same (some offer more dots

per horizontal line, SOC1e 'lave several densities, and others

offer colors besides black) there may be limitations on ~hat your

printer can do. for example, the MPS 801 can print only 480 dots

per horizontal line. So it cannot print out even :~e smallest

unrotated BASIC 8.0 image (which would be at least 640 pixels

wide.) In order to use it, the image is automatically rotated 90

degrees, regardless of the value of the rotate parameter in the

@HCOPY command. This also means you cannot have a height

parameter greater than 2 (400 pixels) with a 200 scanline high

screen. (A height of 3 would be 600, too large for the MPS 801.)

And it offers only one density, so values greater than one are

ignored. On the other extreme, the PANASONIC 1091 and EPSON fX
Chapter Eleven

(123)

both support seven dot densities. That means you could have a

horizontal image upto 1920 dots wide (using density 7) before you

had to rotate it. (The different density settings are not

linear. This means a larger density value is not necessarily

going to print a smaller picture. Instead it may instruct the

printer to use more dots per inCh, but still give the same size

image as that of a smaller density setting. The best way of

knowing what to expect from the various densities is to check

with your printer manual, or simply print out a picture using

different settings. We gave you the power to determine what the

final printed output will look like.)

On the following pages is information concerning the eleven

printers supported directly by BASIC 8.0. This information

includes the assembly language source code, so other printer

drivers CQuld be written for BASIC 8.0 by experienced

programmers. For additional information on the @HCOPY command,

see the BASIC 8.0 COMMAND ENCYCLOPEDIA in chapter 10.

Chapter Eleven

(124)
EPSON FX-BO

PANASONIC 1091
STAR NX-10

This printer driver is on your BASIC B.O disk with the name

P.HC-EPSON. This is the default driver built into the BASIC B.O

system, so it is not necessary to install it again unless another

driver has been loaded.

The secondary address we used for the CARDCO G and G-WIZ

interfaces is 5. other printer interfaces may require a

different secondary address.

This driver can use the full range of heights (1-4) in the

height parameter of @HCOPY, as well as the full range of

densities (1-7). For a 640 X 200 pixel screen a height of 2 with

a density of 2 gives a very good proportional hardcopy of the

screen. Or use a height of 1 with a density of 1 and your 640 X

200 image prints just about the size of a large business card.

As mentioned, a density parameter of seven allows you to print a

horizonatal unrotated image of 1920 pixels, larger than most

applications will require.

You can also print ~our images rotated 90 degrees, which

is very useful if the screen is more than 1920 pixels wide, or

you want to use a lower density in order to get a larger image.

Just set the rotation parameter to one and the picture will be

rotated.

This is the source code (written with the Commodore C128

Assembler Development Package). If you have a near EPSON

compatible printer that doesn't work quite right, it may be

possible for you (if you are a machine language programmer) to

convert it to a new driver for your printer.

This source code is supplied as a courtesy to all registered

Chapter Eleven

(125)
~ASIC 8.0 owners.

~ EPSON/PANASONIC/STAR NX-10 BASIC 8.0 PRINTER SOURCE CODE

. PAGE
; NAME
; CREATED
; UPDATED
; AUTHOR

HARD COPY
12/20/86

DAVID DARUS
HCD65
C-128

; ASSEMBLER
; COMPUTER
; REMARKS
,

BASIC 8 H~qD COpy DRIVER FOR EPSON FX-NN,PANASONIC 1091,STAR NX
X * 880 UNROTATED & ROTATED

*=$65DO

INCWRD .MACRO ?IARGl
INC ?IARGl
BNE 255$
INC ?IARG1+l

255$
.ENDM

DECWRD .MACRO ?DARGI
LDA ?DARGI
BNE 254$
DEC ?DARGl+l

254$

e· ENDM

DEC ?DARGI

MMU $FFOO

CHROUT $FFD2
CLRCHN $FFCC
CLOSE $FFC]
SETLFS $FFBA
OPEN $FFCO
CHKOUT $FFC9

CLCADR
SWAPNYBL
GETPIXSTAT
GETCOLSTAT

$2'6A8
$25DB
$2652
$266E

CUR COLOR
SCRCSIZE
SCRSIZEY
SCRSIZEX
XO
YO
MASK
PARMI
PARM2
PARM]

4fARM4

$lJ18
$131A
$lJIC
$1324
$136B
$136D
$137B
$13EF
$13FO
$13Fl
$13F2

Chapter Eleven

MLHCOPY
LOA PARM4
BEQ 99$
JMP MUlCOPYR

99$

(126)

LOA PARMI
STA SECAOR
LOA PARM2
STA HCHT
LOX PARMJ
OEX

;1=SINGLE 2=OOUBLE]-7 SEE EPSOtl FX-80 MANUAL

STX ESCOAT+6

LOA SCRSIZEX
STA ESCOAT+7
LOA SCR5IZEX+l
5TA ESCOAT+8

LOX HCHT
OEX
LOA CNVTHT,X
STA HCHT
LOA #8

2$
OEX
BMI 1$
LSR A
JMP 2$

1$
STA STEP

LOA MMU
ANO #$FE
STA MMU
JSR OPNCHN
LOA #7
STA BN
LOA #0
STA 13'1 ;BYTE \'A:.i: . ., ':HROUT o
STA YYl ;YO=O
STA YYl+l

NXTY
JSR PRTESC ;00 FOR EACH ROW 8*HElGHT
LOA ~O
STA XO
STA XO+l

NXTX
LOA YYl
STA YO
LOA YYl+1
STA YO+l
CLC
LOA YO
AOC STEP
STA ENDYO
LOA YO+l
AOC #0
STA ENDYO+l

Chapter Eleven

e
NXTYO

LDA #0
STA HTCNTR

NXTHT

(127)

JSR
ROL
DEC
BPL
LDA
JSR
LDA
STA
LDA
STA

GETPIX
BV

;GET PIXEL VALUE AT XO,YO IF XO>SCRSIZEX AND <880 THEN CLC
;ROLL CARRY INTO BYTE VALUE 0 OR 1

BN ;BIT#=BIT#-l
1$
BV
CHROUT
#7

;IF BN<O THEN PRINT BV:BN=7

1$

BN
#0
BV

INC HTCNTR
LDA HTCNTR
CMP HCHT
BNE NXTHT
INCWRD YO
LDA YO
CMP ENDYO
BNE NXTYO
LDA YO+1
CMP ENDYO+1
BNE NXTYO

. LOCAL
INCWRD XO e LDA XO
CMP SCRSIZEX
BNE NXTX
LOA XO+1
CMP SCRSIZEX+1
BNE NXTX
CLC
LOA
ADC
STA
LDA
ADC
STA
LOA
CMP
LOA
SBC
BCC

HCERR
LDA
JSR
LOA
JSR
JSR
LDA
JMP

NXTYJ

YY1
STEP
YY1
YY1+1
#0
YY1+1
YY1
SCRSIZEY
YY1+1
SCRSIZEY+1
NXTYJ

#27
CHROUT
#'@
CHROUT
CLRCHN
#4
CLOSE

JMP NXTY

eaPNCHN

;IF XO< SCRSIZEX THEN GOTO NXTY

;ESC

;RESET CODE

Chapter Eleven

DO NEXT SCANLINE

LOA '0
STA $B7
LOX #4
TXA
LOY SECAOR
JSR SETLFS
JSR OPEN
LOX 14
JMP CHKOUT

PRTESC
LOX #0

1$
LOA ESCOAT,X
JSR CHROUT
INX
CPX #9
BNE 1$
RTS

GETPIX
LOA 'to
CMP SCRSIZEY
LOA 'to+1
SBC SCRSIZEY+1
BCS 1$
JSR CLCAOR
JSR GETPIXSTAT
ANO MASK
BEQ 1$
SEC
RTS

1$
CLC
RTS

ESCOAT

(128)

.BYT 13,10,27, '1' ,27, '*' ,0,<640,>640
CNVTHT

.BYT 1,2,4,8 ;TRANSLATE HT OF 1,2,3,4 TO 1,2,4,8

SECAOR
.BYT 0

HCHT
.BYT 0

BN
.BYT 0

BV
.BYT 0

HTCNTR
.BYT 0

STEP
.BYT 0

ENOYO
.BYT 0,0

YYl
.BYT 0,0

Chapter Eleven

-------- -----

e (129)

MIJlCOPYR
LOA PARM1
STA SECAOR
LOA PARM2
STA HCHT
LOX PARM3 ;l=SINGLE 2=OOUBLE
OEX
STX ESCOAT+6

LOA SCRSIZEY
STA ESCOAT+7
LDA SCRSIZEY+1
STA ESCOAT+8
LOX HCHT
OEX
LOA ESCOAT+7

4$
OEX
BMI 3$
ASL A
ROL ESCOAT+8
JMP 4$

3$
STA ESCOAT+7

LOX HCHT e OEX
LOA CNVTHT,X
STA HCHT
LOA ~8
STA STEP

LOA MMU
ANO =$FE
STA MMU
JSR OPNCHN
LOA n
STA BN
LOA ~O
STA BV ;BYTE VALUE TO CHROUT 0
STA XX1 ;Xl=O
STA XXl+1

NXTXIR
JSR PRTESC ;00 FOR EACH ROW 8*HEIGHT
LDA SCRSIZEY
STA YO
LOA SCRSIZEY+l
STA YO+1
OECWRO YO

NXTYR
LDA NO
STA HTCNTR

NXTHTR - LDA XX1
STA XO
LOA XXl+1

Chapter Eleven

STA XO+l
CLC
LOA XO
ADC STEP
STA ENDXO
LDA XO+l
ADC #0
STA ENDXO+l

NXTXR

(lJO)

JSR GETPIX
ROL BV

;GET PIXEL VALUE AT XO,YO IF XO>SCRSIZEX AND <880 THEN CLC
;ROLL CARRY INTO BYTE VALUE 0 OR 1

OEC BN ;BIT#=BIT#-l
BPL 1$
LDA BV ;IF BlicO THEN PRINT BV:BN=7

1$

JSR CHROUT
LOA #7
STA BN
LOA #0
STA BV

INCWRD XO
LDA XO
CMP ENDXO
BNE NXTXR
LDA XO+l
CMP ENOXO+l
BNE NXTXR
INC HTCNTR
LDA HTCNTR
CMP HCHT
BNE NXTHTR

. LOCAL
DECWRO YO
LOA YO
CMP #SFF
BNE NXTYR
LDA Yl)~l

CMP #$FF
BilE IIXTYR
CLC
LDA XXI
ADC STEP
STA XXI
LOA XXl+l
AOC ~O
STA XXl+l
LOA XXI
CMP SCRSIZEX
LOA XXl+l
SBC SCRSIZEX+l
BCC NXTXJR

HCERRR

; IF Y

LOA #27 ;ESC
JSR CHROUT
LOA #' @ ; RESET CODE
JSR CHROUT
JSR CLRCHN
LOA #4

o TH~1< '-;;'1'0 NXTY DO NEXT SCl,:ILINE

Chapter Eleven

JMP CLOSE
NXTXJR

JMP NXTX1R

ENDXO
.BYT 0,0

XXl
.BYT 0,0

.END

(131)

Chapter Eleven

(132)

OLIVETTI PR 2300

This printer driver is on your BASIC 8.0 disk with the name

P.RC-OLlVETTI. This is not the default driver built into the

BASIC 8.0 syst~m, so it is necessary to install it with the

command BL01.0 "P.HC-OLIVETTI",BO,P26064.

