ASSEMBLER /
MONITOR 64

Powerful 6510 MACRO Assembler
Development Package
for the Commodore 84

By: Lothar Englisch

38480

A Data Becker Product

ABACUS Software
P.0. Box 7211
Grand Rapids, MI 49510



COPYRIGHT NOTICE

ABACUS Software makes this package available for use on a
single computer only. It is unlawful to copy any portion of
this softare package onto any medium for any purpose other
than backup. It is unlawful to give away or resell copies of
any part of this package. Any unauthorized distribution of
this product deprives the authors of their deserved
royalties. For use on multiple computers, please contact
ABACUS Software to make such arrangements.

WARRANTY

ABACUS Software makes no warranties, expressed or implied as
to the fitness of this software product for any particular
purpose. In no event will ABACUS Software be 1liable for
consequential damages. ABACUS Software will replace any copy
of the software which is unreadable if returned within 30
days of purchase. Thereafter, there will be a nominal charge
for replacement.

First Printing, September 1984
Printed in U.S.A. Translated by Greg Dykema
Copyright (C)1984 Data Becker, GmbH
Merowingerstr. 30
4000 Dusseldorf,W.Germany
Copyright(C)1984 Abacus Software, Inc.
P.0. Box 7211
Grand Rapids, MI 45910

ISBN # 0-916439-11-9

C)

C\



Part I

Table of Contents

THE ASSEMBLER. .....ccocetecercrcvcccsccssccsosncnasl

E.
F.
G.

USING ASSEMBLER 64......0000c00ccecccncsccccccsld
BXPRESSIONS.....vcevervscsrscosscscssosossoceesb

PSEUDO
1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12,
13.
14,
15.
16.
17.
18.
19.
20.

OPS...ciieeeccccsscscnsscensssssnessssll
Symbol value assignment...............10
Redefining symbol values......cceccee..1l
Program counter assignment............12
BYTE ..ccccveeceecrssosoccosacnnsanasssld
JHORD. . tovieenernnsonensonssscsnnasssld
CFILEB. . .ciiieeeecnonsesocessosssensessld
.IF...................................16
e@OTO0...vveeeeeseseosesesscsnsnnsnseeslT
N, 3 AR 1 -
ABC. .. itientttteatttttsieannsssaneesslB
T £ e |
TR . P )
T - 1
T 1 3 |
1 25 1% a3 |

B 3 | -

T (. 1]

B 5 1) -2
T - -1

A SAMPLE PROGRAM. .....coceteerenscsoacssnssesl9
MACROS............. P 34
ERROR MESSAGES. ... ccvevceresvoccnnosnnssnssssdl
APPENDIX. .. ittt etecereecseonsssesnssssossesdb



PART II MONITOR........eenceseescscssccccssscsccscconnessdO

A.
B.
C.

SUMMARY OF MONITOR-64 COMMANDS...............50

LOADING MONITOR-64.....ccc0cceesecnsoncseessedl
COMMAND DESCRIPTIONS

1.
2.
3.
4.
5.
6.

7.
8.
9.
lo.
11.
12.
13.
14.
16.

SWITCH MEMORY CONFIGURATION..............52
COMPARE MEMORY AREBAS.....ccc0cceeeseesesB3
DISASSEMBLE A MACHINE LANGUAGE PROGRAM...53
FILL MEMORY RANGE.....:ccesevceccccsesss 54
EXECUTE PROGRAM. ... :cc0secesocccscssesesecbd
SEARCHING MEMORY ARBAS......cccc0ceeeee..5b
6.a Search for byte combinations........56
6.b Search for text.........c.c0ceeee...58
LOAD A MACHINE LANGUAGE PROGRAM..........56
DISPLAY MEMORY CONTENTS...cccctveeecsces.b6
PROGRAM EXECUTION WITH BREAKPOINTS.......57

DISPLAY THE REGISTER CONTENTS............57

SAVE A MACHINE LANGUAGE PROGRAM..........58
TRANSFER MEMORY AREBA.......c.cccceeeeeees..B9

SET A BREAKPOINT.......vveveeecccccnsssessB9
SINGLE-STEP MODE........... e -1
RETURN TO BASIC.....c.vveeeeccccncnssasssBl

BERROR MESSAGES.....cceteeerccccccccsnsansssseb2



ASSEMBLER/MONITOR 64

THE ASSENBLER

ASSEMBLER 64 is a two-pass 6510 or 6502 assembler for
the Commodore 64. It is written entirely in machine language
and occupies BK bytes of RAM. It allows free-form input
using the builtin BASIC editor, produces complete assembly
listings, loadable symbol tables, various options for
storing created object codes, redefinable symbols, and =a
comprehensive set of pseudo-ops (assembler directives) for
such things as creating macros or conditional assembly. The
syntax for the most part adheres to the MOS standard.



ASSEMBLER/MONITOR 64

A. Using ASSENBLER 64

ASSEMBLER 64 is loaded from diskette and requires 8K of
the BASIC RAM. (addreass $8000-$9FFF). The area most
frequently used for machine language programs from $C000 to
$CFFF is left free and can be used for MONITOR 64 ($C000-
$CBFF) or your own machine language programs.

Loading ASSEMBLER 64

Insert the ASSEMBLER/MONITOR distribution diskette and
type:

LOAD "ASSEMBLER 64",8,1

The following appears on the screen:

LOADING

ASSEMBLER 64 V2.0 IS LOADING ...

%%%x ASSEMBLER 64 V2.0 %xx
(C) 1984 DATA BECKER GMBH
2

10000-0000

NO ERRORS

READY.

When loading, ASSEMBLER 64 protects itself from being
overwritten by BASIC. You are left with 30717 bytes for
your assembly language source programs.

O

(j



ASSEMBLER/MONITOR 64

The 2 in the message indicates the start of pass 2.
Following is the address range of the created object code
and the number of errors.

Assembler programs are entered using line numbers just
like BASIC programs. Lines can be changed, deleted, or
inserted exactly as in BASIC. No other editor is necessary
and more storage space is available for your source programs
- a total of 30KE. You can separate several assembler
commands on the same line using colons as in BASIC.

You can make your assembly language programs easier to
read by placing an up arrow as the first character of a
line. After this, all spaces are accepted and the arrow is
ignored by ASSEMBLER 64. This allows you to indent your
programs as desired.

ASSEMBLER 64 uses almost the same source format as the
MOS standard. If even you are familiar with this standard,
you should read this description because it also explains
the departures from the MOS standard. The examples illus-
trate the instructions.

This manual is not intended to teach 6510 assembly
language programming. We recommend other books such as The

Machine Language Book for the Commodore 64 or the Advanced
Machine Language for the Commodore 64 for more information
on the use of macros and floating-point arithmetic.

Lines of ASSEMBLER 64 source code consist of labels,
instruction mnemonics, the operands, and comments. In
addition, there are several "pseudo-ops,” which are not
machine language instructions but rather tell the assembler



ASSEMBLER/MONITOR 64

to do special things. These pseudo-ops are described later
in the manual.

Each program line contains a mnemonic or pseudo-op and
may begin with a label (symbol). If a line is supposed to
contain a label, simply place it in fromt of the
instruction, followed by one or more spaces. A label must
begin with a letter followed by other letters, numbers or
periods. The first 8 characters of a label must be unique
(that is, no labels may have the same first 8 characters).
Non-alphanumeric characters are not allowed.

Instruction mnemonics may follow a label or may begin at
the start of a line if no label is presemnt. All pne-onics
consist of 3 letters. Mnemonics are reserved words and may
not be used as labels.

If an instruction begins with a period ("."), it is treated
as a pseudo-op. There are three pseudo-ops which do not
begin with a period. All pseudo-ops must be separated from
their operands by spaces, with the exception of "=" and
"%=", Pseudo-ops which begin with a period are distinguished
by the first three characters only, although they will be
printed in full in the assembly listing.

A line can be terminated by a semicolon. Everything
following the semicolon is ignored by the assembler and can
contain comments. Comments are printed out in the assembly
listing but are otherwise disregarded. A colon within a
comment ends it and begins a new instruction, as long as the
colon is not placed within quotation marks.

If a line begins with a semicolon, the assembler treats

C



ASSEMBLER/MONITOR 64

the entire line as a comment. Such lines are printed
without a line number.

The operand field contains the addressing mode and an
expression for the command or pseudo-op. A semicolon may
follow.

The addressing modes with expressions have the following
syntaxes:

#expression absolute addressing

expression absolute or relative addressing
expression,x absolute,x indexed by x
expression,y absolute,y indexed by y
(expression,x) indexed indirect addressing
(expression),y indirect indexed addressing
(expression) indirect addressing

ASSEMBLER 64 automatically converts absolute addressing
to =zero-page addressing if the expression has a value less
than 256. If you want to force absolute addressing, you can
place an exclamation point in front of the expression. LDA
'5,X creates the code BD 05 00, the absolute form of LDA,
while LDA 5,X yields the zero-page addressing B5 05. This is
useful if you want to avoid the wrap-around effect of in-
dexed addressing with addresses under 256.



ASSEMBLER/MONITOR 64

B. Bxpressions

ASSEMBLER 64 is unique among assembler in its ability
to calculate complex expressions. The assembler has a
recursive routine for calculating nestefl expressions, which
gives you more capabilities than other assemblers. An
ASSEMBLER 64 expression may be placed wherever the word
"expression" appears in a list. Such an expression is also
allowed for the pseudo-ops which expect a numerical
argument. The expression evaluation of ASSEMBLER 64 is so
efficient that your programs can be written entirely using
symbols. This makes changing and transporting ASSEMBLER 64
programs especially simple and easy to understand.

