
c

ASSEMBLER /

MONITOR 64

C

Powerful 6510 MACRO Assembler

Development Package

for the CoHBodore 64

By: Lothar Englisch

38485

A Data Becker Product

ABACUS Software

P.O. Box 7211

Grand Rapids, MI 49510

COPYRIGHT NOTICB

ABACUS Software makes this package available for use on a

single computer only. It is unlawful to copy any portion of

this softare package onto any medium for any purpose other

than backup. It is unlawful to give away or resell copies of
any part of this package. Any unauthorized distribution of

this product deprives the authors of their deserved

royalties. For use on multiple computers, please contact

ABACUS Software to make such arrangements.

WARRANTY

ABACUS Software makes no warranties, expressed or implied as

to the fitness of this software product for any particular

purpose. In no event will ABACUS Software be liable for

consequential damages. ABACUS Software will replace any copy

of the software which is unreadable if returned within 30

days of purchase. Thereafter, there will be a nominal charge

for replacement.

o

First Printing,

Printed in U.S.A.

Copyright (C)1984

Copyright(C)1984

September 1984

Translated by Greg Dykema

Data Becker, GmbH

Merowingerstr. 30

4000 Dusseldorf,W.Germany

Abacus Software, Inc.

P.O. Box 7211

Grand Rapids, MI 45910

o

ISBN # 0-916439-11-9

c

c

c

Table of Contents

Part I THE ASSEMBLER 1

A. USING ASSEMBLER 64 2

B. BXPRESS IONS 6

C. PSEUDO OPS 10

1. Synbol value assignment 10

2. Redefining synbol values 11

3. Progran counter assignnent 12

4. .BYTE 13

5. .WORD... 14

6. . FILE 15

7. .IF 16

8. . GOTO 17

9. . GTB. . 18

10. . ASC. . . . 18

11. .SYS 19

12. . STM 19

13. .SST 20

14. .LST 21

15. .FLP 21

16. . END 22

17. . SYM 22

18. .PAGE 23

19. .TITLB 24

20. . OPT 25

D. A SAMPLE PROGRAM 29

B. MACROS 32

F. ERROR MESSAGES 41

G. APPEND IX 46

PART II MONITOR 50

c
A. SUMMARY OF MONITOR-64 COMMANDS 50

B. LOADING MONITOR-64 51

C. COMMAND DESCRIPTIONS

1. SWITCH MEMORY CONFIGURATION 52

2. COMPARE MEMORY AREAS 53

3. DISASSEMBLE A MACHINE LANGUAGE PROGRAM...53

4. FILL MEMORY RANGE 54

5. EXECUTE PROGRAM 54

6. SEARCHING MEMORY AREAS 55

6. a Search for byte combinations 55

6.b Search for text 55

7. LOAD A MACHINE LANGUAGE PROGRAM 56

8. DISPLAY MEMORY CONTENTS 56

9. PROGRAM EXECUTION WITH BREAKPOINTS 57

10. DISPLAY THE REGISTER CONTENTS 57

11. SAVE A MACHINE LANGUAGE PROGRAM. 58

12. TRANSFBR MEMORY AREA 59

13. SET A BRBAKPOINT 59

14. SINGLE-STEP MODE 60

16. RETURN TO BASIC 61

D. ERROR MBSSAGBS 62

c

c>

ASSBNBLBR/NOlflTOB 64

c

THB A80BHBLIB

ASSEMBLER 64 is a two-pass 6510 or 6502 assembler for

the Couodore 64. It is written entirely in machine language

and occupies 8K bytes of RAN. It allows free-form input

using the builtin BASIC editor, produces complete assembly

listings, loadable symbol tables, various options for

storing created object codes, redefinable symbols, and a

comprehensive set of pseudo-ops (assembler directives) for

such things as creating macros or conditional assembly. The

syntax for the most part adheres to the MOS standard.

c

c

- 1 -

ASSBMBLBB/NONITOB 64

A. Using ASSBMBLBB 64

ASSBMBLBR 64 is loaded fron diskette and requires 8K of V_

the BASIC RAM. (address $8000-$9FFF). The area most

frequently used for ■achine language programs from $C000 to

$CFFF is left free and can be used for MONITOR 64 ($C000-

$CBFF) or your own machine language programs.