The secondary address we used for the CARDCO G and G-WIZ

interfaces is 5. Other printer interfaces may require a

different secondary address.

This driver can use the full range of heights (1-4) in the

height parameter of @HCOPY, but only 1 density is supported by

the Olivetti. For a 640 x 200 pixel screen a height of 2 with a

density of 1 gives a very good proportional hardcopy of the

screen. Or use a height of 1 with a density of 1 and your 640 x

200 image prints just about the size of a large business

envelope. The Olivetti PR2300 can print un rotated images upto 880

horizontal pixels wide.

You can also print your images rotated 90 degrees, which

is very useful if the screen is more than 880 pixels wide. Just

set the rotation parameter to one and the picture will be

rotated.

This is the source code (written with the Commodore C128

Assembler Development Package). If you have a near OLIVETTI

PR2300 compatible printer that doesn't work quite right, it may

be possible for you (if you are a machine language programmer) to

convert it to a new driver for your printer.

This source code is supplied as a courtesy to all registered

BASIC 8.0 owners.

Chapter Eleven

(133)

OLIVETTI PR2300 BASIC 8.0 SOURCE CODE

HARD COPY
12/09/86

DAVID DARUS
HCD65
C-128

. PAGE
NAME
CREATED
UPDATED
AUTHOR
ASSEMBLER
COMPUTER
REMARKS BASIC 8 HARD COPY DRIVER FOR OLIVETTI PR 2300

880 * Y UNROTATED X * 880 ROTATED
=$6500

INCWRD .MACRO ?IARG1
INC ?IARGI
BNE 255$

255$
.ENOM

INC ?IARG1+1

OECWRO .MACRO ?DARG1
LDA ?DARG1
BNE 254$

254$

.ENDM

MMU

CHROUT
CLRCHN
CLOSE
SETLFS
OPEN
CHKOUT

DEC ?DARGl+1

DEC ?DARG1

$FFOO

$FFD2
$FFCC
$FFCJ
$FFBA
$FFCO
$FFC9

CLCADR
SWAPNYBL
GETPIXSTAT
GETCOLSTAT

$26A8
$25DB
$2652
$266E

CURCOLOR
SCRCSIZE
SCRSIZEY
SCRSIZEX
XO
YO
MASK
PARM1
PARM2
PARM3
PARM4

MLHCOPY

$13 18
$131A
$lJ1C
$1324
$136B
$136D
$137B
$13EF
$13FO
$lJFl
$13F2

Chapter Eleven

LOA
BEQ
JMP

99$
LOA
STA
LOA
STA

PARM4
99$
MLHCOPYR

PARM1
SECAOR
PARM2
HCHT

HCHT

MULTB,X

(134)

LOX
OEX
LOA
STA
LOA
STA
LOA
ANO
STA
JSR
LOA
STA
LOA
STA
STA
STA
STA

SSLN ;SAVE SCANLINE#
HTABL, X
ESCOAT+B
MMU
#$FE
MMU
OPNCHN
#7
BN
#0
SLN ;SCANLINE#=O
BV ;BYTE VALUE TO CHROUT 0
YO ;YO=O
YO+1

#0
NXTY

LOA
STA HTMULT ;HEIGHT COUNTER

SLN
3$

4$
LOA
BNE
JSR PRTESC ;DO FOR EACH ROW = 8*HEIGHT

3$
INC
LOA

SLN ;INCREMENT SCANLINE~ IN ROW

6$

2$

1$

SLN
CMF SSLN
BNE 6$
LOA .0
STA SLN

LOA #0
STA XO
STA XO+1

JSR GET PIX
ROL BV
OEC BN
BPL 1$
LOA BV
JSR CHROUT
LOA #7
STA BN
LOA #0
STA BV

INCWRO XO
LOA XO

IF SLN=SSLN THEN c:lL' OF ROW REACHt;D
BR IF <>
ELSE
RESET SCANLINE& 1'0 0

;GET PIXEL VALUE AT XO,YO IF XO>SCRSIZEX ANO <BBO THEN CLC
;ROLL CARRY INTO BYTE VALUE 0 OR 1
;BIT#=BIT#-l

;IF BN<O THEN PRINT BV:BN=7

Chapter Eleven

(135)
CMP #<880
BNE 2$;XO<880 THEN GOTO 2$
LOA XO+1
CMP #>880
BNE 2$
INC HTMULT ;ELSE ENO OF LINE
LOA HTMULT
CMP HCHT
BNE 4$;REPEAl' SCANLINE HCHT TIME (HEIGHT)

• LOCAL
INCWRO YO
LOA YO
CMP SCRSIZEY
BNE NXTY ;IF YO< SCRSIZEY THEN GOTO NXTY 00 NEXT SCANLINE
LOA YO+l
CMP SCRSIZEY+l
BNE NXTY

HCERR
JSR CLRCHN
LOA H
JMP CLOSE

OPNCHN
LOX il4
TXA
LOY SECAOR
JSR SETLFS
JSR OPEN
LOX #4
JMP CHKOUT

PRTESC
LOX #0

1$
LDA ESCDAT,X
PHP
ANO #$7F
JSR CHROUT
INX
PLP
BPL IS
RTS

GETPIX
LOA XO
CMP SCRSIZEX
LOA XO+l
SBC SCRSIZEX+l
BCS 1$
JSR CLCAOR
JSR GETPIXSTAT
ANO MASK
BEQ 1$
SEC
RTS

1$
CLC
RTS

Chapter Eleven

(136)

ESCOAT
.BYT 27,71,'1;110;2;2',27,90+$80

SECADR
.BYT 0

MULT8
.BYT 8,16,24,32

HTABL
.BYT 49,50,51,52

BN
.BYT 0

BV
.BYT 0

HCHT
.BYT 0

HTMULT
.BYT 0

SLN
.BYT 0

SSLN
.BYT 0

MLHCOPYR
LOA PARMI
STA SECAOR
LOA PARM2
STA HCHT

LOA MMU
AND #$FE
STA MMU
JSR OPNCHN
LOX HCHT ;1-4 GOES TO
OEX
LOA
STA
LOA
STA
LOA

;0-3 FOR INDEXING PURPOSES

22$
DEX
BMI
LSR
ROR
JMP

11$

HTABUl,X
HCHT
#<880
NUMSL
#>880

11$
A
NUMSL
22$

STA NUMSL+l
LOA ~7
STA BN
LOA '0

; I, 2,4,8

STA SLN
STA BV

;SCANLINE,-O

STA XO
STA XO+l

NXTXR
LOA SLN

;BYTE VALUE TO CHROUT
;XO=O

o

Chapter Eleven

~ BNE 3$
_ JSR PRTESCR

3$

6$

INC SLN
LOA SLN
CMP #8-
BNE 6$
LOA #0
STA SLN

LOA NUMSL
STA YO
LDA NUMSL+l
STA YO+l
DECWRD YO

NXTYR
LDA #0

4$
STA HTMULT

JSR GETPIXR
ROL BV
DEC BN
BPL 1$
LOA BV
JSR CHROUT
LDA #7
STA BN
LOA #0

~$STA BV

.. INC HTMULT
LDA HTMULT
CMP HCHT
BNE 4$
DECWRD YO
LDA YO
CMP #$FF
BNE NXTYR
LDA YO+l
CMP #$FF
BNE NXTYR

. LOCAL
INCWRO XO
LOA XO
CMP SCRSIZEX
BNE NXTXTR
LDA XO+l

(137)

;00 FOR EACH ROW = 8*HEIGHT

;INCREMENT SCANLINE# IN ROW

IF SLN=8 THEN END OF ROW REACHED
BR IF <>
ELSE
RESET SCANLINE# TO 0

;GET PIXEL VALUE AT XO,YO
;ROLL CARRY INTO BYTE VALUE
;BIT#=BIT#-1

IF XO>SCRSIZEX AND <880 THEN CLC
o OR 1

;IF BN<O THEN PRINT BV:BN=7

;YO <> 0 THEN GOTO NXTY

;IF XO< SCRSIZEX THEN GOTO NXTY DO NEXT SCANLINE

CMP SCRSIZEX+l
BNE NXTXTR

HCERRR
JSR CLRCHN
LDA #4
JMP CLOSE

NXTXTR
_ JMP NXTXR

Chapter Eleven

PRTESCR
LDX #0

1$
LDA ESCDATR, X
PHP
AND #$7F
JSR CHROUT
INX
PLP
BPL 1$
RTS

GETPIXR
LDA YO

1$

CMP SCRSIZEY
LDA YO+1
SBC SCRSIZEY+1
BCS 1$
JSR CLCADR
JSR GETPIXSTAT
AND MASK
BEQ 1$
SEC
RTS

CLC
RTS

ESCDATR

(138)

.BYT 27,71, '1;110;1;2' ,27,90+$80
HTABLR

.BYT 1,2,4,8 ;TRANSLATE HT OF l,2,J,4 TO 1,2,4,8
NUMSL

. BYT 0,0

,END

Chapter Eleven

(139)

STAR NX-10C

This printer driver is on your BASIC 8.0 disk with the name

P.HC-NX-10C. This is not the default driver built into the BASIC

S.O system, so it is necessary to install it with the command

BLOAD "P.HC-NX-10C",BO,P26064.

The secondary address to use is 8.

This driver can use the full range of heights (1-4) in the

height parameter of @HCOPY, but only 2 densities are supported by

the NX-IOC. For a 640 x 200 pixel screen a height of 2 with a

density of 2 gives a very good proportional hardcopy of the

screen. Or use a height of 1 with a density of 1 and your 640 x

200 image prints just about the size of a small envelope. The

NX-10C can print unrotated images upto 1280 horizontal pixels

wide.