The syntax of expressions is very simple and is a
superset of the MOS standard. Expressions are entered exact-
ly as they would be on a pocket calculator which does not
use an algebraic evaluation system but does allow paren-
theses. All operators are evaluated strictly from left to
right, although square brackets are allowed as well as
parentheses in order to alter the order of evaluation.

An expression can be terminated by a variety of
characters. The end of a line always ends an expression.
Colons, semicolons, and commas also end an expression,
provided that these are not enclosed in quotation marks. A
closing parenthesis ends an expression provided no unpaired
open parenthesis remain. This makes nested expressions
possible with indexed addressing.




ASSEMBLER/MONITOR 64

You can use the following operators in expressions:

+ add values
~ subtract right value from left value

x multiply values

/ divide left value by right value

! logical OR of two values

& logical AND of two values

~ logical XOR (exclusive or) of two values

> shift left argument as many bits to the right as the

right argument specifies
¢ ghift left argument as many bits to the left as the
right argument specifies

All operations are performed using 16 bit arithmetic,
although various operations will lead to overflows, such as
multiplication by a value greater tham 32767, or shifting
left more than 15 bits. These cause an ILLEGAL QUANTITY
ERROR. This error message also appears for a division by
zero. For addition and subtraction, a result greater than
656356 is interpreted as a negative number in two’s
complement form.

The operands themselves can appear in a variety of
forms. In the following, the syntax is given together with
an example.



ASSEMBLER/MONITOR 64

Operand types

Type Example Syntax

hexadecimal $1cC3 ${hexdigit}

decimal 127 {digit}

binary %110011 %{0 or 1}

PC

ASCII character A" "character"

label SYMB alphabetic{alphanumeric}
expression ("z"+6) {expression}

Under "Syntax,” items placed within braces {} may be
repeated as often as necessary.

Each of the above terms can be combined with the
previously-described operators. These can be enclosed in
parentheses as desired in order to alter the order of
evaluation. A minus sign can be placed in front of every
operand, including parenthesized expressions, to yield a
two’s complement value.

An entire expression can be changed by a single

modifying character. One example is the use of ! to select
an absolute addressing mode. In addition, the "greater than"
and "less than" signs are allowed. "> in front of

expressions tells the assembler to take only the most
significant byte of the expression’s result (first 8 bits of
the 16 bit expression), while "<" denotes the least
significant byte. This is necessary for direct addressing or
with the .BYTE pseudo-op. The most significant byte operator
(>) performs the same operation as:



ASSEMBLER/MONITOR 64

expression > 8
The least significant operator can also be represented as:

expression & $FF

Sample expressions

>LABEL-1+(TABLE*2)
VALUE-*
"0"_,"A" < 3 + ("D" — "A'l > 2&*111)

Parentheses may be nested as deep as necessary. Modifiers
cannot be used on parenthesized parts of expressions.



ASSEMBLER/MONITOR 64

C. Pseudo-ops

Most ASSEMBLER 64 pseudo-ops begin with a period (".").
All of these "period" opcodes must be separated from
following characters by at least one space. In addition,
there are three special pseudo-ops which are defined by
special characters. Pseudo-ops are recognized by their first
three letters; everything else up to the next space will be
ignored, although it will be printed in the listing.

The three special pseudo-ops serve to define symbols

and the program counter.

l. 8Symbol Value Assignment

The simplest of these is the operator for symbol
definition, the equal sign (=). In order to assign a
value (expression) to a symbol, you simply write:

symbol = expression

The assignment is made only during pass 1 of the
assembly. Any subsequent definition of this same
symbol in the source program results in a
"REDEFINITION ERROR." The "=" sign is used to define
constants and addresses in symbolic form, so that
only one line need be changed to alter all

- 10 -



ASSEMBLER/MONITOR 64

occurrences of the value. Here's a few examples:
sfrce Necesspary
BEGIN = $C000 ;define start of program
TAPBBva; 828 ;define tape buffer at $33C

2. Redefining Symbol Values
Similar to the operator for symbol definition is the
agssignment operator, which is written as a left
arrow (<-) and is used with the same syntax:

symbol <- expression

By contrast to the previous operator, it is possible
to redefine a symbol. In this case, the assignment
is made during pass 2 as well as pass 1. This can be
used for various purposes, most often during
conditional assembly (see .GOTO). Here are some
examples:

NUMBER <~ NUMBER - 1 ; decrement value
PROGRAM <- x

- 11 -



ASSEMBLBR/MONITOR 64

Program counter assignment

The third special pseudo-op controls the progranm
counter. It is written as %= which means "assign a
value to the program counter". The primary use of
this s8ymbol is to specify the starting address of
the program. If not specified, it defaults to $C000.

Storage for data may also be reserved. The statement
*=%+32, for example, defines a 32-byte block
beginning at the current program counter 1location.
The value of the program countere is then
incremented by 32. If a symbol is found in the label
field, the value of the program counter is assigned
to it before the program counter is incremented.
Here’s an example that defines variable in page 2.

*= $200 ; sets the program counter to the
start of page 2

ADDRESS *= %+1 ; a one-byte address, set to zero

TABLE *= x+32 ; table begins at $201

LABEL %= x+1 3 LABEL has the value $233

TWO *= %+2 ; two-byte pointer

TEST *= $800 i+ TEST has the value $236;
following code begins at $800

To define a table within a program, the following
can be used used:

- 12 -

C)

C



ASSENBLER/MONITOR 64

LDA #5

RTS
TABLE ¥= %+256 ; 256-BYTR TABLE
TEST LDA #>ADDRESSx*3

In general, you can use %= to define symbols by
altering the program counter. You should not,
however, move it backwards. This is allowed only:
1) if you assemble object code directly into memory
and execute it there; or 2) when you do not create
object code at all. When you assemble code at $1000,
for example, you cannot normally set the progranm
counter back to $0F00 to assemble code there. This
is allowed for label definition, but you must then
return to an address which was higher than the
address into which the last byte of object code was
assenmbled.

+BYTE expression

The .BYTE pseudo-op is used to place one-byte values
into the object code at the location contained in
the program counter. Any legal ASSEMBLER 64
expressions, separated by commas, may be used as
operands. The number is limited only by lihe length
and the 1length of the ASSEMBLER 64's buffer. Any
expressions may be used, but the expression mnust
evaluate to a one-byte value, or an "ILLEGAL

- 13 -



ASSEMBLER/MONITOR 64

QUANTITY ERROR" occurs. Two-byte values can be
modified with ">" and "<" in order to take the high
or low byte, respectively. A one-byte value lies in
the range 0 to 255 or $FF80 to $FFFF. The higher
values are allowed because they normally signify
negative numbers from -1 to -128. Therefore the line
" BYTE -1" is allowed. .BYTE can be used to define
tables such as jump tables or pointers. You can also
"hide" commands, such as the BIT command:

.BYTE $2C
LABEL1 LDA #-1

ABSOLUTE BIT INSTRUCTION
HIDDEN LDA INSTRUCTION

.o we

.WORD expression

The .WORD pseudo-op is used in order to place two-
byte addresses into the object code at the location
contained in the program counter. For example the
following statements:

START = $C000
.WORD START

Would assemble the bytes 00 0C (the value of the
symbol START, least significant byte first) into the
object code. The address is stored with the least
significant byte first followed by the most
significant byte.

- 14 -



ASSEMBLER/MONITOR

.WORD address

is equivalent to the statements:

.BYTE <address;>address

The .WORD pseudo-op and the .BYTE pseudo-op permit
multiple values on a line, separated by semicolons.
The .WORD pseudo~op is most often used for creating
address tables.

.PILE device number,"filename"

The .FILE pseudo-op is used to chain several source
programs. The syntax is as follows:

.FILE device number, "filename"”

where device number is 8 for the disk drive or 1 for
the datasette, and "filename" is the name of the
assembly language source program which is to be
loaded next. If you are writing a very long assembly
language program, you can break it up into several
parts and chain these together with .FILE. The
last file in this chain must contain an .END pseudo-
op that specifes the first file of the chain.

- 15 -

64



ASSEMBLER/MONITOR 64

.IF expression

The .IF pseudo-op is used for conditional assembly.
The syntax is as follows:

IF expression : .GOTO line-number

The argument expression is evaluated in both pass 1
and pass 2. If the expression is not zero, the code
following the .IF in the same line is performed.
Usually, this will be a .GOTO to direct the assembly
to a different line. The additional code in the line
must be separated by colons.

With .IF, .GOTO, and symbol redefinitions, it is
possible to create assembler loops. Although .IF
only tests for zero, other comparisons are possible
by using simple techniques. For example, shifting 16
bits to the right yields a result of 1 if the
expression was negative, and 0 if positive. Two
numbers may be compared by subtracting one from the
other and testing the result for positive or
negative.

- 16 -



ASSEMBLER/MONITOR 64

.G0TO line-number

The .GOTO0O pseudo-op instructs the assembler to
continue assembly at the line number given as the
argument.

.GOTO line-number

This line number may also be an expression. The line
number must be contained in the currently 1loaded
program (if you are using .FILE to chain multiple
source programs). You cannot jump between different
files. This line number may be located either before
or after the 1line number containing the .GOTO
pseudo-op. When used with .IF and redefining
symbols, it’s possible to build a 1loop for
conditional assembly. Try the following example:

10 SYS 32768 ; CALL THE ASSEMBLER
20 .OPT P ; LISTING TO SCREEN

30 OFFSET <- 5 ; NUMBER OF LOOPS

40 LDA $C000 + OFFSET

60 OFFSET <- OFFSET - 1 ; DECREMENT
60 .IF OFFSET : .GOTO 40

70 .END

- 17 -



ASSEMBLER/MONITOR 64

10.