Loading A88BMBLBB 64

Insert the ASSBMBLER/MONITOR distribution diskette and

type:

LOAD "ASSEMBLER 64",8,1

The following appears on the screen:

LOADING

ASSBMBLBR 64 V2.0 IS LOADING ...

*** ASSBMBLBR 64 V2.0 *♦*

(C) 1984 DATA BECKER GMBH

2

10000-0000

NO BRRORS

RBADY.

When loading, ASSBMBLBR 64 protects itself from being

overwritten by BASIC. You are left with 30717 bytes for

your assembly language source programs.

- 2 -

c

c

c

c

ASSBMBLBB/NONITOR 64

The 2 in the Message indicates the start of pass 2.

Following is the address range of the created object code

and the number of errors.

Assembler programs are entered using line numbers just

like BASIC programs. Lines can be changed, deleted, or

inserted exactly as in BASIC. No other editor is necessary

and more storage space is available for your source programs

- a total of 30K. You can separate several assembler

commands on the same line using colons as in BASIC.

You can make your assembly language programs easier to

read by placing an up arrow as the first character of a

line. After this, all spaces are accepted and the arrow is

ignored by ASSEMBLER 64. This allows you to indent your

programs as desired.

ASSEMBLER 64 uses almost the same source format as the

NOS standard. If even you are familiar with this standard,

you should read this description because it also explains

the departures from the MOS standard. The examples illus

trate the instructions.

This manual Is not intended to teach 6510 assembly

language programming. He recommend other books such as The

Nachine Language Book for the Commodore 64 or the Advanced

Machine Language for the Commodore 64 for more information

on the use of macros and floating-point arithmetic.

Lines of ASSEMBLER 64 source code consist of labels,

instruction mnemonics, the operands, and comments. In

addition, there are several "pseudo-ops," which are not

machine language instructions but rather tell the assembler

- 3 -

ASSBMBLBR/MONITOR 64

to do special things. These pseudo-ops are described later

in the nanual.

oBach program line contains a mnemonic or pseudo-op and v-

■ay begin with a label (symbol). If a line is supposed to

contain a label, simply place it in front of the

instruction, followed by one or nore spaces. A label oust

begin with a letter followed by other letters, numbers or

periods. The first 8 characters of a label Must be unique

(that is, no labels nay have the same first 8 characters).

Non-alphanumeric characters are not allowed.

Instruction mnemonics say follow a label or nay begin at

the start of a line if no label is present. All Mnemonics

consist of 3 letters. Mnemonics are reserved words and may

not be used as labels.

cIf an instruction begins with a period ("."), it is treated

as a pseudo-op. There are three pseudo-ops which do not

begin with a period. All pseudo-ops must be separated from

their operands by spaces, with the exception of " = n and

"*=". Pseudo-ops which begin with a period are distinguished

by the first three characters only, although they will be

printed in full in the assembly listing.

A line can be terminated by a semicolon. Everything

following the semicolon is ignored by the assembler and can

contain comments. Comments are printed out in the assembly

listing but are otherwise disregarded. A colon within a

comment ends it and begins a new instruction, as long as the

colon is not placed within quotation marks. y—

If a line begins with a semicolon, the assembler treats

- 4 -

c

c

c

ASSEMBLEB/MONITOB 64

the entire line as a comment. Such lines are printed

without a line number.

The operand field contains the addressing mode and an

expression for the command or pseudo-op. A semicolon may

follow.