You can also print your images rotated 90 degrees, which is

very useful if the screen is more than 1280 pixels wide. Just

set the rotation parameter to one and the picture will be

rotated.

This is the source code (written with the Commodore C128

Assembler Development Package). If you have a near NX-10C

compatible printer that doesn't work quite right, it may be

possible for you (if you are a machine language programmer) to

convert it to a new driver for your printer.

This source code is supplied as a courtesy to all registered

BASIC 8.0 owners.

Chapter Eleven

(140)

NX-IOC BASIC 8.0 SOURCE CODE

HARD COPY
12/20/86

DAVID DARUS
HCD65
C-128

.PAGE
NAME
CREATED
UPDATED
AUTHOR
ASSEMBLER
COMPUTER
REMARKS BASIC 8 HARD COpy DRIVER FOR STAR NX-10C

X • 880 UNROTATED
=$6500

INCWRD .MACRO ?IARG1
INC ?IARG1
BNE 255$
INC ?IARG1+1

255$
.ENOM

DECWRO .MACRO ?DARG1
LDA ?DARG1
BNE 254$
DEC ?DARGl+1

254$
DEC ?OARG1

.ENDM

MMU $FFOO

CHROUT $FFD2
CLRCHN $FFCC
CLOSE $FFC3
SETLFS $FFBA
OPEN $FFCO
CHKOUT $FFC9

CLCADR
SWAPNYBL
GETPIXSTAT
GETCOLSTAT

$26A8
$250B
$2652
$266E

CURCOLOR
SCRCSIZE
SCRSIZEY
SCRSIZEX
XO
YO

$1318
$131A
$131C
$1324
$136B
$1360
$137B
$13EF
$13FO

MASK
PARM1
PARM2
PARM)
PARM4

- $13Fl
$13F2

MUlCOPY
LOA PARM4
BEQ 99$

Chapter Eleven

- (141)
JMP MLHCOPYR

99$
LOA PARMI
STA SECADR
LDA PARM2
STA HCHT
LDX PARM3 ;1=SINGLE 2=DOUBLE
OEX
LDA DENSITY ,X
STA ESCDAT+6

LDA SCRSIZEX
STA ESCOAT+7
LOA SCRSIZEX+l
STA ESCOAT+8

LOX HCHT
OEX
LDA CNVTHT,X
STA HCHT
LOA #El

2$
DEX
BMI 1$
LSR A
JMP 2$

1$ e STA STEP

LOA MMU
AND #$FE
STA MMU
JSR OPNCHN
LOA #7
STA BN
LOA #0
STA BV ;BYTE VALUE TO CHROUT 0
STA Yl ;1'0=0
STA 1'1+1

NXTY
JSR PRTESC ;DO FOR EACH ROW 8*HEIGHT
LDA #0
STA XO
STA XO+l

NXTX
LOA Yl
STA YO
LOA 1'1+1
STA 1'0+1
CLC
LDA YO
AOC STEP
STA ENDYO
LOA 1'0+1
ADC #0 e STA ENOl'O+1

NXTYO
LOA #0

Chapter Eleven

(142)
STA HTCNTR

NXTHT
JSR
ROL
DEC
BPL
LDA
JSR
LDA
STA
LDA
STA

GET PIX
BV
BN

GET PIXEL VALUE AT XO,YO IF XO>SCRSIZEX ANO <880 THEN CLC e
ROLL CARRY INTO BYTE VALUE 0 OR 1
BIT#=BIT#-l

1$
BV
CHROUT
#7

;IF BN<O THEN PRINT BV:BN=7

1$

BN
#0
BV

INC HTCNTR
LDA HTCNTR
CMP HCHT
BNE NXTHT
INCWRO YO
LOA YO
CMP ENOYO
BNE NXTYO
LOA YO+1
CMP ENOYO+l
BNE NXTYO

. LOCAL
INCWRD XO
LDA XO
CMP SCRSIZEX
BNE NXTX
LOA XO+1
CMP SCRSIZEX+l
BNE NXTX
CLC
LOA
AOC
STA
LOA
AOC
STA
LOA
CMP
LOA
SBC
BCC

Yl
STEP
Y1
Y1+1
#0
Y1+1
Y1
SCRSIZEY
Y1+1
SCRSIZEY+1
NXTYJ

;ESC

;IF XO< SCRSIZEX THEN GOTO NXTY

HCERR
LOA
JSR
LOA
JSR
JSR
LOA
JMP

'27
CHROUT
i'@
CHROUT
CLRCHN
H
CLOSE

;RESET CODE

NXTYJ
JMP NXTY

OPNCHN
LDA #0
STA $B7

Chapter Eleven

DO NEXT SCANLINE

LOX #4
TXA
LOY SECADR
JSR SETLFS
JSR OPEN
LOX 14
JMP CHKOUT

PRTESC
LOX #0

1$
LOA ESCOAT,X
JSR CHROUT
INX
CPX ~8
BNE 1$
RTS

GETPIX
LOA YO
CMP SCRSIZEY
LOA YOTI
SBC SCRSIZEY+l
BCS IS
JSR CLCADR
JSR GETPIXSTAT
AND MASK
BEQ 1$
SEC
RTS

1$
CLC
RTS

ESCDAT

(143)

.BYT 13,27, '3' ,21,27, 'K' ,<640,>640
CNVTHT

.BYT 1,2,4,8
DENSITY

• BYT 'K',' L'

SECADR
.BYT 0

HCHT
.BYT 0

BN
.BYT 0

B",,~

.BYT 0
HTCNTR

.BYT 0
STEP

.BYT 0
ENDYO

.BYT 0,0
Yl

.BYT 0,0

;TRANSLATE HT OF 1,2,3,4 TO 1,2,4,8

Chapter Eleven

MIJlCOPYR

4$

3$

LOA PARMl
STA SECAOR
LOA PARM2
STA HCHT
LOX PARM3
OEX
LOA DENSITY,X
STA ESCOAT+6

LOA SCRSIZEY
STA ESCOAT+7
LOA SCRSIZEY+l
STA ESCOAT+8
LOX HCHT
OEX
LOA ESCOAT+7

OEX
BMI 3$
ASL A
ROL ESCOAT+8
JMP 4$

STA ESCOAT+7

LOX HCHT
OEX
LOA CNVTHT,X
STA HCHT
LOA #8
STA STEP

LOA MMU
ANO ,SFE
STA MMU
JSR OPNCHN
LDA #7
STA BN
LOA #0

(144)

STA BV ;BYTE VALUE TO CHROUT 0
STA Xl ;Xl=O
STA Xl+l

NXTX1R
JSR PRTESC ;00 FOR EACH ROW 8*HEIGHT
LOA SCRSIZEY
STA YO
LOA SCRSIZEY+l
STA YO+l
OECWRO YO

NXTYR
LOA #0
STA HTCNTR

NXTHTR
LOA Xl
STA XO

Chapter Eleven

(145) - LOA Xl+l
STA XO+l
CLC
LOA XO
AOC STEP
STA ENOXO
LDA XO+l
AOC ;0
STA ENOXO+l

NXTXR
JSR GETPIX ;GET PIXEL VALUE AT XO,YO IF XO>SCRSIZEX AND <880 THEN CLC
ROL BV ;ROLL CARRY INTO BYTE VALUE o OR 1
DEC BN ;BIT~=BIT~-l
BPL 1$
LOA BV ;IF BN<O THEN PRINT BV:BN=7
JSR CHROUT
LOA n
STA BN
LOA ;0
STA BV

1$
INCWRO XO
LOA XO
CMF ENOXO
BNE NXTXR
LOA XO+l
CMP ENOXO+l
BNE NXTXR - INC HTCNTR
LOA HTCNTR
CMP HCHT
BNE NXTHTR

. LOCAL
OECWRO YO
LOA YO
CMF ~$FF
BNE NXTYR ;IF Y o THEN GOTO NXTY DO NEXT SCANLINE
LOA YO+l
CMP tSFF
BNE NXTYR
CLC
LOA Xl
AOC STEP
STA Xl
LOA Xl+l
AOC #0
STA Xl+l
LOA Xl
CMP SCRSIZEX
LOA Xl+l
SBC SCRSIZEX+l
BCC NXTXJR

HCERRR
LOA #27 ;ESC
JSR CHROUT
LOA ~ I {l ;RESET CODE - JSR CHROUT
JSR CLRCHN

Chapter Eleven

LOA #4
JMP CLOSE

NXTXJR
JMP NXTXIR

ENDXO
• BYT 0,0

Xl
• BYT 0, a

.END

(146)

Chapter Eleven

(147)

MANNESMANN TALLY SPIRIT 80

This printer driver is on your BASIC 8.0 disk with the name

P.HC-SPIRITBO. This is not the default driver built into the

BASIC B.O system, so it is necessary to install it with the

command BLOAD "P.HC-SPIRITBO",BO,P26064.

"The secondary address to use is 5, if you are using the

CARDCO G or G-WIZ interfaces. Other interfaces may require a

different secondary address.

This driver can use the full range of heights (1-4) in the

height parameter of @HCOPY, but only 2 densities are supported by

the SPIRIT 80. For a 640 x 200 pixel screen a height of 2 with a

density of 2 gives a very good proportional hardcopy of the

screen. Or use a height of 1 with a density of 1 and your 640 x

200 image prints just about the size of a small envelope. The

SPIRIT 80 can print un rotated images upto 1280 horizontal pixels

wide.

You can also print your images rotated 90 degrees, which is

very useful if the screen is more than 1280 pixels wide. Just

set the rotation parameter to one and the picture will be

rotated.

This is the source code (written with the Commodore C128

Assembler Development Package). If you have a near SPIRIT 80

compatible printer that doesn't work quite right, it may be

possible for you (if you are a machine language programmer) to

convert it to a new driver for your printer.

This source code is supplied as a courtesy to all registered

BASIC B.O owners.