.GTB

This pseudo-op stands for Go To BASIC. It has no
argument and simply returns control to BASIC. The
BASIC commands in following program lines will be
executed. You may return to the assembler by using
$YS40954.

You should note that the BASIC commands that can be
executed before return to assembler are limited.
Some BASIC statements may overwrite the work areas
used by ASSEMBLER 64 and should not be executed. 1In
particular, the INPUT command, or any other basic
commands which writes to byte 9 of the BASIC input
buffer (address $0209) must be avoided. The GET
statement is allowed. You should never return
control to the user during assembly.

.ASC "text"

This pseudo-op places the ASCII value(s) for the
"text" into the object code at the location
contained in the program counter. The text is
enclosed in quotation marks. It is thereby possible
to insert cursor or color control characters into
the text. The text can be up to 55 characters long.
Longer texts must be divided up into several .ASC
statements. The MOS standard uses the .BYTE pseudo-
op for this purpose, in which strings are enclosed
in apostrophes. You should take this into account

- 18 -

O)

)




11.

12.

ASSEMBLER/MONITOR 64

when converting programs. Note the use of the double
quotes instead of single quotes.

.8Y8 expression

This pseudo-op allows machine language programs to
be called during assembly. The value of expression
determines the jump address. This pseudo-op is
identical to the SYS command in BASIC. The routine
located at the address specified by expression is
called is called during both pass 1 and pass 2. The
SYS command can be used by those familiar with the
internal workings of ASSEMBLER 64 to create custom
pseudo—-ops.

.8TM expression

This pseudo-op is used to raise the lower boundary
of the symbol table. The symbol table grows downward
from the end of the storage ($8000), exactly as
strings are saved in BASIC. At the start of
assenbly, this 1lower boundary is set to the end of
the BASIC program and variables. You can set it
higher if you are working with .FILE or buffered
object code (.OPT 0). If the space for the symbol
table is too small, the message "SYM TABLE OVERFLOW"
is given and the assembly stopped.

- 19 -



ASSEMBLER/MONITOR 64

13.

.88T device number, secondary address, "filename"

Symbol tables may be saved to storage devices such
as the floppy disk, and from there loaded in again.
.SST 1is executed in pass 1 only, and saves the
symbol table that has been generated up to that
point.

The first argument is the device number, normally 8
for the disk drive. The secondary address can lie
between 2 and 14. The filename is given as in an
OPEN command, and therefore requires an ",S,W"
following the name (for sequential and write).

This pseudo-op is required if you want to later
print a sorted list of symbols and labels. The
program SYMPRINT then uses this file to 1list the
symbols to your printer.

The .SST command is also useful when assembling
source programs separately, but which must access
subroutines from the other programs. Simply save the
symbol table at the end of firast assembler program
and read this same symbol table into the second

program using .LST.

- 20 -



ASSEMBLER/MONITOR 64

14. .LST device number, secondary address, "filename"

This pseudo-op loads the symbol table that was saved
by the .SST pseudo-op. You can use .LST to load the
a symbol table created by other programs, such as a
table of kernal routines. Duplicate symbols are not
checked. The 1last definition of a duplicate symbol
is used and previous definitions are simply ignored.
Overflow of the symbol table is not recognized when
loading, although an error will occur as soon as you
try to define another symbol.

16. .FLP expression

If you often use the floating-point arithmetic of
the BASIC interpreter, you can use .FLP to place
floating-point constants into the object code. This
gsimplifies the use of floating-point routines. One
or more floating-point constants separated by commas
can follow the .FLP command, for example:

.FLP 10, 1ES8
Each floating-point number occupies 5 bytes;
therefore our example generates 10 bytes. Note that

only the first three bytes of the converted number
are printed in the object code listing.

- 21 -



ASSEMBLER/MONITOR 64

18.

17.

.END [device, "filename"]

This pseudo-op ends a source program and is
optional. .END executes a .GTB at the end of pass
2. If there are additional BASIC statements
following the .END pseudo-op, they will be executed.

You can, for example, call the machine language
program just assembled with a SYS-statement.

When chaining source programs, .END must have the
additional arguments. The arguments are in the same
format as the .FILE pseudo-op and direct the
assembler to re-load the first source program at the
end of pass 1 and continue with pass 2 at the line
containing the SYS 32768. "filename" must therefore
be the name of the first program in the chain (which
conteins the SYS 32768). "filename" has no further
effect in pass 2.

.SYM

This pseudo-op can be used to list a table of all
the defined symbols and their values after the
assembly of the program. This list is sent to the
screen or other device according to the output
option (.OPT I'). Four symbols, together with their
values in hexadecimal form, are printed per line. If
you want a different number of symbols per line, you
can use this number as an argument for the .SYM
command. .SYM is useful when working on the screen,

- 22 -



18.

ASSEMBLER/MONITOR 64

for example. The symbols are listed in the reverse
order from that in which they were defined. If you
want an alphabetically sorted list, you must save
the symbol table with .SST and use the progranm
SYMPRINT found on your ASSEMBLER 64 distribution
disk.

.PAGE page-length,left-margin offset

This pseudo-op has three different functions and
serves to control the assembly language 1listing.
Without additional parameters, it forces a form feed
in the listing. This allows you to place a certain
section of an assembler listing on a new page.
ASSEMBLER 64 automatically inserts a form feed after
every 60th line, and begins the next page with a
title and the current page number. If you want to
change the page length, you can set the number of
lines per page with the .PAGE command, for example:

.PAGE 66

This instructs ASSEMBLER 64 to write 66 lines on a
page. Values up to 255 are accepted. An additional
function is the determination the left margin. This
is useful for printed listings which you want to put
in a notebook. The second parameter of .PAGE gives
the number of spaces to be printer in front of each
assembler line in the listing. The standard value is

zero. With

- 23 -



ASSEMBLER/MONITOR 64

19.

.PAGE ,10
the listing can be indented 10 characters. The comma
is necessary in order to denote the 10 as the second

parameter. The two parameters can also be combined:

.PAGE 66,10

.TITLE "text"
This allows you to add text to the standard title
ASSEMBLER 64 V2.0 PAGE 1
which appears on every page of the 1listing. This
text is given after the .TITLE command within
quotation marks, such as:

.TITLE "HARDCOPY ROUTINE"

This text will then be placed before the standard
title, and we get:

HARDCOPY ROUTINE ASSEMBLER 64 V2.0 PAGE 1

- 24 -

C\



C

ASSEMBLER/MONITOR 64

20. .OPT options{,options}

The

.OPT pseudo-op stands for OPTion and gives you

control over the assembly listing and the object
code. This syntax is the following

The

P -

P# -

.OPT option,option,option...

following options are available:

Print. You select this option when you want the
assembly listing to appear on the screen. All other
P options (see below) also output to the screen
because the screen is the fastest output medium. The
listing will be formatted automatically. Lines which
contain errors or a .FILE command will be printed in
passes 1 and 2 regardless of the P option.

Print to file. With this option, you can send a
listing to the printer, for example. In order to do
so, you must first open a logical file before the
SYS 32768 with an OPEN command, such as OPEN 1,4.
The logical file number (1 in our example) then
replaces the number sign (#), such as .OPT Pl. using
this technique, you can also write the assembly
listing to disk or cassette with the appropriate
OPEN copmand. You can specify that a 1line feed
(CHR$(10)) be sent after each carriage return
(CHR$(13)) when selecting the logical file number in
BASIC. This accomplished by using a logical file
number greater than 127, such as OPEN 130,4 and then
.OPT P130.

- 25 -



ASSEMBLER/MONITOR 64

P=expression -~ With this option you can direct the output

00

o#

to a routine of your own. The start address of your
routine must be given as the expression. The
character to be outputted is passed in the accum-
ulator. A zero indicates the last character (close
file). This allows custom output devices to be used
(such as an interface on the user port).

Object means object code output. Without additional
characters, the object code goes to a special buffer
directly above the assembler program, where array
variables normally lie; the same pointers are also
used.

Object at origin. This option writes the object code
directly to the memory locations for which it was

)

written. This 1is vary useful for quickly testing (::

programs, and allows maximum freedom when moving the
program pointer. Saving code to tape 1is also
made possible using the monitor. If an assembly
language program is intended to run in the memory
range where the source program or assembler lies,
this method may naturally not be used.

As with P#, this allows output of the object code to
a file. The file must be previously opened as a
program file for writing (secondary address 1), such
as OPEN 1,8,1PROGRAM". With .OPT 01, the object
code goes to this file. First ASSEMBLER 64 writes
the start address to the file, and then the
generated code. If the assembler operation ends
normally, the program file will be closed again. The

- 26 -



ASSEMBLER/MONITOR 64

machine language program created in this manner can
be loaded directly with LOAD or with a monitor. Note
that .OPT O# to a cassette is not possible. See the
next option and the appendix.

O=expression. This allows the object code to be sent to a
user-defined routine with the same syntax as the
.OPT P= command. The object code output routine must
be somewhat more complicated because it is called
only once per assembler line. Some symbols which are
required are found in the appendix. The most
important is LENGTH, which gives the number of bytes
to be output minus 1. If 1length is zero, for
example, one byte must be output. You routine must
be test for two special values. A value of $C0 means
"close the file.” Otherwise, LENGTH contains a small
number from zero on up. The data to be output are
stored in two places. The first three bytes are
stored in the zero page at address OP. If more than
three bytes of object code are created (for .BYTE,
.WORD, .ASC, for example), the additional bytes are
stored at address OBJBUF. Your output routine may
change any registers or flags (with the exception of
the decimal flag). Caution is advised in using the
zero page however. A program is listed in the
appendix which makes it possible to output the
object code to a file in hex format. It is therefore
possible in principle to save data directly to the

datasette.
M - If you work with macros, you can decide whether you

want the entire macro containing the actual

parameters to be listed for each macro call, or just

- 27 -



ASSEMBLER/MONITOR 64

the 1line containing the macro call. If you do not
enter this command, the complete macro will be
listed. You can suppress this with .OPT M and cause
only the line with the macro call to be listed.