The addressing modes with expressions have the following

syntaxes:

#expression absolute addressing

expression absolute or relative addressing

expression,x absolute,x indexed by x

expression,y absolute,y indexed by y

(expression,x) indexed indirect addressing

(expression),y indirect indexed addressing

(expression) indirect addressing

ASSBMBLBR 64 automatically converts absolute addressing

to zero-page addressing if the expression has a value less

than 256. If you want to force absolute addressing, you can

place an exclamation point in front of the expression. LDA

!5,X creates the code BD 05 00, the absolute form of LDA,

while LDA 5,X yields the zero-page addressing B5 05. This is

useful if you want to avoid the wrap-around effect of in

dexed addressing with addresses under 256.

- 5 -

ASSBNBLBR/NONITOR 64

B. Expressions

ASSEMBLER 64 is unique among assenbler in its ability V-

to calculate complex expressions. The assenbler has a

recursive routine for calculating nested expressions, which

gives you more capabilities than other assemblers. An

ASSEMBLER 64 expression may be placed wherever the word

"expression" appears in a list. Such an expression is also

allowed for the pseudo-ops which expect a numerical

argument. The expression evaluation of ASSEMBLER 64 is so

efficient that your programs can be written entirely using

symbols. This makes changing and transporting ASSEMBLER 64

programs especially simple and easy to understand.

The syntax of expressions is very simple and is a

superset of the MOS standard. Expressions are entered exact- >—

ly as they would be on a pocket calculator which does not V_

use an algebraic evaluation system but does allow paren

theses. All operators are evaluated strictly from left to

right, although square brackets are allowed as well as

parentheses in order to alter the order of evaluation.

An expression can be terminated by a variety of

characters. The end of a line always ends an expression.

Colons, semicolons, and commas also end an expression,

provided that these are not enclosed in quotation marks. A

closing parenthesis ends an expression provided no unpaired

open parenthesis remain. This makes nested expressions

possible with indexed addressing.

o

- 6 -

c

c

c

ASSEMBLER/MONITOR 64

You can use the following operators in expressions:

+ add values

subtract right value from left value

* multiply values

/ divide left value by right value

? logical OR of two values

& logical AND of two values

* logical XOR (exclusive or) of two values

> shift left argument as many bits to the right as the

right argument specifies

< shift left argument as many bits to the left as the

right argument specifies

All operations are performed using 16 bit arithmetic,

although various operations will lead to overflows* such as

multiplication by a value greater than 32767, or shifting

left more than 15 bits. These cause an ILLEGAL QUANTITY

ERROR. This error message also appears for a division by

zero. For addition and subtraction, a result greater than

65535 is interpreted as a negative number in two's

complement form.

The operands themselves can appear in a variety of

forms. In the following, the syntax is given together with

an example.

- 7 -

ASSBNBLBR/NONITOR 64

Operand

Type

hexadecimal

decinal

binary

PC

ASCII character

label

expression

types

Example

$1C3

127

*110011

*

,.A«

SYMB

("Z"+6)

Syntax

${hexdigit}

{digit}

%{0 or 1}

"character"

alphabetic(alphanumeric)

{expression}

o

Under "Syntax," items placed within braces {}

repeated as often as necessary.

may be

Bach of the above terms can be combined with the

previously-described operators. These can be enclosed in

parentheses as desired in order to alter the order of

evaluation. A minus sign can be placed in front of every

operand, including parenthesized expressions, to yield a

two's complement value.

An entire expression can be changed by a single

modifying character. One example is the use of ! to select

an absolute addressing mode. In addition, the "greater than"

and "less than" signs are allowed. ">" in front of

expressions tells the assembler to take only the most

significant byte of the expression's result (first 8 bits of

the 16 bit expression), while M<" denotes the least

significant byte. This is necessary for direct addressing or

with the .BYTE pseudo-op. The most significant byte operator

(>) performs the same operation as:

c

c

- 8 -

c

ASSBMBLBR/HONITOR 64

expression > 8

c The least significant operator can also be represented as:

expression & $FF

Saaple expressions

>LABBL-1+(TABLE*2)

VALUB-*

•tOit_t.A« < 3 + (.iD« - "A" > 2&*111)

C Parentheses may be nested as deep as necessary. Modifiers

cannot be used on parenthesized parts of expressions.