Chapter Eleven

(148)
KANNESKANN TALLY SPIRIT 80 BASIC 8.0 SOURCE CODE

HARD COPY
12/20/86

DAVID DARtJS
HCD65
C-l28

. PAGE
NAME
CREATED
UPDATED
AUTHOR
ASSEMBLER
COMPUTER
REMARKS BASIC 8 HARD COPY DRIVER FOR SPIRIT80

X * 880 UNROTATED
;$65DO

INCWRD .MACRO ?IARG1
INC ?IARGI
BNE 255$

255$
.ENDM

INC ?IARGh1

DECWRD .MACRO ?DARG1
LDA ?DARG1
BNE 254$
DEC ?DARG1+1

254$
DEC ?DARG1

.ENDM

MMU $FFOO

CHROUT $FFD2
CLRCHN $FFCC
CLOSE $FFC3
SETLFS $FFBA
OPEN $FFCO
CHKOUT $FFC9

CLCADR
SWAPNYBL
GETPIXSTAT
GETCOLSTAT

CURCOLOR
SCRCSIZE
SCRSIZEY
SCRSIZEX
XO
YO
MASK
PARMI
PARM2
PARM3
PARM4

MLHCOPY
LOA PARM4
BEQ 99$

$26A8
$25DB
$2652
$266E

$1318
$131A
$131C
$1324
$136B
$1360
$137B
$13EF
$13FO
$13Fl
$13F2

JMP MLHCOPYR
Chapter Eleven

(149)

e 99$
LOA PARMl
STA SECAOR
LOA PARM2
STA HCHT
LOX PARM3 ;l=SINGLE 2=DOUBLE
OEX
LOA OENSITY, X
STA ESCOAT+5

LOA SCRSIZEX
STA ESCOAT+6
LOA SCRSIZEX+l
STA ESCOAT+7

LOX HCHT
OEX
LOA CNVTHT,X
STA HCHT
LDA #8

2$
OEX
BMI 1$
LSR A
JMP 2$

1$
STA STEP

e LOA MMU
ANO #$FE
STA MMU
JSR OPNCHN
LDA #7
STA BN
LDA #0
STA BV ;BYTE VALUE TO CHROUT 0
STA Y1 ;YO=O
STA Y1+l

NXTY
JSR PRTESC ;00 FOR EACH ROW 8*HEIGHT
LOA #0
STA XO
STA XO+1

NXTX
LOA Yl
STA YO
LDA Yl+l
STA YO+l
CLC
LOA YO
AOC STEP
STA ENDYO
LOA YO+l
AOC #0
STA ENOYO+l

NXTYO

e LOA #0
STA HTCNTR

Chapter Eleven

NXTHT
JSR
ROL
OEC
BPL
LOA
JSR
LOA
STA
LOA
STA

GETPIX
BV

(150)

;GET PIXEL VALUE AT XO,YO IF XO>SCRsr:EX ANO <880 THEN CLC ~
;ROLL CARRY INTO BYTE VALUE 0 OR 1

BN ;BIT#=BIT#-1
1$
BV
CHROUT
#7

;IF BN<O THEN PRINT BV:BN=7

BN
#0
BV

1$
INC HTCNTR
LOA HTCNTR
CMP HCHT
BNE NXTHT
INCWRO YO
LOA YO
CMP ENOYO
BNE NXTYO
LOA YO+1
CMP ENOYO+1
BNE NXTYO

. LOCAL
INCWRO XO
LOA XO
CMP SCRSIZEX
BNE NXTX
LOA XO+1
CMP SCRSIZEX+1
BNE NXTX
CLC
LOA
AOC
STA
LDA
AOC
STA
LOA
CMP
LOA
SBC
BCC

HCERR
JSR
LOA
JMP

NXTYJ
JMP

Y1
STEP
Yl
Y1+1
~O

Yl+l
VI
SCRSIZEY
Y1+1
SCRSIZEY+l
NXTYJ

CLRCHN
#4
CLOSE

NXTY

OPNCHN
LOA to
STA $B7
LOX #4
TXA
LOY SECAOR
JSR SETLFS
JSR OPEN

;IF XO< SCRSIZEX THEN GO TO NXTY

Chapter Eleven

00 NEXT SCANLINE

LOX H
JMP CHI(OUT

PRTESC

1$
LOX #0

LOA ESCOAT,X
JSR CHROUT
INX
CPX #8
BNE 1$
RTS

GETPIX
LOA YO

1$

CMP SCRSIZEY
LOA YO+1
SBe SCRSIZEY+1
BCS 1$
JSR CLCAOR
JSR GETPIXSTAT
AND MASI('
BEQ 1$
SEC
RTS

CLC
RTS

ESCOAT

(151)

.BYT 13,10,27,'1',27,'1(',<640,>640
CNVTHT

.BYT 1,2,4,8
DENSITY

.BYT '1(', 'L'

SECADR
.BYT 0

HCHT
.BYT 0

BN
.BYT 0

BV
.BYT 0

HTCNTR
.BYT 0

STEP
.BYT 0

ENDYO
.BYT 0,0

Y1
.BYT 0,0

MLHCOPYR
LOA PARM1
STA SECAOR

;TRANSLATE HT OF 1,2,3,4 TO 1,2,4,8

Chapter Eleven

4$

3$

LOA PARM2
STA HCHT
LOX PARM3
DEX
LDA DENSITY,X
STA ESCOAT+5

LOA SCRSIZEY
STA ESCDAT+6
LDA SCRSIZEY+l
STA ESCDAT+7
LOX HCHT
DEX
LOA ESCDAT+6

DEX
BMI 3$
ASL A
ROL ESCDAT+7
JMP 4$

STA ESCOAT+6

LDX HCHT
OEX
LOA CNVTHT,X
STA HCHT
LOA #8
STA STEP

LOA MMU
AND #$FE
STA MMU
JSR OPNCHN
LOA #7
STA BN
LOA #0

(152)

;l=SINGLE 2=DOUBLE

STA BV ; BYTE Ii:," J[TO CHROUT 0
STA Xl ;Xl~O

STA Xl+l
NXTXIR

JSR PRTESC ;DO fOR EACH ROW 8*HEIGHT
LOA SCRSIZEY
STA YO
LOA SCRSIZEY+l
STA YO+l
DECWRD YO

NXTYR
LOA #0
STA HTCNTR

NXTHTR
LOA Xl
STA XO
LOA X1+l
STA XO+l
CLC
LOA XO
AOC STEP

Chapter Eleven

_ STA
LOA
AOC
STA

ENOXO
XO+l
#0
ENOXO+1

NXTXR
JSR
ROL
OEC
BPL
LOA
JSR
LOA
STA
LOA
STA

GETPIX
BV
BN
1$
BV
CHROUT
#7
BN
#0
BV

1$
INCw"RO XO
LOA XO
CMP ENOXO
BNE NXTXR
LOA XO+1
CMP ENOXO+1
BNE NXTXR
INC HTCNTR
LOA HTCNTR
CMP HCHT
BNE NXTHTR

• LOCAL
_ OECWRO YO

LOA YO
CMP #$FF
BNE NXTYR
LOA YO+1
CMP #$FF
BNE NXTYR
CLC
LOA Xl
AOC STEP
STA Xl
LOA Xl+l
AOC #0
STA Xl+l
LOA Xl
CMP SCRSIZEX
LOA Xl+l

(153)

;GET PIXEL VALUE AT XO,YO IF XO>SCRSIZEX ANO <880 THEN CLC
;ROLL CARRY INTO BYTE VALUE 0 OR 1
;BIT#=BIT#-l

;IF BN<O THEN PRINT BV:BN=7

;IF Y o THEN GOTO NXTY 00 NEXT SCAN LINE

SBC SCRSIZEX+l
BCC NXTXJR

HCERRR
JSR CLRCHN
LOA #4
JMP CLOSE

NXTXJR
JMP NXTX1R

ENOXO
.BYT _Xl

•. BYT

0,0

0,0
Chapter Eleven

(154)

.END

Chapter Eleven

(155)

GEMINI II

This printer driver is on your BASIC 8.0 disk with the name

P.HC-GEMINI2. This is not the default driver built into the

BASIC 8.0 system, so it is necessary to install it with the

command BLOAD "P.HC-GEMINI2",BO,P26064.

The secondary address to use is 8.

This driver can only use the range of heights (1-2) in the

height parameter of @HCOPY, and only 2 densities are supported by

the GEMINI II. For a 640 x 200 pixel screen a height of 2 with a

density of 2 gives a very good proportional hardcopy of the

screen, although the image is always rotated 90 degrees. Or use

a height of 1 with a density of 1 and your 640 x 200 image prints

just about the size of a small envelope. The GEMINI II can only

print unrotated images upto 480 horizontal pixels wide, and

since the smallest screen is at least 640 pixels wide the image

is always rotated.

This is the source code (written with the Commodore C128

Assembler Development Package). If you have a near GEMINI II

compatible printer that doesn't work quite

possible for you (if you are a machine language

convert it to a new driver for your printer.

right, it may be

programmer) to

This source code is supplied as a courtesy to all registered

BASIC 8.0 owners.

Chapter Eleven

(156)
GEMINI II BASIC 8.0 SOURCE CODE

HARD COPY
12/20/86

DAVID DARUS
HCD65
C-128

. PAGE
NAME
CREATED
UPDATED
AUTHOR
ASSEMBLER
COMPUTER
REMARKS BASIC 8 HARD COpy DRIVER FOR GEMINI EE

X * 480 ROTATED
=$65DO

INCWRD .MACRO ?IARGl
INC ?IAPGI
BNE 255$

255$
.ENDM

INC ?IARGI+I

DECWRD .MACRO ?DARGI
LOA ?DARG1
BNE 254$
DEC ?DARG1+1

254 $
DEC ?DARG1

.ENDM

MMU $FFOO

CHROUT =
CLRCHN
CLOSE
SETLFS
OPEN
CHKOUT

$FFD2
$FFCC
$FFC3
$FFBA
$FFCO
$FFC9

CLCADR
SWAPNYBL
GETPIXSTAT
GETCOLSTAT

$26A8
$25DB
$2652
$266E

CUR COLOR
SCRCSIZE
SCRSIZEY
SCRSIZEX
XO
YO
MASK
PARM1
PARM2
PARM3
PARM4

MLHCOPY

$1318
$131A
$131C
$1324
$136B
$1360
$137B
$13EF

'" $l3FO
$l3F1

'" $13F2

LOA PARMI
STA SECADR
LOA PARM2

Chapter Eleven

- (157)
STA HCHT
LOX PARM3 1-2
OEX CONVERTED TO 0-1
LDA DENSITY,X DENSITY CODE 8 OR 9
STA ESCOAT+l

LOA #7
STA STEP

LOA MMU
AND #$FE
STA MMU
JSR OPNCHN
LOA #6
STA BN
LOA #0
STA BV ;BYTE VALUE TO CHROUT 0
STA Xl ;Xl=O
STA Xl+l

NXTXl
JSR PRTESC
LOA SCRSiZEY
STA YO
LDA SCRSIZEY+l
STA YO+l
OECWRD YO

NXTY - LOA #0
STA HTCNTR

NXTHT
LOA Xl
STA XO
LOA Xl+l
STA XO+l
CLC
LOA XO
AOC STEP
STA ENDXO
LOA XO+l
AOC #0
STA ENDXO+l

NXTX
JSR GETPIX GET PIXEL VALUE AT XC, YO IF XO>SCRSIZEX AND <880 THEN CLC
ROR BV ROLL CARRY INTO BYTE VALUE o OR 1
OEC BN BIT#=BITp-l
BPL 1$
SEC
ROR BV
LOA BV ;IF BN<O THEN PRINT BV:BN=7
JSR CHROUT
LDA #6
STA BN
LOA #0
STA BV