You can cancel the output options at any time with
.OPT N. N cancels all of the options except the M
option. If an option is supposed to remain in effect
or switched on again later, add that option. If, for
example, you want to turn off the screen 1listing,
but still want the object code to go to file 2, you
would write

.OPT N,02

and

.OPT P

when the listing is to go to the screen again.

- 28 -

C)



ASSEMBLER/MONITOR 64

D. A SAMPLE PROGRAM

The following example program writes the contents of the
zero page at line LINE on the screen. It illustrates the
general use of the assembler.

10 SYS 32768 ; CALL ASSEMBLER

20 .OPT P,00

30 %= $C000 ; PGRM START ADDR

40 LINE = 10 ; LINE 10 ON SCRN

50 SCRMEM = $400 ; SCRN MEMORY

60 CLRMEM = $D800 ; COLOR MEMORY

70 COLOR = 1 ; COLOR IS WHITE

80 LDX #0 ; ZERO INDEX REG

90 LOOP LDA 0,X ; GET BYTE

100 STA SCRMEM+(40%LINE),X ; PUT IN SCRN MEMORY
110 LDA #COLOR

120 STA CLRMEM+(40%LINE),X ; SET COLOR
130 INX ; NEXT BYTE

140 BNE LOOP

160 RTS ;DONE

160 .END

If you start assembler this source program by typing RUN, the
following listing the screen:

2

ASSEMBLER 64 V2.0 PAGE 1

20: €000 .OPT P,00

30: €000 x= $C000 7+ PGRM START ADDR
40: 000A LINE = 10 i LINE 10 ON SCRN



ASSEMBLER/MONITOR 64

50: 0400

60: D800

70: 0001

80: c000 A2 00
EX REGISTER

90: c002 B5 00
100: €004 9D 90
IN SCRN MEMORY
110: CO007 A9 01
120: €009 SD 90
COLOR

130: cCO0OC ES8
140: ¢O00D DO F3
150: COOF 60
]€000-C010

NO ERRORS

In the following
to disk and the
program consists

10
20

OPEN 1,8,1,
OPEN 2,4 :
30 SYs 32768
40 .OPT 01,P2
50 ;

. e

1000 .FILE 8,

SCRMEM = $0400 ;s SCRN MEMORY
CLRMEM = $D800 ; COLOR MEMORY
COLOR = 1 s COLOR IS WHITE
LDX $0 ;7 ZERO INDEX REG
LOOP LDA O0,X ;s GET BYTE
05 STA SCRMEM+(40%LINE),X ; PUT
LDA #COLOR
D9 STA CLRMEM+(40xLINER),X ; SET
INX ; NEXT BYTE
BNE LOOP
RTS ; DONE
example, the object code is sent directly

listing is sent to the printer.

The source

of several individual programs.

"0:0BJECT CODE"

REM PRINTER

ASSEMBLER COMMANDS

"PROGRAM 2"

PROGRAM 2 contains

10 ;

ADDITIONAL COMMANDS

- 30 -



ASSEMBLER/MONRITOR 64
1000 .FILE 8, "PROGRAM 3"
PROGRAM 3 contains
10 ; ADDITIONAL COMMANDS

1000 .END 8, "PROGRAM 1"

whereby PROGRAM 1 is the program which contains the SYS
32768.

- 31 -



ASSEMBLER/MONITOR 64

B. MACROS

We now come now to a powerful feature of ASSEMBLER
64 - MACROS. What are macros and what are they used for?

With macros we have the ability to combine a series of
instructions and assembler directives and give them a name.
If you have defined a macro in this manner, you can later
insert this set of instructions into the source code as
often as desired by simply using the name of the macro. An

example will make this clear.

In machine language programs, one repetitive task often
comes up in programming - namely incrementing the contents
of a 16-bit variable 1located in consecutive zero page
locations. The instructions to do this might look like this:

INC POINTER

BNE LABEL

INC POINTER+1
LABEL v

At another place you might have to increment a different
variable called TEMP:

INC TEMP

BNE LABEL1

INC TEMP+1
LABELl ...

With macros we can define a set of instructions once

- 32 -

C

C




ASSEMBLER/MONITOR 64

and use this definition later. To define a macro, two new

pseudo-ops are used.

The first declares the macro definition, and the second
ends it. In order to able to refer to a macro later, it must
have a name. The same conventions apply as for other symbols
(first character must be a letter, then letters, digits, or
periods, eight significant places). Our definition looks
like this:

INC.PNT .MAC ADDRESS
INC ADDRESS
BNE .LABEL
INC ADDRESS+1
LABEL .MEND

The name of this macro is INC.PNT. A macro definition is
introduced with the pseudo-op .MAC. Pareameters may follow.
Here we have a parameter called ADDRESS. Next the executable
instructions follow in their standard form. One special
feature is found in the line BNE .LABEL. The last 1line
contains the 1label definition and the end of the macro
definition with .MEND. Now we can call the newly-defined

macro:
'INC.PNT POINTER

This 1line replaces the above set of instructions. We
write an apostrophe followed by the macro name and any
parameters. In our case there was one parameter, although a
macro can have no parameters, or several parameters
separated by commas. When assembled, the macro is replaced
by the instructions:

- 33 -



ASSEMBLER/MONITOR 64

INC POINTER

BNE LABEL:00

INC POINTER+1
LABEL:00

The next example illustrates a ﬁacro without

parameters.

RAM .MAC
SEI
LDA $01
AND #x11111110
STA $01
.MEND

This macro requires no parameters and no so-called
local labels - labels within the macro definitiom. Macros
without parameters generate the same code each time and can
in principle be replaced by subroutines. Macros are aids
during the assembly and create object code each time it is
used. Subroutines can be thought of as aids during run-time,

and are found only once in the object program.
Macros are especially useful in combination with
conditional assembly. If you have macros ready for a variety

fundamental tasks, the main program can consist of a set

macro calls.
A few notes about using macros:

Macros must be defined at the start of the assembly

- 34 -



ASSEMBLER/MONITOR 64

language source, before they are called. If you are chaining
source programs using .FILE, all macros must all be
contained in the first program. If you define labels within
a macro, a period must be placed before references to the
label, as illustrated earlier. This also applies within
expressions. Such 1labels are onl& significant to six
characters. If you call such macros several times and output
the symbol table, the labels are listed as many times,
together with different values. In order to distinguish
these from each other, the name is followed by a colon and

the number of the label, for example:
LABEL: 00 0006 LABEL: 01 c020 LABEL: 02 c035

The number zero indicates the 1label value within the
definition, relative to the start of the macro.

If laebels are defined with a macro, different names
must be used within different macros, or a "REDEFINITION
ERROR" will occur. Parameters may have the same names
because these sare replaced by the actual values during a
macro call anyway. Arbitrary ASSEMBLER 64 expressions can be
used in a macro call; these are calculated by the assembler
and transmitted as parameters, for example:

*INC.PNT POINTER-8%2
Here, for example, the value of pointer is taken and the
result of 8 times 2 is subtracted from it. The order of
evaluation can be determined through the use of parentheses

as usual.

As aﬁ example, we have a program which consists almost

- 35 -



ASSEMBLER/MONITOR 64

entirely of macro calls. Two macros are defined. The first
serves to set the cursor. The operating system of the
Commodore 64 places this routine at our disposal. The macro
with the name CURSOR expects two parameters. The first is
the line in which the cursor is to be placed, and the second
is the column. If we want to set the cursor at a specific
place in our program, we need only call the macro, for

example:
*CURSOR 10,20

The second macro serves to output text. The parameter is the
address of the text. The string must be terminated by a zero

byte.

In the program you find first the definition of the two
macros and then the actual program which consists only of
four macro calls and an RTS. The strings are listed at the

end of the program.

The source program is listed on the next page followed by the

assembly listing:

650 OPEN128,4,5
100 SYS 32768
110 .OPT P128,00

120 ; DEMO PROGRAM FOR MACROS
130 ;
140 ; SET CURSOR

150 CURSOR .MAC LINE,COL
160 LDX #COL

170 LDY #LINE

180 STX $D6

190 STY $D3

200 JSR SETCRSR ;SET CURSOR
210 .MEN

- 36 -

C




C

220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440

3 STRING OUTPUT
PRTSTR .MAC TEXT
LDA #<TEXT
LDY #>TEXT

ASSEMBLER/MONITOR 64

JSR STROUT ;0/P TEXT TO SCREEN

.MEN

SETCRSR = $E56C
STROUT = $AB1E

H
*= $C000

13

'CURSOR 10,10
'PRTSTR TEXT1
"CURSOR 0,20
"PRTSTR TEXT2
RTS

TEXT1 .ASC "TEBXT LINE # 1": .BYT 00
TBXT2 .ASC "TEXT LINE # 2": .BYT 00

.END

Here’s the assembly listing:

ASSEMBLER-64

110:

120:

130:

140:

150:

160:

170:
180:
190:
200:
210:
220:
230:
240:
250:
260:
270:
280:
290:
300:
310:
320:
330:

co000

v e w e v v e

E56C
AB1E

Cc000

v2.0 PAGE 1

.OPT

; SET CURSOR

CURSOR

.
3
.
’