1$ - INCWRO XO
LOA XO
CMP ENOXO

Chapter Eleven

BNE NXTX
LDA XO+l
CMP ENDXO+l
BNE NXTX
INC HTCNTR
LDA HTCNTR
CMP HCHT
BNE NXTHT

. LOCAL
OECWRO YO
LOA YO
CMP #$FF
BNE NXTY
LOA YO+l
CMP #$FF
BNE NXTY
CLC
LOA Xl
AOC STEP
STA Xl
LOA Xl+l
AOC #0
STA Xl+l
LOA Xl
CMP SCRSIZEX
LOA Xl+l
SBC SCRSIZEX+l
BCC NXTXJ

HCERR
LOA #13
JSR CHROUT
LOA #15
JSR CHROUT
JSR CLRCHN
LOA #4
JMP CLOSE

NXTXJ
JMP NXTXl

OPNCHN
LOA #0
STA $B7
LDX #4
TXA
LDY SECADR
JSR SETLFS
JSR OPEN
LDX #4
JMP CHKOUT

PRTESC
LDX #0

1$
LDA ESCDAT,X
JSR CHROUT
INX
CPX #2
BNE 1$

(158)

;IF Y o THEN GOTO NXTY DO NEXT SCANLINE

;CARRIAGE RETURN TO CLEAR OUT BUFFER

;SET TO NORMAL TEXT MODE

Chapter Eleven

e

RTS

GETPIX
LOA XO
CMP SCRSIZEX
LOA XO+1
SBC SCRSIZEX+1
BCS 1$
JSR CLCADR
JSR GETPIXSTAT
AND MASK
BEQ 1$
SEC
RTS

1$
CLC
RTS

ESCDAT

(159)

.BYT 13,8 ;CR,GRAPHIC MODE

SECADR
.BYT 0

HCHT
.BYT 0

HTCNTR
.BYT 0

DENSITY
.BYT B,9

BN
.BYT 0

BV
.BYT 0

STEP
.BYT 0

ENDXO
.BYT 0,0

Xl
.BYT 0,0

.END

Chapter Eleven

(160)

MPS B01/SEIKOSHA lOOO/GEMINI lOX

This printer driver is on your BASIC B.O disk with the name

P.HC-KPSB01. This is not the default driver built into the BASIC

B.O system, so it is necessary to install it with the command

BLOAD "P.BC-KPSB01",BO,P26064.

The secondary address to use is 8 for the MPS 801, 8 for

the GEMINI lOX and 0 for the SEIKOSHA.

This driver can only use the range of heights (1-2) jn the

height parameter of @HCOPY, and only 1 density is supported by

these printers. For a 640 x 200 pixe: screen a height of 2 with

a density of gives a very good proportional hardcopy of the

screen, although the image is always rotated 90 degrees. Or use

a height of 1 with a density of 1 and your 640 x 200 image prints

just about the size of a small envelope. The MPS 801 and

compatibles can only print unrotated images upto 480 horizontal

pixels wide, which is why the image is always rotated.

This is the source code (written with the Co~~odore C128

Assembler Development Package). If you have a near MPS 801

compatible printer that doesn't work quite right, it may be

possible for you (if you are a machine language programmer) to

convert it to a new driver for your printer.

This source code is supplied as a courtesy to all registered

BASIC B.O owners.

Chapter Eleven

(161)
MPS SOl/SEIKOSHA 1000/GEMINI lOX BASIC S.O SOURCE CODE

HARD COpy
12/20/86

DAVID DARUS
HCD65

. PAGE
NAME
CREATED
UPDATED
AUTHOR
ASSEMBLER
COMPUTER
REMARKS

C-128
BASIC 8 HARD COpy DRIVER FOR MPS-801,SEIKOSHA,GEMINI lOX

X * 480 ROTATED
=$6500

INCWRD .MACRO ?IARGI
INC ?IARGI
BNE 255$

255$
.ENDM

INC ?IARGl+l

DECWRO .MACRO ?DARGI
LOA ?DARGI
BNE 254$
DEC ?DARGl+l

254$
DEC ?DARGI

.ENOM

MMU $FFOO

CHROUT $FF02
CLRCHN $FFCC
CLOSE $FFCJ
SETLFS $FFBA
OPEN $FFCO
CHKOUT $FFC9

CLCAOR
SWAPNYBL
GETPIXSTAT
GETCOLSTAT

$26A8
$250B
$2652
$266E

CURCOLOR
SCRCSIZE
SCRSIZEY
SCRSIZEX
XO
YO
MASK
PARM1
PARM2
PARMJ
PARM4

MLHCOPY

$1318
$131A
$131C
$1324
$136B
$1360
$137B
$13EF
$lJFO
$1JF1
$lJF2

LOA PARMI
STA SECAOR
LDA PARM2

Chapter Eleven

STA HCHT

LOA #7
STA STEP

MMU
#$FE
MMU
OPNCHN
#6
BN
#0

(162)

LOA
ANO
STA
JSR
LDA
STA
LOA
STA
STA
STA

BV
Xl
Xl+l

;BYTE VALUE TO CHROUT
;Xl=O

NXTXl
JSR PRTESC
LOA SCRSIZEY
STA YO
LOA SCRSIZEY+l
STA YO+l
OECWRO YO

NXTY
LOA #0
STA HTCNTR

NXTHT
Xl
XO
Xl+l
XO+l

LOA
STA
LOA
STA
CLC
LOA XO
AOC STEP
STA ENOXO
LOA XO+l
AOC #0
STA ENOXO+l

o

NXTX
JSR
ROR
OEC
BPL
SEC
ROR
LOA
JSR
LOA
STA
LOA
STA

GETPIX
BV

;GET PIXEL 'lALUE AT XO, YO IF XO>SCRSIZEX ANO <880 THEN CLC
; ROLL CARRY INTO BYTE VALUE 0 OR 1

1$

BN
1$

BV
BV
CHROUT
#6
BN
#0
BV

INCWRO XO
LOA XO
CMP ENOXO
BNE NXTX
LOA XO+l
CMP ENOXO+l
BNE NXTX

;BIT#=BIT#-l

;IF BN<O THEN PRINT BV:BN=7

Chapter Eleven

e (163)
INC HTCNTR
LOA HTCNTR
CMP HCHT
BNE NXTHT

. LOCAL
OECWRO YO
LOA YO
CMP #$FF
BNE NXTY ;IF Y o THEN GO TO NXTY 00 NEXT SCAN LINE
LDA YO+l
CMP #$FF
BNE NXTY
CLC
LOA Xl
AOC STEP
STA Xl
LOA Xl+l
AOC #0
STA Xl+l
LOA Xl
CMP SCRSIZEX
LOA Xl+l
SBC SCRSIZEX+l
BCC NXTXJ

HCERR
LOA #13
JSR CHROUT

e LOA #15
JSR CHROUT
JSR CLRCHN
LOA #4
JMP CLOSE

NXTXJ
JMP NXTXl

OPNCHN
LOA #0
STA $B7
LOX #4
TXA
LOY SECAOR
JSR SETLFS
JSR OPEN
LOX #4
JMP CHKOUT

PRTESC
LOX #0

1$
LOA ESCOAT,X
JSR CHROUT
INX
CPX #2
BNE 1$
RTS e GETPIX
LOA XO

Chapter Eleven

CMP SCRSIZEX
LOA XO+l
SBC SCRSIZEX+l
BCS 1$
JSR CLCADR
JSR GETPIXSTAT
AND MASK
BEQ 1$
SEC
RTS

1$
CLC
RTS

(164)

ESCDAT
.BYT 13,8 ;CR,GRAPHIC MODE

SECADR
.BYT 0

HCHT
.BYT a

HTCNTR
.BYT a

BN
.BYT a

BV
.BYT a

STEP
.BYT a

ENDXO
. BYT 0,0

Xl
. BYT 0,0

.END

Chapter Eleven

(165)

CANNON PJ-10BOA

This printer driver is on your BASIC 8.0 disk with the name

P.RC-CANNON. This is not the default driver built into the BASIC

8.0 system, so it is necessary to install it with the command

BLOAD "P.RC-CANNON",BO,P26064.

The CANtlON PJ1080A 1S a special printer because it is a

color inkjet printer. It allows the BASIC 8.0 user to generate a

reasonable quality color hardcopy at a minimal cost. It supports

only 8 colors, while the C128 80 column screen has 16 colors.

However, the C128's 16 colors are really only 8 colors in two

intensities, so the two shades will print out as one color. For

example, red and light red both print as red.

The secondary address we used for the CARDCO G and G-WIZ

interfaces is 5. Other printer interfaces may require a

different secondary address.

This driver can use the full range of heights (1-4) in the

height parameter of @HCOPY, but only 1 density is supported by

the CANNON FJ1080A. For a 640 x 200 pixel screen a height of 2

with a density of 1 gives a very good proportional hardcopy of

the screen. Or use a height of 1 with a density of 1 and your

640 x 200 image prints just about the size of a large business

envelope. The CANNON PJ1080A can print images upto 640

horizontal pixels wide.

The CANNON PJ1080A driver does not support the rotation

parameter. Images greater than 640 cannot be printed.

This is the source code (written with the Commodore C128

Assembler Development Package). If you have a near CANNON

PJ1080A compatible printer that doesn't work quite right, it may

be possible for you (if you are a machine language programmer) to
Chapter Eleven

(166)

convert it to a new driver for your printer.

This source code is supplied as a courtesy to all registered

BASIC 8.0 owners.

CANNON PJIOBOA BASIC B.O SOURCE CODE
. PAGE

; NAME
; CREATED
; UPDATED
; AUTHOR

HARD COPY
12/09/86

DAVID DARUS
HCD65
C-128

; ASSEMBLER
; COMPUTER
; REMARKS BASIC 8 HARD COPY DRIVER FOR CANNON PJ-1080A

640 * Y UNROTATED COLOR INK JET
*=$65DO

INCWRD .MACRO ?IARG1

255$
.ENDM

INC ?IARG1
BNE 255$
INC ?lARG1+1

DECWRD .MACRO ?DARG1
LOA ?OARGl
BNE 254$
DEC ?OARG1+l

254$
DEC ?DARG1

.ENDM

MMU $HOO

CHROUT $FF02
CLRCHN $FFCC
CLOSE $FFC3
SETLFS $FFBA
OPEN $FFCO
CHKOUT $FFC9

CLCADR
SWAPNYBL
GETPIXSTAT
GETCOLSTAT

$26A8
$25D6
$2652
$266E

CURCOLOR
SCRCSIZE
SCRSIZEY
SCRSIZEX
XO
YO
MASK
PARM1
PARM2

$1318
$131A
$131C
$1324
$1366
$136D

= $1376
$13EF
$13FO

Chapter Eleven

e pARM3
PARM4

(167)

MUlCOPY

$l3Fl
$l3F2

LOA PARM1
STA SECAOR
LOA PARM2
STA ESCOAT+2

MMU
#$FE
MMU
OPNCHN
#7
BN
#0

;HEIGHT

LDA
ANO
STA
JSR
LOA
STA
LOA
STA
STA
STA

BV ;BYTE VALUE TO CHROUT

NXTY
LOA
STA
JSR

6$

YO
YO+1

#0
RGBMOOE
PRTESC

LOA #0
STA XO

;YO=O

;00 FOR EACH ROW

o

8*HEIGHT

e STA XO+1
2$

JSR GETPIX
ROL BV

;GET PIXEL VALUE AT XO,YO IF XO>SCRSIZEX ANO <880 THEN CLC
;ROLL CARRY INTO BYTE VALUE a OR 1

1$

OEC BN
BPL 1$
LOA BV
JSR CHROUT
LOA #7
STA BN
LOA #0
STA BV

INCWRO XO
LOA XO
CMP ~<640
BNE 2$
LOA XO+1
CMP #>640
BNE 2$
INC RGBMOOE
LOA RGBMOOE
CMP #3

;BIT'=BIT;-l

;IF BN<O THEN PRINT BV:BN=7

;XO<640 THEN GOTO 2$

BNE 6$;REPEAT SCANLINE TO GET 3 (RGB) COLOR ELEI1ENTS
. LOCAL

INCWRO YO
LDA YO
CMP SCRSIZEY
BNE NXTY
LDA YO+1
CMP SCRSIZEY+1
BNE NXTY

;IF YO< SCRSIZEY THEN GOTO NXTY 00 NEXT SCANLINE

Chapter Eleven

HCERR
JSR CLRCHN
LOA #4
JMP CLOSE

OPNCHN
LOA #0
STA $B7
LOX #4
TXA
LOY SECAOR
JSR SETLFS
JSR OPEN
LOX #4
JMP CHKOUT

PRTESC
LOX #0

1$
LOA ESCOAT,X
JSR CHROUT
INX
CPX #4
BNE 1$
RTS

GETPIX

1$

2$

3$

JSR CLCAOR
LOA SCRCSIZE
BEQ 1$
JSR GETCOLSTAT
JSR SWAPNYBL
JMP 2$

LOA CURCOLOR

STA HCOPYCOLR
JSR GETPIXSTAT
AND MASK
BEQ 3$
LOA HCOPYCOLR
LSRA
LSRA
LSRA
LSRA
JMP 4$

LOA HCOPYCOLR
AND H00001111

4$
TAX
LOA RGBMOOE
BEQ 5$
CMP U
BEQ 6$
LOA BLUETAB,X
BEQ 10$
BNE 11$

(168)

X,Y TO AD DR
COLOR SCREEN
BR IF MONO
GET BC/FC
SWAP TO FC/BC

;GET CURRENT FC/BC

;SAVE COLOR NYBBLES
;GET PIXEL ON/OFF STAT

;BR IF OFF
;USE FC BECAUSE PIXEL IS ON
;PUT ON 0-15 SCALE TO BE USED AS AN INDEX

;USE BG

;O=RED l=GREEN 2=BLUE

Chapter Eleven

6$

5$

LOA GREENTAB,X
BEQ 10$
BNE 11$

LOA REDTAB,X
BEQ 10$

11$
SEC
RTS

10$
CLC
RTS

REDTAB

(169)

. BYT 0, 0, 0, 0, 0, 0,0, 0, 1, 1, 1, 1, 1, 1,1, 1

GREENTAB
.BYT 0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1

BLUETAB
. BYT 0, 0, 1, 1, 0, 0, I, 1,0, a , 1, 1,0,0, 1, 1

ESCDAT
.BYT 27,114,0,80

SECADR
.BYT 0

BN
.BYT 0

BV
.BYT 0

RGBMODE
.BYT 0

HCOPYCOLR
.BYT 0

.END

Chapter Eleven

(170)

PRINTER DRIVER SEC ADR* SIZE DENSITY ORIENTATION KAXX

EPSON FX-80 P.HC-EPSON 5 1-4 1-7 B 1920
PANASONIC P.HC-EPSON 5 1-4 1-7 B 1920
STAR NX-l0 P.HC-EPSON 5 1-4 1-7 B 1920

OLIVETTI P.HC-OLIVETTI 5 1-4 1 B 880

STAR NX-10C P.HC-NX-10C 8 1-4 1-2 B 1280

SPIRIT 80 P.HC-SPIRIT80 5 1-4 1-2 B 1280

GEMINI II P.HC-GEMINI2 8 1-2 1-2 R 480

MPS 801 P.HC-MPSBOl 8 1-2 1 R 480
SEIKOSKA P.HC-MPS801 0 1-2 1 R .SO
GEMINI lOX P.HC-MPS801 8 1-2 1 R 480

CANNON PJ P.HC-CANNON 5 1-4 1 U 640

SYNTAX OF ~HCOPY

@HCOPY,SEC ADR,SIZE,DENSITY,ROTATION

* Where a printer interface is required, these secondary addresses
represent the values required with the CARDCO B, G+ and G-WIZ
interface. Other interfaces may require different secondary
address values.

Chapter Eleven

-

(171)
PRINTER DRIVER PSEUDO-CODE

The following program code segments represent pseudo-code,

which means it is not any specific computer language. Rather, it

is meant to demonstrate programming techniques and logic. These

pseudo-code segments describe the logic required for various

printer drivers, and they are here to make it easier to

understand the supplied assembly language source code.

There are several examples, some of which are appropriate

for several printers.

OLIVETTI UNROTATED
FOR Y-O TO SCRSIZEY

FOR HTMULT=O TO HGHT
FOR X=O TO SCRSIZEX

GETPIXEL(X,Y)
BUILDBYTE ; RIGHT TO LEFT
BIT#=BITHl
IF BIT#=8 THEN PRINT BYTE:BIT#=O

NEXT X
NEXT HTMULT

NEXT Y

OLIVETTI ROTATED
FOR X-O TO SCRSIZEX

FOR Y=SCRSIZEY TO 0 STEP -1
FOR HTMULT=O TO HGCT

GETPIXEL(X,Y)
BUILDBYTE ;RIGHT TO LEFT
BI,T#=BITH1
IF BIT#=8 THEN PRINT BYTE:BIT#=O

NEXT HTMULT
NEXT Y

NEXT X

EPSON,PANASON~C,SPIRITBO,NX-IO,NX-IOC UNROTATED
INCRM-2'(HEIGHT-1)
FOR Y=O TO SCRSIZEY STEP INCRM

FOR x=o TO SCRSIZEX
FOR TEMPY=Y TO Y+INCRM

FOR HT=O TO HEIGHT
GETPIXEL(X,Y)
BUILDBYTE ; RIGHT TO LEFT
BITt=BITt+l
IF BIT'=8 THEN PRINT BYTE:BIT#=O

NEXT HT
NEXT TEMPY

NEXT X
NEXT Y

Chapter Eleven

(172)
EPSON,PANASONIC,SPIRIT80,NX-10,NX-1CC ROTATED
INCRM=2" (HEIGHT-1)
FOR X=O TO 8CRSIZEX STEP INCRM

FOR Y=SCRSIZEY TO 0 STEP -1
FOR HT=O TO HEIGHT

FOR TEMPX=X TO X+INCRM
GETPIXEL(X,Y)
BUILDBYTE ; RIGHT TO LEFT
BIT'=BITf+1
IF BIT'=8 THEN PRINT BYTE:BIT#=O

NEXT TEMPX
NEXT HT

NEXT Y
NEXT X

GEMINI 2,KPS 801,SEIKOSHA 1000 ROTATED
BITt=6
FOR X=O TO SCRSIZEX

FOR Y=SCRSIZE TO 0 STEP -1
FOR HT=O TO HEIGHT

FOR TEMPX=X TO X+7
GETPIXEL(X,Y)
BIT'=BITt-l
BUILDBYTE , LEFT TO RIGHT
IF BITf=-l THEN PRINT BYTE:BIT'=6

NEXT TEMPX
NEXT HT

NEXT Y
NEXT X

CANNON PJ-1080A UNROTATED
FOR Y=O TO SCRSIZEY

FOR RGB=O TO 2
FOR X=Q TO 639

GETPIXEL(X,Y)
BIT'=BITHl
BUILDBYTE ; RIGHT TO LEFT
IF BITt=7 THEN PRINT BYTE:BIT#=O

NEXT X
NEXT RGB

NEXT Y

Chapter Eleven

(173)
APPENDIX A

The 8563 Video Chip
RAM Expansion

The 8563 Video Chip in the C128 has it's own ram bank

that it uses for displaying graphics. In the standard C128 there

is 16K of ram. This ram is in the form of two chips on the

motherboard of the C128, inside the small metal box that contains

the C128's two video chips (the 8563 and VIC II). These ram

chips are either ~~16 or 4164 rams. This means that each chip

contains 8192 bytes of ram (for a total of 16384 bytes). As you

have read in many places in this manual, you can use this 16K for

some interesting graphic displays, but we constantly mention the

option of having 64K of video ram installed (the new C128D comes

from the factory with this extra ram). Having the full 64K of

ram offers a great enhancement in your C128's graphics, as is

obvious throughout the BASIC B.O manual. What do you need to get

this extra ram and how should you have it installed?