PRTSTR

SETCRSR
STROUT

.MAC

JSR

.MEN

.MAC
LDA

P128,00

LINE,COL
#COL
#LINE
$D6

$D3
SETCRSR

STRING OUTPUT

TEXT

#<TEXT
#>TEXT
STROUT

$E56C
$AB1E

$C000

DEMO PROGRAM FOR MACROS

3 SET CURSOR

10/P TEXT TO SCREEN



ASSEMBLER/MONITOR 64

340: H

350: c000 *CURSOR 10,10

+ C000 A2 0A LDX #COL

+ Cc002 A0 0A LDY #LINE

+ c004 86 D6 STX $D6

+ c006 84 D3 STY $D3

+ c008 20 6C ES5 JSR SETCRSR ;SET CURSOR
+ c00B .MEN

360: C00B *PRTSTR TEXT1

+ CO00B A9 25 LDA #<{TEXT

+ CO0O0D A0 CO LDY #>TEXT

+ COOF 20 1E AB JSR STROUT ;0/P TEXT TO SCREEN
+ co012 .MEN

370: co1l2 *CURSOR 0,20

+ C012 A2 14 LDX #COL

+ Cc014 A0 00 LDY #LINE

+ Cc016 86 D6 STX $D6

+ c018 84 D3 STY $D3

+ COlA 20 6C E5 JSR SETCRSR ;SET CURSOR
+ c01lD .MEN

380: co01D 'PRTSTR TEXT2

+ CO1lD A9 33 LDA #<TEXT

+ CO1lF A0 CO LDY #>TEXT

+ c021 20 1E AB JSR STROUT ;0/P TEXT TO SCREEN
+ c024 .MEN

390: c024 60 RTS

400: H

410: C025 54 45 58 TEXT1 .ASC "TEXT LINE # 1"

410: c032 00 .BYT 00

420: C033 64 45 58 TEXT2 .ASC "TEXT LINE # 2"

420: c040 00 .BYT 00

430: H

Let’s take a closer look at the listing. You recognize
that within the macro definition, an apostrophe appears
instead of the program counter. The object code field is
empty because no code is created by the macro definition

(lines 150-210, 240-280).

The first macro call is in line 350. The actual program
counter as well as the code created appear in the listing. A
plus sign (+) appears in place of the line number, which
shows that the created code comes from a macro call. You

- 38 -



recognize

call
the
line

M performs this function.

ASSEMBLER/MONITOR 64

that the symbols LINE and COLUMN have the values
which they were assigned by the macro call. The subsequent

macro calls proceed in the same manner.

If you have many macros in your source program or you

certain macros often,

macro-created

you have the option of supressing
code in the assembly listing. Only the

containing the actual call will appear. The option .OPT

ASSEMBLER -64 V2.0 PAGE 1

110:
120:
130:
140:
150:
160:
170:
180:
190:
200:
210:
220:
230:
240:
250:
260:
270:
280:
290:
300:
310:
320:
330:
340:
350:
360:
370:
380:
390:
400:
410:
410:
420:
420;
430:

c000

. e v e e v ow

?
’
’
’
’

B56C
AB1E

c000

c000
C00B
col2
col1p
co024

c025
c032
€033
Cc040

See the next example:

.OPT P128,M,00

DEMO PROGRAM FOR MACROS

SET CURSOR

;
H
3
CURSOR

.
?

.MAC LINE,COL

LDX #COL

LDY #LINE

STX $D6

STY ¢D3

JSR SETCRSR ;SET CURSOR
+MEN

;7  STRING OUTPUT

PRTSTR

;
SETCRSR
STROUT

60

64 45 58 TEXT1
00
54 45 58 TEXT2
00

.MAC TEXT

LDA #<TEXT

LDY #>TEXT

JSR STROUT ;0/P TEXT TO SCREEN
.MEN

$E56C
$AB1E

k= $C000

'CURSOR 10,10
'PRTSTR TEXT1
*CURSOR 0,20

'PRTSTR TEXT2
RTS

.ASC "TEXT LINE # 1"
.BYT 00
.ASC "TEXT LINE # 2"
.BYT 00

39 -



ASSEMBLER/MONITOR 64

Supressing the macros makes the listings shorter
often easier to read. In the next example we have added

and

prints a list of the symbols and their values together with
the defined macros and the number of times which they were
defined as a two-digit hexadecimal number. The first part

of the listing is the same as the previous page. Only

.

symbol table and macro table are printed as follows:

ASSEMBLER -64 V2.0 PAGE 2

SYMBOLTABLE:

TEXT2 C033 TEXT1 Cc025 TEXT Cc033 COoL
LINE 0000 STROUT AB1E SETCRSR

7 SYMBOLS DEFINED so6e
MACROTABLE:

PRTSTR 02 CURSOR 02

2 MACROS DEFINED

- 40 -

the

0014



ASSEMBLER/MONITOR 64

F. BRROR MESSAGES

ASSEMBLER 64 has a set of error messages. Errors are printed
in both pass 1 and pass 2. If the assembler recognizes an
error, 4 @asterisks followed by the error message is
displayed. The 1line containing the error will then be
displayed on the screen, regardless of the .OPT P settings.
For a syntax error, a digit will also be displayed in front
of the four asterisks which describes the error in greater
detail. There are 10 different types of syntax errors which
can occur. They are listed below. Still other errors can
occur when using macros; these are indicated by a prefixed
letter.

Some errors are "fatal," meaning that they cause the
assembly to stop. An exclamation point is displayed in front
of lines containing fatal errors. The assembly is stopped
after the message is displayed. The first byte of the object
code created for such a line is a zero, which is the 6502
BRE command. If you try to execute such a program, a BRK
command is executed when it comes to the erroneous line,
which either performs a warm start, or returns you the
monitor, if it is loaded. In general, you should first
correct the errors before you execute an assembly language

progran.

One type of error which ASSEMBLER 64 cannot detect is a
phase error. This error does not usually occur, but can be
encountered with certain combinations of conditional
assembly containing .BYTE or .WORD pseudo-ops. A phase error
occurs when the program counter is different in pass 2 than

it was in pass 1. You can recognize a phase error with an

- 41 -



ASSEMBLER/MONITOR 64

PHASE .IF PHASE-%x : PHASE ERROR

Normally, PHASE has the same value as the progran
counter and the code behind the colon is never executed. If
a phase shift occurs, the result is not zero and the
additional statement results in a syntax error which you can
recognize.

Error statistics

Before the start of pass 2, ASSEMBLER 64 outputs the
number of errors in pass 1, if any were found. For example:

2 ERRORS IN PASS 1
After pass 2, when the assembly is complete, the number of
errors in pass 2 is displayed. If the assembly was error-
free, the message

NO ERRORS

is displayed. If errors were encountered, that number is
displayed. For example:

4 ERRORS

Messages
SYNTAX - This error message is preceded by a digit which

describes the error in greater detail. These digits have the

following meaning:

- 42 -

( \

C



ASSEMBLER/MONITOR 64

Label for empty assignment not allowed (the line
contains only one string).

Illegal opcode

Illegal addressing mode — this command may not be wused
with this addressing mode.

Unknown operator in expression (unallowed character in
an expression)

Unpaired parentheses

Illegal expression - illegal character in an expression,
or an empty string "".

Missing comma - a pseudo—op is expecting a comma

Illegal pseudo~op. The .XXX string is not recognized as
a pseudo-op.

Symbol does not start with a letter. A symbol was
expected, but an alphabetic character was not found.

Opcode with unallowed addressing mode.

following syntax errors can occur for macros:

.MEND command without previous .MAC

Unclosed macro definition

Nested macro definition - macros within macros are not
allowed.

Illegal number of parameters. The number of parameters
in the macro call does not match the number in the

macro definition.

ILLEGAL QUANTITY - The expression evaluated to a value which

lies outside the borders for this command or pseudo-op.

The expression yields a value greater than 65535.

OVERFLOW - The input buffer which ASSEMBLER 64 uses in order

to decode source lines is to small. Divide the line into

- 43 -



ASSEMBLER/MONITOR 64

several instructions or use a temporary variable in

order to simplify the expression.

BRANCH OUT OF RANGE - A relative jump (branch command) over
a distance greater than 128 bytes was attempted.

REDEFINITION - An attempt was made to define a symbol twice
without using the redefinition operator.

UNDEF’D STATEMENT - A label or expression is not defined.

REVERSAL - An attempt was made to assemble code at an
address which is lower than the last address. This error
does not occur when you assemble directly to memory.
This is a fatal error, as are all of the following.

SYM TABLE OVERFLOW - You have tried to define more symbols
than space in the symbol table permits. Either set the
minimum lower with .STM, or divide your program into
several parts. This error message can also appear when
loading a source program with .FILE if the program is
too large and part of the symbol table has been
overwritten. Divide the program into smaller parts.

OUT OF MEMORY - The buffer for the object code (.OPT O mode)
is too small. You should choose some other type of

output, such as disk.
UNDEF’'D STATEMENT - A GOTO to a non-existent line (exactly

as in BASIC). In contrast to the error named before,

this one is fatal.

- 44 -

C)



ASSEMBLER/MONITOR 64

DEVICE NOT PRESENT - The addressed device is not present on

the bus, or does not answer.
(: IEEE - another error on the IEEE bus.

DISK - Disk error. The disk drive error message was given
just prior to this.

- 45 -



.ASSEMBLER/MONITOR 64

G. Appendix

The following source program is another example of the
use of ASSEMBLER 64. It demonstrates outputting of object cod
by a user-defined routine. It sends each byte in hex format to
a previously opened file with the logical file number 1. It is
therefore possible to write the object code directly to the
datasette, for example. It is possible to read code in this
format with the BASIC program following it.