To get the full 64K, you need to have the 4416's (or 4164'5)

replaced with a different ram chip, the 4464. This 4464 contains

32 Kbytes 0: ram per chip, so by substituting two of these for

the two 16 Kbyte ram chips increases your available 80 column

graphic ram to 64K. These 4464 rams can be found in ads for

computer chips in magazines like BYTE, COMPUTER SHOPPER and many

other magazines. You can also find them (or have them ordered)

by your local electronic parts store.

One problem in removing the old 4416 (or 4164) chips is the

fact the chips are not socketed. They are soldered to the board,

and the pins are crimped (bent) on the bottom. Removing them is

a tedious job that requires a skilled technician, and is not

something you should attempt yourself. It is very easy to damage

APPENDIX A

(174)
the board and ruin your C128, not somethlng you want to do. If

you decide to upgrade to the 64K video ram, we strongly suggest

you contact your local C8M service center and ask them to install

the 4464 ram chips. If you are not skilled at this type of work,

you can count on some serious harm coming to the computer. It

is that easy to damage!

Also, have the service center install sockets before they

put in the 4464 chips. This makes it easy to replace the chips

in the future (if you ever need to).

If you would like more technical information on replacing

your 8563 ram chips, there have been articles published in both

the Computer Shopper and Transactor magazines that detail their

installation.

A final warning. Do not attempt to change these ram chips

yourseltl Your most likely result will be serious damage to the

Cl2S. Have the 4464 rams installed at a reputable Commodore

service center.

APPENDIX A

e

(175)
APPENDIX B

a563 VIDEO RAM KEMORY MAPS
MODE's 0-3

The MODE command configures the available bitmap ram for the 8563

into 8 different screens per mode. In MODE 0 each screen represents

the one screen available in the 16K ram area. In MODE's 1-2 there are

some combinations that allow multiple concurrent screens. MODE 3,

while a 64K graphics ram mode, does not allow more than one screen to

ex:st at the same time because each screen uses the entire 64K ram

available.

The following memory maps show the memory usage of each screen

and mode. ·You can create screens like these by using the SCRDEF

command. For more information, see Chapter 10, the BASIC 8.0 COMMAND

ENCYLOPEDIA for inforrr.a-::ion on the MODE and SCRDEF commands.

MODE 0

Screen t ~ Width Height Bitmal2 Address Color Address

0 II 640 200 0-15999 0
1 C ax16 640 192 0-15359 15360
2 C ax8 640 176 0-14079 14080
3 C aX4 640 152 0-12159 12160
4 C ax2 640 104 0-8319 8320
5 C 8x8 Lace 640 176 0-14079 14080
6 C aX4 Lace 640 152 0-12159 12160
7 C 8x2 Lace 640 104 0-8319 8320

MODE 1

Screen t ~ width Height Bitmal2 Address Color Address

0 II 640 200 0-15999 0
1 C ax8 640 200 16000-31999 32000
2 C 8x2 640 200 34000-49999 50000
3 II 640 300 34000-33999 34000
4 C 8x8 640 200 0-15999 16000
5 C ax8 640 200 18000-33999 34000
6 C ax8 640 200 36000-51999 52000
7 C 8x8 640 728 0-58239 58240

APPENDIX B

(176)

MODE 2 e Screen t ~ width Height Bitmap Address color Address

0 l! 6~0 200 0-15999 0
1 l! 6~0 200 16000-31999 0
2 l! 6~0 200 32000-47999 0
3 l! 6~0 200 ~8000-63999 0
~ C 8x2 6~0 200 0-15999 16000
5 C 8x2 640 200 24000-39999 40000
6 C 8x4 640 200 24000-39999 40000
7 C 8X4 5~0 200 ~4000-59999 60000

MODE 3
Scre_"lL1 Type width Height ~ij:map Address Qolor~dress

0 H 1280 409 0-65439 0
1 M 640 819 0-65519 0
2 M 20~0 252 0-64259 0
3 M 800 655 0-65499 0
~ C 8''::2 540 546 0-43679 43680
5 C 8x4 6~0 655 0-52399 52400
6 C 8x8 640 728 0-58239 58240
7 C 8x16 640 768 0-61439 61440

APPENDIX B

(177)
Appendix C

BASIC 8.0 MEMORY MAP

ZERO PAGE LOCATIONS USED:

$9E,9P
$AC-$BS
$FA,PB,FC,FD

BUFFER AREA USED: $OFOO-$OFFF

. SYSTEM CODE: $1300-$6FFF

FREE USER BYTES: $1464-$146B

PRINTER DRIVERS: $65DO-$68CF

SOLID ROUTINES: $68DO - $6FFF

16 POINTER DEFINTIONS:16 bytes definable by user with pokes

'0 - $OEOO
U - $OE10
'2 - $OE20
13 - $OE30
U - $OE40 '5 - $OE50 '6 - $OE60
t7 - $OE70
#8 - $OE80
t9 - $OE90

flo - $OEAO
'11 - $OEBO
112 - $OECO
113 - $OEDO '14 - $OEEO
US - $OEFO

Pointers consist of a 16 pixel by 8 pixel matrix. For example:

1111111100000000
1111100000000000
1100110000000000
1100011000000000
0000001100000000
0000000110000000
0000000011000000
0000000001100000

255,0
248,0
204,0
198,0

3,0
1,128
0,192

0,96

However, by using the optional last parameter in the @PTR

command (see Chapter Ten) you can change the height used in the

pointer. The number is definable from 1 to 16, with the default

APPENDIX C

(178)
on powerup as 8. If you were to change the default by using the

value 16, all subsequent uses of the @PTR command would use 16

scanlines to define the pointer, until a different height value

is used.

If you wish, you can use the larger height values to create

bigger, sprite-like objects. In the case of a height of 16, each

of the new bigger pointers would consist of pairs of subsequent

pointers. In this case, a pointer defintion of 0 would use

pointer def's 0 and 1, a defintion of 2 would use pointer def's 2

and 3, etc.

If you create sets of pointer definitions you want to save

and reuse, remember that the pointer definitions are stored in

the same place as the 40 column sprite definitions. So you can

save and load them with the Basic 7.0 corr~ands BLOAD and BSAVE.

BLOAD "PTRS.B8",BO,P3584
BSAVE "PTRS.B8",BO,P3584 TO P3839

One final note. When programming with datafiles or devices,

it is important that you are aware of the file numbers used by

BASIC 8.0.

When performing a hardcopy with @HCOPY, BASIC 8.0 uses file

number 4. And when performing disk Input/Output it uses file

number 2. You should not use these filenumbers in your programs

when using these BASIC 8.0 commands.

APPENDIX C

(179)
APPENDIX D

File Formats , Naming Conventions

BASIC B.O has four specific file types (brushes, patterns,
fonts and logO). Each of these has a specific defined
structure, in some ways like the Amiga PC's IFF system. This
section documents these four formats, as well as suggesting a
structure for 3D graphic data files. We also make suggestions on
filenames to be used for each format, in order to make different
applications written by different programmers recognize and use
each others datafiles.

NAMING CONVENTIONS:

BRUSH A BRUSH is really any piece of the bitmap screen.
It can be as small as a single byte, or as large as the entire
screen. We suggest the name BRUSH be used for sections smaller
than a screen, 1n order to identify them as different in size
from pictures.

St~t each brush with the letters BRUS. For example;
BRUS.DISK
BRUS.CHART
BRUS.OBJECTBX2 (Indicates it is in ax2 color format)

The structure of a BRUSH file is:

Load Address (2 bytes) LO/Hi
FILE IDENTIFIER (4 bytes) BRUS
FILE TYPE (1 byte) 4
Column. (1 byte)
Scanline (2 bytes) Lo/Hi
compression Flag (1 byte)
ColorSize (1 byte)
DX Columns (1 byte)
DY (2 bytes) LO/Hi
BC (background color 1 byte)
Fe (foreground color 1 byte)
OC (outline color 1 byte)
Brush data

PICTURE A PICTURE is really a brush as large as the
entire screen. We suggest the name PICTURE be used for brushes
that are full screen, in order to identify them as different in
size from brushes.

Start each picture with the letters PICT. For example;
PICT.SCENE
PICT.GRAPH
PICT.PLOTaX4 (Indicates it is in Bx4 color format)

The structure of a PICTURE file is exactly the same as a BRUSH.
PATTERNS

Start each pattern with the letters PATR. For example;

PATR.BRICKWALL
PATR.DIAGONALax8 (Indicates it is in axa color format)

APPENDIX D

(180)
PATR.HAPPYFACE

The structure of a PATR datafile is:

LOAD ADDRESS (2 bytes) Lo/Hi
FILE IDENTIFIER (4 bytes) PATR
FILE TYPE (1 byte) 1
COLUMN DX (1 byte)
SCANLINE DY (1 byte)
COLOR DX (1 byte)
COLOR DY CELLS (1 byte)
Pattern data •••

FONTS

start each font with the letters FONT. For example;
FONT. Roman
FONT. 160Column
FONT. Technical

The structure of a FONT data file is:

Load Address (2 bytes) Lo/Hi
FILE IDENTIFIER (4 bytes) FONT
FILE TYPE (1 byte) 3
FONT DEFINITION COLUMNS WIDE (1 byte)
FONT DEFINITION SCANLlNES DEEP (1 byte)
FONT data ••.

LOGO

Start each logo with the letters LOGO. For exalC.ple;
LOGO. MENU 1
LOGO. REQUESTOR
LOGO.TITLEPAGE

The structure of a LOGO datafile is:

LOAD ADDRESS (2 bytes) Lo/Hi
FILE IDENTIFIER (4 bytes) LOGO
FILE TYPE (1 byte) 2
FLAG (1 byte, 0 indicates end of data)
FONT STRUCTf (1 byte)
COLUMN (1 byte)
ROW LO (1 byte)
ROW HI (1 byte)
HEIGHT (1 byte)
WIDTH (1 byte)
DIRECTION (1 byte)
STRING LENGTH (1 byte)
STRING ••• (string lenqth)

APPENDIX D

(181)
3D DATAFILES

In addition to these system file formats, it is likely users

will generate additional data files to store 3D line drawings. We

suggest two formats which should cover most programmers needs,

and if the filename convention is used will facilitate the use by

others of user generated 3D objects.

Format one (3DF1.) concerns storing discrete lines as the

six points used to define the line. The file consists of one

word that identifies the total number of 3D lines (N) to follow.

Then follow six*N points of data. This format is easy to read

and write, but has the drawback of requiring a larger amount of

file (and memory) space.

3DF1. An example of writing format 1

o read n
10 dim x1(n),x2(n),y1(n),y2(n),zl(n),z2(n)
20 rem read n 3D lines from data statements in program
30 for i=l to n
40 read X1(i),yl(i),Z1(i),X2(i),y2(i),Z2(i)
50 next i
60 rem open seq disk file and write data as format 3DF1.
70 open 8,8,8,"30F1.object,s,w"
80 print'B,"3DF1" : REM WRITE THE FILETYPE AS FIRST WORD
90 print'B,str$(n)

100 for i=l to n
110 x1$=str$(x1(i»:print'B,Xl$
120 yl$=str$(yl(i»:print'B,y1$
130 zl$=str$(zl(i»:print'8,zl$
140 X2$=str$(x2(i»:print'8,X2$
150 y2$=str$(y2(i»:print'B,y2$
160 z2$=str$(z2(i»:print,8,z2$
170 next i
180 closeB
190 rem this file defines n lines that can be drawn in
200 rem the BASIC B.O format LINE,X1,Y1,Zl,X2,Y2,Z2,1

Format 2 (3DF2.) is somewhat more complex, but can store

more information in a smaller file. It consists of a system that

stores information as groups of connected points. The file

begins with a number (NG) that specifies the number of groups.

Each group begins with a number (NP) that indicates the number of

APPENDIX 0

(182)
points in that group. These points are connected, with point 1

starting the object, point 2 as the endpoint of point 1, point 3

as the endpoint of point 2, and continuing with point NP as the

endpoint of point NP-l.

Here is an example of reading a 3DF2 datafile.

10 open S,S,S,"3DF2.datafile,s,r"
20 input'S,ft$:rem filetype 3df2
30 input'S,ng$:ng=val(ng$)
40 for i=l to ng
50 input.s,n~$:np=val(n~$)
60 rem get f1rst point 1n this group
70 input'S,X1$:x1=val(X1$)
SO input.S,y1$:y1=val(yl$)
90 input'S,Zl$:zl=val(Zl$)
100 for j=2 to np
110 input'S,X2$:X2=val(X2$)
120 input,s,y2$:y2=val(y2$)
130 input'S,Z2$:z2=val(Z2$)
140 rem draw line
150 @line,x1,y1,Zl,X2,y2,Z2,l
160 X1=X2:y1=y2:Z1=Z2
170 next ~
lS0 next 1
190 closeS
200 end :REM OF FILEREADER

EXAMPLE OF 3DF1 FILE:

3DF1
4
0,0,0,10,10,10
100,50,-10,37,199,100
639,199,199,639,199,-199
0,100,0,0,100,100

APPENDIX 0

EXAKPLE OF 3DF2 FILE:

3DF2
3
4
0,0,0
100,10,100
0,0,100
0,0,-100
3

·25,25,-25
50,25,-25
50,50,-25
6
0,0,0
100,0,0
100,100,0
100,100,100
100,100,-100
100,100,200

(183)

APPENDIX D

(184)

A standard Basic 8.0 Program ~
This is a simple program that introduces you to some of the

basics of programming in BASIC 8.0. It demonstrates the proper

way to start and end a BASIC 8.0 program, and the best way to

handle error trapping in your e128 BASIC 8.0 programs.

10 TRAP 1000:REM Get out if you have trouble
20 @WALRUS,O:REM Set up for 16K mode
30 @MODE,O:REM USe the 16K MODE Screens
40 @8CREEN,2:REM 8x8 640x176 Color Screen
50 @CLEAR,0,2,0
60 @COLOR,2,4,0
70 @DRWMODA,l,O,O,O,o,o,O
80 @DRWMODB,O,O,O
90 @ANGLE,0,0,0,0:@ORIGIN,320,lOO,100,320,100,200

100 REM YOUR PROGRAM BEGINS HERE

1000 @DRWMODA,l,O,O,O,O,O,O:REM RESTORE DRAWMODES TO DEFAULT
1010 @DRWMODB,O,O,O
1020 @ANGLE,O,O,O,O:REM SET DRAWING ANGLES TO °
1030 @ORIGIN,320,100,100,320,100,200:REM RESET ORIGINS
1040 @TEXT:END
1050 END

This program demonstrates the proper way to begin and end a

BASIC 8.0 program. It begins with the TRAP command. TRAP

instructs the computer what to do if an error occurs, for example

a syntax error or a press of the STOP key. In this case it goes

to line 1000 and re-initializes the DRWMOD's, ANGLE and ORIGIN to

the defaults, and returns the C128 to TEXT mode. This is a

necessity in EVERY BASIC 8.0 program, as you will most likely

have an error occur when you are in BITMAP mode. Without the

TRAP command, you could get stuck and have to reset the C128 and

re-boot BASIC 8.0 in order to regain command of the keyboard.

APPENDIX D

(185)
Appendix E

Data compression

BASIC 8.0 offers as an option in it's storage of brushes and

pictures the ability to compress the data into a smaller, more

compact date structure. This data compression can be in memory

as a structure or on disk as a file. This section offers some

information for programmers who may need to be able to compress

and uncompress data in the BASIC 8.0 format.

Data compression is the process of compacting a set of data

into a smaller set of data: yet still retaining the same meaning.

This means that a set of data once uncompressed will be identjc~l

to the original data set. Besides requiring less disk space r

ram to store the data, it also allows raster input/output then

the original size data set.

The algorithm used to compress brushes in the BASIC 8.0

system is a toggled run-length, meaning that if a value is

repeated more than the break even point the value is compressed

to a run count and run value. If a run is below the break even

point then the values are retained as they are. The toggle

aspect of the algorithm sterns from the fact the data can toggle

in and out of compressed format encoding within a single data

file.

The details of the compression algorithm are:

Compressed format:

byte 1 - bit 7 ; 1
bit 0-6 count (4-127) of the number of times

to repeat the following byte value when
uncompressing data.

4 is the break even point. 4 or more repeating
values can be compressed.

byte 2 - bitmap data value (0-255)

APPENDIX E

(186)

Uncompressed format:

byte 1 - bit 7 = 0
bit 0-6 = count n (1-127) number of uncompressed

unique data values to follow.
byte 2-n uncompressed data values

1 rem A sample uncompression program in Basic
5 dim a$ (11)

10 open 2,8,2,"datafile,p,r"
20 getf2,a$,b$:rem get load address
30 for t=l to 4:getf2,a$:next:rem BRUS header
40 getf2,a$:rem tile type
50 tor t=l to 11:get'2,a$(t):next:rem get header info
60 if a$«()="l" then 120
70 rem data not compressed
80 getl2,a$:s:::st
90 a=asc(a$+chr$(O»:rem store A somewhere

100 it s:::O then 80
110 goto 200
120 rem compressed data
130 get'2,a$:s:::st:a:::asc(a$+chr$(0»
140 1f (a and 127) = 0 then 210
150 get'2,a$:s=st:rem run value
160 for t=l to (a or 127):rem run count
170 rem store asc(a$+chr$(O» somewhere
180 next
190 it s:::O then 130
200 close 2:end
210 rem uncompressed toggle
220 for t=l to (a or 127)
230 get'2,a$:s=st
240 rem store asc(a$+chr$(O» somewhere
250 it s<>O then t=(a or 127):goto 200
260 next t
270 goto 190

1.PPENDIX E

(187)
Appendix F

STANDARD STRUCTURE t USES

suggested standard locations for data structures.

STRUCTURE'

o
1
2
3
4
5
6
7
8
9

10-19
20-29
30-39
40"'"99

USE

FONT. CURSIVE
FONT. COMPUTER
FONT. ROMAN
FONT. GOTHIC
FONT. FANCY
FONT. THIN
FONT. TECH
FONT. SCRIPT
FONT. CURSIVE
FONT.160 COLUMN
User supplied FONT's
LOGO.
PATR.
BRUS.

These are suggestions only, you may vary them as your

programming requirements dictate.

APPENDIX F

(lBB)
The Players

WALRUSOFT Inc. - Company started and owned by Louis R. Wallace and
David P. Da~ (with a little help from our friends)

David P. Darus - president, senior Programmer, Designer for Walrusoft
Writer and Consultant
computer Science Graduate, University of Florida 1984
Fleet Analyst, Gainesville FL Regional utilities

Louis R. Wallace - secretary/Treasurer, Programmer, Designer and
Documentation Specialist, Writer, Editor
Research Chemist and Computer specialist,

Xen French

Veterans Administration Medical Center, Gainesville

A good friend who provided great insight and help in
the design and implementation of the printer drivers.

Richard Rylander - Original author of the 3D solids commands for C64

Become A Pub1ished Soft~~re Deve10per

E~TE? THE BASIC 3 PPCGPA~MING CONTEST. HERE'S WHAT YOU COULD WIN:

GRAND PRIZE: S 1 ,000.00 Cash Award. And,
Patech Software wlII Publish Your Program!

1st PRIZE: $500.00 Cash A~ard.

$300.00 Cash Award.

3rd PRIZE: $200.00 Cash Award.

< < < CONTEST RULES

All Reg;stered Users are eligible. Each entry will
panel of Patech Programmers. Prizes are awarded
originality, overall quality and utility.

> > >

be eval uated by a
on the b~5lS of

All programs must be .. ritten uSIng BASIC 8. All code must be your own
work. Sub-routines wrItten by others may be included with the permIssion
of the author, but must be used in such a way as to contribute to a unique
and original concept, with your work as the focus!

Mail entries to: Patech Software, Inc; Box 5208, Somerset, NJ 08873. You
may submit as many as you WIsh. Complete User Documentation and a Program
T.tle must accompany each one. All entries (including documentation), any
current or subsequeClt copyr ights and al I other rights attached thereto,
become the property of Patech Soft~are, Inc, and will not be returned.

Entries must be postmarKed not later than December 31st, 1987. Employees
of Patech Softwal"e. Inc. its agencies and their families are not eligible.
Offer valid in U.S,,". Clnd Canada only. Patech can not be responsible for
the condItIon of Contest entry disks at the time of del Ivery to Patech.

Wi""ers ·.ill be announced on Q-linK on March 1st 1988. (If you send a
S.;'.3.:::. 'n·~th your SUDrr,lSSlor ... we will mail you a list of the winners.)

* * * OFFICIAL ENTRY FORM * * * *

My ~ame: _________________________________ Registration # ________________ _

Address: ___ _

Ci:y: ______________________________ State: __________________ Zip: ________ _

Sigr.ature: ____________________________________ Phone:

(?y ~y Sl~)~1tul'e, !ffil-m that my entry has been submitted in accordance
~lth the E~! .,~ 3 Programmlng Contest Rules as stated above.)