100 SYS 32768 ;CALL ASSEMBLER

110 .OPT

120 LENGTH = $4E ;BYTES TO O/P - 1

130 OP = $4B ;BUFFER FOR FIRST 3 BYTES

140 ADDR = $56 ;PGRM START ADDR

150 OBJBUF = $15B ;BUFFER FOR ADDITONAL BYTES
160 CHEKOUT = $FFC9 ;0/P TO LOGICAL FILE

170 CLRCH = $FFCC ;0/P TO DEFAULT

180 PRINT = $FFD2 ;0/P A CHARACTER

190 CLOSE = $FFC3

200 LF = 1 ;LOGICAL FILENUMBER

210 *= $C000 ;START ADDRESS

220 LDA LENGTH

230 CMP #$C0 ;CLOSE

240 BEQ CLOSEF

250 LDX #LF : JSR CHKOUT ;OUTPUT TO LOGICAL FILE 1
260 LDX #0 : LDA LENGTH

270 CMP #$80 ;OPEN

280 BEQ STARTADDR

290 OUT LDA OP,X

300 OUT1 JSR WROB ;OUTPUT BYTE AS HEXNUMBER
310 CPX LENGTH

320 BEQ EX1

330 INX

340 CPX #3

350 BCC OUT

360 LDA OBJBUF-3,X

370 JMP OUT1

380 EX1 JMP CLRCH

390 CLOSEF LDA #LF

400 JMP CLOSE

410 STARTADDR LDA ADDR : JSR WROB ;START ADDR LOW
420 LDA ADDR+1 : JSR WROB ;START ADDR HIGH
430 JMP CLRCH

440 WROB PHA ;0/P BYTE AS HEX NUM

450 LSR : LSR : LSR : LSR ;UPPER NYBBLE

- 46 -



ASSEMBLER/MONITOR 64

460 JSR ASCII

470 PLA

480 AND #X1111 ; LOWER NYBBLE
(: 490 ASCII CLC

500 ADC #-10

610 BCC AscCl

520 ADC #6

530 ASC1 ADC #"9"+1

640 JMP PRINT

660 .END

If you assemble this program, you get the following
assenmbly listing:

ASSEMBLER-64 V2.0 PAGE 1
110: c000 .OPT P128,00
120: 004EB LENGTH = $4E ;BYTES TO THE O/P - 1
130: 0048 oP = $4B ; BUFFER FOR FIRST 3 BYTES
40: 0066 ADDR = $56 ; PGRM START ADDR
(:;): 0158 OBJBUF = $15B ; BUFFER FOR MORE BYTES
50 ¢ FFC9 CHEKOUT = $FFC9 ;0/P TO LOGICAL FILE
170: FFCC CLRCH = $FFCC ;0/P TO DEFAULT
180: FFD2 PRINT = $FFD2 +0/P A CHARACTER
190: FFC3 CLOSE = $FFC3
200: 0001 LF = 1 i LOGICAL FILENUMBER
210: €000 = $C000 i START ADDRESS
220: C000 A5 4E LDA LENGTH
230: €002 Cc9 CcO CMP #$CO ; CLOSE
240: C004 FO 24 BEQ CLOSEF
250: C006 A2 01 LDX #LF
250: C008 20 C9 FF JSR CHEOUT ;0/P TO LOGICAL FILE 1
260: CO0B A2 00 LDX #0
260: CO0D A5 4E LDA LENGTH
270: COOF Cc9 80 CMP #$80 ; OPEN
280: Cc011 FO 1cC BEQ STARTADDR
290: C013 B5 4B ouT LDA OP,X
300: €016 20 3C c0 OUT1 JSR WROB ;0/P BYTE AS HEX #
310: C018 E4 4E CPX LENGTH
320: CO0lA FO OB BEQ EX1
0: CcOlC ES8 INX
Ca : C01D EO 03 CPX #3
H CO1F 90 F2 BCC OUT
360: c021 BD 58 01 LDA OBJBUF-3,X
370: c024 4C 15 CO JMP OUT1

- 47 -



ASSEMBLER/MONITOR 64

380: Cc027 4C cC FF BX1 JMP CLRCH (: )
390: CO02A A9 01 CLOSEF LDA #LF
400: C02C 4C C3 FF JMP CLOSE
410: CO2F A5 66 STARTADDRLDA ADDR
410: c031 20 3C cO JSR WROB s START ADDR LOW
420: Cc034 A5 57 LDA ADDR+1
420: c036 20 3C CO JSR WROB ; START ADDR HIGH
430: C039 4C CC FF JMP CLRCH
440: c03C 48 WROB PHA ;OUTPUT BYTE AS HEX #
450: CO3D 4A LSR
450: CO3E 4A LSR
450: CO3F 4A LSR
450: C040 4A LSR s UPPER NYBBLE
460: c041 20 47 cO JSR ASCII
470: c044 68 PLA
480: c046 29 OF AND #Xx1111 ;LOWER NYBBLE
490: c047 18 ASCII CLC
600: c048 69 F6 ADC #-10
610: C04A 90 02 BCC ASCl
620: c04c 69 06 ADC #6
530: CO4E 69 3A ASC1 ADC #"9"+1
640: €050 4C D2 FF JMP  PRINT C
1€000-C053
NO ERRORS
If you assemble this program, you can write the object code

in hex

100
110
120

format to the datasette with this format:

OPEN 1,1,1,"OBJECT CODE" : REM WRITE TO TAPE
SYS 32768
.OPT P,0=$C000 ; OBJECT CODE TO CUSTOM ROUTINE

The program can be loaded from tape with a small loader (i:)
program in BASIC.

- 48 -



ASSEMBLER/MONITOR 64

100 OPEN 1,1,0,"0OBJECT CODE" : REM READ FROM TAPE

110 GOSUB 1000 : AD = A : REM LOW BYTE OF START ADDRESS
120 GOSUB 1000 : REM HIGH BYTE OF START ADDRESS

130 AD = A%256 + AD : REM START ADDRESS

140 IF ST=64 THEN CLOSE 1 : END : REM PROGRAM END

150 GOSUB 1000 : REM READ BYTE

160 POKE AD,A : AD = AD + 1

170 GOTO 140

1000 REM READ HEX NUMBER

1010 GET#1, A$,B$

1020 H = ASC(A$)-48+(A$>="A")%T7 : REM HIGH NYBBLE
1030 L = ASC(B$)-48+(B$>="A")%7 : REM LOW NYBBLE
1040 A = L+16%H : RETURN

Your ASSEMBLER 64 distribution diskette contains a
BASIC program called "SYMPRINT". This program serves to
output a symbol table in alphabetic order, which you have
written to disk previously with .SST.

The program asks for the name of the symbol table on
disk as well as the number of output device (3=screen,
4=printer, 8=disk). For disk output, you must give the name
of the file to which the symbol table will be written.
Finally, you can determine how many symbols will be printed
per line. Two fit per line on the screen, 4 on a printer.
The output format corresponds to that of the .SYM conmand
when assembling.

- 49 -



ASSEMBLER/MONITOR 64

THB MONITOR

MONITOR 64 is an extended machine language monitor that .
has features not found in more conventional software. It can (:
be loaded concurrently with ASSEMBLER-64 and thus forms a

complete machine language development package.

A. Summary of MONITOR 64 Commands

Here is a list of the commands that can be performed
with MONITOR-64:

Commands: (:_
R Register display display register contents

M Memory display display memory contents

(] Go execute machine language program

L Load load machine language program

S Save save machine language program

D Disassemble disassemble machine language prog.

C Compare compare memory areas

T Transfer move memory area

H Hunt search through memory range

F Fill fill memory range with value

B Bank select memory configuration

W Walk single-step mode

Q Quicktrace Trace with break points

u Breakpoint set breakpoint (:
X Exit return to BASIC I

- 50 -



ASSEMBLER/MONITOR 64

B. LOADING MONITOR-64

The monitor occupies 3K bytes of memory from $C000 to $CBFF
outside the BASIC area and is loaded from diskette. Type:

LOAD "MONITOR 64",8,1

and press <RETURN>. The messages

SEARCHING FOR MONITOR 64
LOADING

MONITOR 64 V2.0 IS LOADING ...

appear on the screen. Once loaded, the monitor responds with

*%%x MONITOR 64 V2.0 *xx
(C) 1984 DATA BECKER GMBH

Cx

and displays the register contents.

All monitor input and output is done using 2 or 4 digit
hexadecimal numbers.

- 81 -



ASSEMBLER/MONITOR 64

C. COMMAND Descriptions

Here is a description of the MONITOR-64 commands:

1. Switch memory configuration >BX

With this command you can have access to the entire memory
of the Commodore 64. After starting the monitor, all
commands operate on the normal memory configuration. With
>BA you can switch the memory configuration to all RAM,
while >BC also adds the character generator. You can switch
back to the normal ROM configuration with D>BR. This

configuration effects only the commands
M’ D’ c’ T’ n, and F C

The following table illustrates the three configurations.

Address range >BR >BA >BC
$E000 - $FFFF ROM RAM RAM
$D000 - $DFFF I1/0 RAM CHAR ROM
$C000 - $CFFF RAM RAM RAM
$A000 — $BFFF ROM RAM RAM
$0000 - $9FFF RAM RAM RAM

O

- 52 -



ASSEMBLER/MONITOR 64

2. Compare memory areas >C XXXX YYYY 2ZZZ

The memory area from addresses XXXX through YYYY is compared
with the area starting at ZZZZ byte by byte. Any address
whose contents differ are displayed.

Example: >C 8000 8100 9000
8056

The contents of address $8056 differ from the contents of
address $9056.

3. Disassemble a machine language program >D XXXX YYYY

The machine language program beginning at address XXXX
through YYYY will be displayed in mnemonic (operation code)
form. If the ending address YYYY is omitted, only one line
is displayed. Three question marks will be displayed for

invalid instructions.

Exanmple: >D B016 BO21

>, BO16 20 90 AD JSR $AD90
>, BO19 BO 13 BCS $BO2E
>, BO1B A5 G6E LDA $6E
>, BO1D 09 7F ORA #$7F
>, BO1F 25 BA AND $6A
>, Bo21 85 6A STA $6A

- 53 -



ASSEMBLER/MONITOR 64

If the displayed addresses are in RAM, then you can change
the bytes following the address. Type in your change and
press <RETURN>, to make the change. The instrtuction is re-
disassembled. On the next line, the following address is
automatically displayed and the cursor is placed over the
first byte of the instruction, so that the next instruction
can be changed. This mode can be exited by erasing the
character after the address before pressing <RETURN>.

4. Fill memory range >F XXXX YYYY ZZ

The area from addresses XXXX through YYYY are filled with
the byte ZZ.

Example: >F 8000 8FFF 00

5. Execute program >G XXXX

The Go command executes a jump to address XXXX and executes
the machine language program found there. If XXXX is not
entered, the value of the program counter (PC) is used as

the starting value.

If the machine language program encounters the command BRK
($00), control returns to the monitor which displays *B
(break) and displays the register contents. The program
counter points to the address after the BRK command. When

- 64 -

C.




ASSEMBLER/MONITOR 64

testing programs, we recommend that you terminate them with
BRK ($00).

6. Searching memory areas. There are two options when

searching: search for a byte combination or search for ASCII
text.

6.a Search for byte combination >H XXXX YYYY BB BB BB

The memory range from addresses XXXX through YYYY is
searched for the byte combination BB. The combination can be
up to 29 bytes long.

Example: >H E000 EFFF 20 D2 FF

The memory area from addresses XXXX through YYYY is searched
for the combination $20 $DF $FF (subroutine call). Addresses
at which this combination is located are displayed.

6.b Search for text >H XXXX YYYY "TEXT"

The memory area from address XXXX to YYYY will be searched
for the ASCII text "TEXT". The text can be up to 29
characters 1long. Addresses at which this text is located

will be displayed.

Exanmple: H> AOO0O0 AFFF "READY"
A378

- 68 -



ASSEMBLER/MONITOR 64

7. Load a machine language program 2L "naome”, XX,YYYY

The program "name" is loaded beginning at addreass YYYY from
device XX. Normally YYYY is omitted; the program then loads
at the address from which it was saved. If the device

address is also omitted, device 8 is assumed.

Example: >L "PROG",8
SEARCHING FOR PROG
LOADING
>
If you want to load from cassette, enter 01 for XX.

8. Display memory contents >M XXXX YYYY

The contents oi memory starting at XXXX and ending at YYYY
is displayed. Both XXXX and YYYY are four digit hexadecimal
numbers. If the ending address YYYY is omitted, only one
line is displayed. The ASCII representation of the memory
contents is displayed in reverse following the hexadecimal
representation. Un-printable control characters are

displayed as a period.

Example: >M AOAO0 AOQAF
>: AOAO0 C4 46 4F D2 4E 45 58 D4 DFORNEXT
>: AOA8 44 41 54 Cl 49 4E 50 55 DATAINPU

Memory contents can be changed in the same way as register

contents, by overwriting the byte value and pressing
<RETURN>.

_56_.



C

C

ASSEMBLER/MONITOR 64

9. Program execution with breakpoints >Q XXXX

The single-step mode often takes too long when working with
machine language programs. Therefore MONITOR 64 offers you
the option of controlling machine language programs by
setting breakpoints.

You can specify that a machine language program is to be
interrupted when it reaches a certain place. Should the
program never reach the breakpoint, it can be stopped by
pressing the (RUN/STOP> key. The breakpoints are set with
the U command, described shortly. The syntax of the Q
command is the same as for the G and W commands.

10. Display the register contents >R

The contents of the processor registers are displayed.

The labels identifying the registers are:
PC program counter
IRQ interrupt vector
SR status register
AC accunulator
XR X register
YR Y register
SP stack pointer

In addition, the flags of the status register are displayed
individually:

- B7 -



ASSEMBLER/MONITOR 64

negative flag
overflow flag

not used

break flag
decimal flag
interrupt flag
zero flag

QN - & ™

carry flag

Example: >R
PC IRQ SR AC XR YR SP NV-BDIZC
>; 0003 RA31 32 34 02 A2 F8 00110010

If you want to change the register contents, you simply move
the cursor to the appropriate place, overwrite the old
contents with the new value and press <RETURN>. The new
register contents are placed into the register. If the
contents of the status register are changed, the flags are

also changed and displayed.

11. Save a machine language program >8 "name", XX, YYYY,ZZZZ

XX 1is again the device address, YYYY is the starting
address, and ZZZZ is the ending address plus one of the

program to be saved.

Example: >S "PROG",01,C900,C9DE
SAVING PROG

- 58 -




ASSEMBLER/MONITOR 64

The program "PROG" is saved onto cassette from address $CS00
to $CIDD.

12. Transfer memory area >T XXXX YYYY ZZZZ

The memory area from addresses XXXX through YYYY are moved

to the memory area beginning at ZZZZ.
Example: >T 6000 SFFF 3000

The memory range from $6000 through $6FFF is transferred to
$3000 to $3FFF. The contents of the original range remains

unchanged.

13. Set a breakpoint U XXXX YYYY

If you want to use the Q command, you must first set a
breakpoint. The U command performs this functiom. XXXX is
the address at which the program is to stopped. If you start
your program with the Q command, it will stop executing at
the address given by XXXX. You are them placed in the
single-step mode (W). With <RUN/STOP> you can halt or
single-step a program. The U command offers the additional
option of stopping the program after it reaches the given
breakpoint a certain number of times. The YYYY parameter
specifies the number of times the breakpoint is ignored

before execution is halted.

- 59 -



ASSEMBLER/MONITOR 64

Example: >U 1000 0050

Here the program is interrupted when it passes address $1000
for the 80th time (hexadecimal 50). Values up to $FFFF =
655635 are allowed.

14. Single—step mode >W XXXX

One special feature of MONITOR 64 is the single-step (walk)
mode. With this you can execute machine language programs
instruction by instruction. The command has the same
syntax as the G command, either starting at address XXXX or
at the address contained in the of program counter if only a
W is given. When you enter W, the command at that address is
executed and the contents of the registers and flags are
displayed in the same format as with the R command.
Displayed on the next line is the following instruction in
disassembled form. If you press a key, the next command is
executed "and the resulting register contents are again
displayed. You can exit the single-step mode with the
<RUN/STOP> key.

Example: >W BC16
>; BC18 EA31 22 69 34 00 F6 00100010
>, BC18 86 70 STX $70

The single-step mode works with all "normal" programs. It

'should not be used with programs that use the I/0 kernal

functions.

- 60 -

C)



ASSEMBLER/MONITOR 64

15. Return to BASIC >X

The >X command returns you to Commodore BASIC. After exiting
the Monitor with the X command you can enter SYS 2 or a SYS
to any location containing a zero, as long as the
CRUN/STOP><RESTORE> key has not been pressed in order to
return to MONITOR (otherwise use SYS 12%4096).

- 61 -



ASSEMBLER/MONITOR 64

D. ERROR MESSAGES

If you have made an error in your input, MONITOR 64 will
echo the input along with a question mark. You can then

correct the input.

In addition to these syntactical errors, the error routines
of the kernal are activated through MONITOR 64. If an error
occurs when saving or loading, for example, an error message

of the following form appears:
I/0 ERROR #X

in which X can be a number from 1 to 9 and has the following

significance:

+.. too many files

... file open
... file not open

.. file not found
device not present
... not input file
... not output file
... missing filename

W 0~ 00 O & W Ny =

... illegal device number

- 82 -



(

SERIOUS 64 SOFTWARE

INDISPENSIBLE TOOLS FOR YOUR COMMODORE 64

PASCAL-64

This full compiler produces fasi 6502
machine code. Supports major data Types:
REAL, INTEGER, BOOLEAN, CHAR,
multiple dimension arrays, RECORD, FILE,
SET and pointer. Offers easy string handi-
ing, procedures for sequential and relative
data management and abitity to write IN-
TERRUPT routines in Pascal! Extensions
includoed for high resolution and sprio

ASSEMBLER /
MONITOR-64
Tms p lop

! a macio and
extended monitor. The macro assembler
ofters freeform input, complete assembler
histings with symbo! table (labe), cond: -
tionat assembly.
The extended monitot has all the standard
commands plus single slep. quick trace

graphics. Link lo ASSEM/MON h break bank and more.
language. DISK $39.95 " DISK $39.95
DATAMAT-64 BASIC-64

This powerfu!l data base hand

up 10 2000 records per disk. You select the
screen format using up to SO fielos per
record. DATAMAT 64 can sornt on multiple
fields in any combination. Complete report
writing capabilities to al COMMODORE or
ASCll printers.

Available November DISK $39.93

TEXTOMAT-64

bhios wordp displays 80
using horiz n

This is a full compiler thal won 't break your
budget. Is with C 64
BASIC. C to fast code

OTHER NEW SOFTWARE COMING SOON!I

All software products featured above
have inside disk slorage pockets,
and heavy 3-.ring-binder for maxi-
mum durability and easy reference.

Protect your valuable source code by com-
piting with BASIC 64.

Avanable December DISK $39.95

ADA TRAINING COURSE
This package 1s an introduction to ADA, the
official language ot lhe Depariment of
Defense and the programmung language of

memory editing up to 24,000 chavaclerrs the future. Includes eduor, syntax
plus 9 of longer d and 110 page stop by
Complete text g. block op: step | bin? the languag

form letters. o:
Avaitable November DISK $39.95

DISK $79.95

DEALER INQUIRIES INVITED
AVAILABLE AT COMPUTER STORES, OR WRITE:

I
P.0. BOX 7211 GRAND RAPIDS, Mi 48510
U.S. DATA

For postage & hending, 8dd $4.00 (U.8. snd
w

mmm-
Aol

FOR QUICK SERVICE PHONE (618) 241-8810

wemg TM o




XREF-.64 BASIC CROSS REFERENCE

This too! allows you to locate those hard-to-find n your

CADPAK-64

Cross-refarences all tokans (koy words), varnables and constanis m sorted
ordor. You can even add you own tokens lrom other software such as
ULTRABASIC or VICTREE Listings to screen or all ASCIl printers.

DISK $17.95
SYNTHY-64
This 18 rencwned as the tnesl music synthesizers avadable 2t any price.
Othors may havo a lot of onscroen fnils. but SYNTHY-64 makes musx better
than them all. Nothing comos close to the performance of this package
Includes manua! with tutonal, sample music

DISK $27.95 TAPE $24.95

ULTRABASIC-64
This 2dds 50 p {many found n VIDEO BASIC,
above) - HIRES, MULTI, DOT. ORAW, CIRCLE, BOX, FILL. JOY, TURTLE,
MOVE. TURN. HARD, SOUND. SPRITE. ROTATE, more. All commands
are easy 10 use Includes manual with two-pan tutonal and demo

DiSK $27.95 TAPE $24.95

CHARTPAK-64
This tinest charting package draws pre. bar and kne charts and graphs from
yout data or DIF, Multiplan and Busicalc files Charls are drawn in any of
2 formats Change format and build another chart

This dasign has [{ ~two Hues
scroons; draw LINEs. RAYs, CIRCLEs, BOXES: rachand ORAW: FILL with
patterns. COPY argas. SAVE/RECALL pictutos. deline and use intncate
OBJECTS. msart text on screen; UNDO last tunchon. Requires high quality

hgh We McPen. manual with tutorial.

DISK $49.95 McPen lightpen $49.95
MASTER 64

This prol go adds 100 1l

commands to BASIC wmcluding fast ISAM mdexed filos; mplmod yet

soah-shcatod gcreen and pnntor mamgomcm programmor's ana BASIC
22-dgnt mmmx

oacuage for royalty-froo

manual.

VIDEO BASIC-64

This superb graphics and sound developmont packago lats you wate soft-
ware for without Has hiros, . sprite and
turtle graphics; audio commands for simplo or complox music and sound
effocts, two sizos of hardcopy to mosi dol matrix printers; game featuros
such as spnie colision dotoction. kghtpen, game peddie; memory

of your prog

1500
DISK $84.95

to MPSB01. Epson, Okidala. Prownter Inciudes manual and tulonal
DISK $42.95

CHARTPLOT-64
Same as CHARTPACK.64 lor highost quality outpul 1o mosl popular pen
plotters DISK $84.95

DEALER INQUIRIES ARE INVITED

for multiple g scceans, scraen copy, 6fc.
DISK $59.95

TAS-64 FOR SERIOUS INVESTORS

This sophisticated charting syatom plots more than 15 lachnical indicators
on spkt scroen. moving averages; oscillators; trading brands; loast squares,
trond lines, supenmpose graphs; hive volumo indicators. rolativo strength.
volumes, more Onkine data coliaction DINR/S or Warner, 175pp. manual.

Tutona! DISK $84.95

FREE CATALOQ Ask for a listing of other
Abacus Software for Commodore-64 or Vic-20

OISTRIBUTORS

Grest Britala:  Bsiguim: Frazce: Now Zestend:

8 Noowih Ave.  AVGutiome 30 47 Averos Pro-Doumer  206-308 Cceeh Street
Rochdze, Lancs. Bruzsel 1160, Bekguim Roel 5 Primersion Moty
708524304 20801447 6386698

Watt Qe . Swedea: A

DATA BECXER LT

Y fo st 18 Logen foas

Q2IVAN2085 41812304 07357008

Commodore 64 is a rag. T.M. of Commodore Business Machines

AVAILABLE AT COMPUTER STORES, OR WRITE:

Abacus i

g.o. BOX 7211 GRAND RAPIDS. MICH. 48510
ymmsmm mum&mwww) mw

orchlrmwd Mmm‘% ubsmg:)y ..
FOR QUICK SERVICE PHONE 616-241-5510 C




(

FOR COMMODOR
HACKERS ONLY!

R SXVNGIERY]
HOCKMVEK )

11 9% NO ¢y SV

O8 HOM &

THOCK ¥R Y

1

(R R NN ORI ITTRTRTES

7
3
g

i

OTHER BOOXS AVAILABLE SOON

ROV
LTSSV

NI A (L
THEE MO SIMOEN S\

THLE YO AKX

OO
MO BN QY

IR R NN
(YR IR R NN RN [ TIRTSTRAC R R A B

THE ANATOMY OF THE C-64
15 the msider’'s guide Lo the lesser known features of
the Commodore 64. Inciuges chapiers on graphics.
so0und Synihesis. Nputoutput contsol. sample programs
using the kernal routines. more For those who need 10
know. d ncludes the complele disassembled ang
documented ROM kstings

ISBN-0-9164239-00-3 30000 $19.85
THE ANATOMY OF THE 1541
DISK DRIVE

unravels the of using the disk

drive Details the use of program sequential. relative
and arect access ties Inciude many sampie programs
FILE PROTECT. DIRECTORY. DISK MONITOR. BACKUP,
MERGE. COPY. others Descudes nternals of 00S with
and ¢ listings of the

1541 ROMS

ISBN-0-916439-01-1 320pp $19.95

GRAPHICS BOOK FOR
THE C-64

takes you from the fundamentals of graphic to
advanced 10piCs SuCh 3s compuler axded design Shows
YOu how 10 DrOgram new chatacter sels. move spntes.
Oraw 0 HIRES and MULTICOLOR. use a Ighipen.
nangie IRQs do 3D graphics prosectons. curves and
anmation  Includes dozens o samples

ISBN-0-916439-05-4  280pp

ADVANCED MACHINE
LANGUAGE FOR THE C-64

Qives you an inlensive trealment of the powerfu! ‘64
features Author Lothar Enghsch delves nto areas such
as nlersypls, the video controles. (he imer, the rea)
tme clock, parallel and senal /0 extending BASIC and
1ips and tncks from machme lanquage. mare

1SBN-0-916439-06-2 200pp $14.95

$19.85

SCIENCE/ENGINEERING

ON THE C-64

15 an introduction to the warld of compulers m science.
Describes vanable Iypes. compulatonal accuracy.
vanous sort alogrihms. Topics include hinear and
nonknear regression, CHI-square distnbubon. Founer
amalysis. mainx calculations. more Programs from
chemsstry. phys«s. buology. astronomy and eiectromes
inchudes many program listings

ISBN-0-916439-09-7 250pp $19.95

CASSETTE BOOK FOR THE C-64
(o7 Vic 20) contais 3ll the mioimanon you need to
know about using and programming the Commodore
Datasette Includes many example programs Also con-
1ams a new operaling system {or last loading. saving
and tinding of liles

ISBN-0-916439-04-6 $12.95

180pp.

MACHINE LANGUAGE FOR C-64
15 aimed al those who want 1o progiess beyond BASIC
WVirate laster. mose memory efticent programs in machne
language Testis speciicaly geared to Commodore 64
Learns 3l 6510 mstiuctions Includes bstings for 3 tull
tength programs  ASSEMBLER. DISASSEMBLER anc
amanng 6510 SIMULATOR so you can  see " the 0petd
uon of the 64

$14.95

ISBN-0-916439-02-X 200pp

TRICKS & TIPS FOR THE C-64
5 3 COReCON O easy-10-use rogrammang tethnxjues tor
he 64 A perfect compan:on for those who have run
up 3gainst those haid to solve programming problems
Cavers advanced graphics. easy data inpul. BASIC
enhancements. CP/M cartridge on the '64. POKES, user
detned character sels. oyshchimouse sunulaton, tans:
fesning data between comuters. more A lreasure chest
ISBN-0-916439-03-8 250pp $19.85

IDEAS FOR USE ON YOUR C-64
15 lof Ihose who wondes what you can do with your ‘64
1 s writen for Ihe novice and presents dozens o!
program  histing the many. many uses for your
computer Themes include aulo espenses. electionic

DEALER INQUIRIES ARE INVITED

IN CANADA CONTACT:
Tho Book Contre, 1140 Beaulac St
Montrea!, Ouoboc H4R1RE Phone: ¢5u) 322.4154

calkculator recipe Ne. stock ksts. cost
rstimalor  personal health recotd diet planner. store
Window 9. poelty. party

and mote
ISBN-0-916426-07-0

PRINTER BOOK FOR THE C-64
tnaly simphiies your understanding ol the 1525
MPS/801. 1520 1526 and Epson compatible pninters
Packed with examples ang utikty programs. you'll learn
haw to make hardcopy of Text and graphics. use secon:
dary addresses. plot in 3-D. ang much more. Includes
commentea ksting 0! MPS 801 ROMs
ISBN-0-916439-08-9 350pp.

200pp  $12.85

$19.95

AVWATMERMNM

P.0. BOX 7211 GRAND RAPIDS, M] 46510
U.8. DATA

For postage & handing, 800 34.00 (U.S. ana SRR

Mmuoohm umupm —

in U.S. doliers by check, money order of

charpe card. (Michigan Rumm a0d 4%

sales tax)

FOR QUICK SERVICE PHONE (816) 241-5810
werg TM.of Busness Machres