- 9 -

ASSBNBLBR/NONITOB 64

C• Pseudo-ops

o
Nost ASSBNBLBR 64 pseudo-ops begin with a period ("."). V"

All of these "period" opcodes must be separated from

following characters by at least one space. In addition,

there are three special pseudo-ops which are defined by

special characters. Pseudo-ops are recognized by their first

three letters; everything else up to the next space will be

ignored, although it will be printed in the listing.

The three special pseudo-ops serve to define symbols

and the program counter.

1. Symbol Value Assignment

The simplest of these is the operator for symbol

definition, the equal sign (=). In order to assign a

value (expression) to a symbol, you simply write:

symbol = expression

The assignment is made only during pass 1 of the

assembly. Any subsequent definition of this same

symbol in the source program results in a

"REDEFINITION ERROR." The "=" sign is used to define

constants and addresses in symbolic form, so that

only one line need be changed to alter all

- 10 -

c

ASSBNBLBB/MOHITOB 64

c

c

occurrences of the value. Here's a few examples:

S~ BBGIN^U $C000 ; define start of program

TAPBBUf = 828 ;define tape buffer at $33C

2. Redefining Symbol Values

Similar to the operator for symbol definition is the

assignment operator, which is written as a left

arrow (<-) and is used with the same syntax:

symbol <- expression

By contrast to the previous operator, it is possible

to redefine a symbol. In this case, the assignment

is made during pass 2 as well as pass 1. This can be

used for various purposes, most often during

conditional assembly (see .GOTO). Here are some

examples:

NUMBER <- NUMBER - 1 ; decrement value

PROGRAM <- *

- 11 -

ASSBNBLBB/MONITOR 64

3. Program counter assignment

The third special pseudo-op controls the program ^—

counter. It is written as *= which Beans "assign a

value to the program counter". The primary use of

this symbol is to specify the starting address of

the program. If not specified, it defaults to $C000.

Storage for data may also be reserved. The statement

=+32, for example, defines a 32-byte block

beginning at the current program counter location.

The value of the program countere is then

incremented by 32. If a symbol is found in the label

field, the value of the program counter is assigned

to it before the program counter is incremented.

Here's an example that defines variable in page 2.

♦= $200 ; sets the program counter to the

start of page 2

ADDRESS *= *+l ; a one-byte address, set to zero

TABLB *= *+32 ; table begins at $201

LABBL *= *+l ; LABBL has the value $233

TWO ♦= *+2 ; two-byte pointer

TEST *= $800 ; TEST has the value $236;

following code begins at $800

To define a table within a program, the following

can be used used:

c

o

- 12 -

ASSEMBLER/MONITOR 64

c

c

c

IDA #5

RTS

TABLE *= *+256 ; 256-BYTB TABLE

TEST LDA #>ADDRBSS*3

In general, you can use ♦= to define symbols by

altering the program counter. You should not,

however, love it backwards. This is allowed only:

1) if you assemble object code directly into memory

and execute it there; or 2) when you do not create

object code at all. When you assemble code at $1000,

for example, you cannot normally set the program

counter back to $0F00 to assemble code there. This

is allowed for label definition, but you must then

return to an address which was higher than the

address into which the last byte of object code was

assembled.

4. .BYTE expression

The .BYTE pseudo-op is used to place one-byte values

into the object code at the location contained in

the program counter. Any legal ASSEMBLER 64

expressions, separated by commas, may be used as

operands. The number is limited only by line length

and the length of the ASSEMBLER 64's buffer. Any

expressions may be used, but the expression must

evaluate to a one-byte value, or an "ILLEGAL

- 13 -

ASSEHBLBR/MONITOH 64

QUANTITY ERROR" occurs. Two-byte values can be

modified with w>" and "<n in order to take the high

or low byte, respectively. A one-byte value lies in /""~

the range 0 to 255 or $FF80 to $FFFF. The higher ^-
values are allowed because they normally signify

negative numbers from -1 to -128. Therefore the line

".BYTE -1" is allowed. .BYTE can be used to define

tables such as jump tables or pointers. You can also

"hide** commands, such as the BIT command:

.BYTE $2C ; ABSOLUTE BIT INSTRUCTION

LABEL1 IDA *-l ; HIDDEN IDA INSTRUCTION

c
.WORD expression

The .WORD pseudo-op is used in order to place two-

byte addresses into the object code at the location

contained in the program counter. For example the

following statements:

START = $C000

.WORD START

Would assemble the bytes 00 0C (the value of the

symbol START, least significant byte first) into the

object code. The address is stored with the least

significant byte first followed by the most _

significant byte. \

- 14 -

c

c

c

ASSEMBLER/MONITOR 64

.WORD address

is equivalent to the statements:

.BYTE <address;>address

The .WORD pseudo-op and the .BYTE pseudo-op permit

■ultlple values on a line, separated by semicolons.

The .WORD pseudo-op is most often used for creating

address tables.

6. .FILE device number,"filename"

The .FILE pseudo-op is used to chain several source

programs. The syntax is as follows:

.FILE device number, "filename**

where device number is 8 for the disk drive or 1 for

the datasette, and "filename" is the name of the

assembly language source program which is to be

loaded next. If you are writing a very long assembly

language program, you can break it up into several

parts and chain these together with .FILE. The

last file in this chain must contain an .END pseudo-

op that specifes the first file of the chain.

- 15 -

ASSBNBLBR/NONITOR 64

7. .IF expression

The .IF pseudo-op is used for conditional assembly. ^--

The syntax is as follows:

IF expression : .GOTO line-number

The argument expression is evaluated in both pass 1

and pass 2. If the expression is not zero, the code

following the .IF in the same line is performed.

Usually, this will be a .GOTO to direct the assembly

to a different line. The additional code in the line

must be separated by colons.

With .IF, .GOTO, and symbol redefinitions, it is

possible to create assembler loops. Although .IF s~

only tests for zero, other comparisons are possible V_

by using simple techniques. For example, shifting 15

bits to the right yields a result of 1 if the

expression was negative, and 0 if positive. Two

numbers may be compared by subtracting one from the

other and testing the result for positive or

negative.

c

- 16 -

c

c

c

ASSBNBLBR/NONITOR 64

8. .GOTO line-number

The .GOTO pseudo-op instructs the assembler to

continue assembly at the line number given as the

argument.

•GOTO line-number

This line number may also be an expression. The line

number must be contained in the currently loaded

program (if you are using .FILE to chain multiple

source programs). You cannot jump between different

files. This line number may be located either before

or after the line number containing the .GOTO

pseudo-op. When used with .IF and redefining

symbols, it's possible to build a loop for

conditional assembly. Try the following example:

10 SYS 32768 ; CALL THB ASSBMBLBR

20 .OPT P ; LISTING TO SCRBBN

30 OFFSET <- 5 ; NUNBBR OF LOOPS

40 LDA $C00O + OFFSET

50 OFFSET <- OFFSET - 1 ; DECRBMENT

60 .IF OFFSET : .GOTO 40

70 .END

- 17 -

ASSBNBLBR/NOKITOB 64

9. .OTB

C
This pseudo-op stands for Go To BASIC. It has no v~

argument and simply returns control to BASIC. The

BASIC commands in following program lines will be

executed. You may return to the assembler by using

SYS40954.

You should note that the BASIC commands that can be

executed before return to assembler are limited.

Some BASIC statements may overwrite the work areas

used by ASSBMBLBR 64 and should not be executed. In

particular, the INPUT command, or any other basic

commands which writes to byte 9 of the BASIC input

buffer (address $0209) must be avoided. The GBT

statement is allowed. You should never return s~

control to the user during assembly. V_

10. .ASC "text"

This pseudo-op places the ASCII value(s) for the

"text" into the object code at the location

contained in the program counter. The text is

enclosed in quotation marks. It is thereby possible

to insert cursor or color control characters into

the text. The text can be up to 55 characters long.

Longer texts oust be divided up into several .ASC

statements. The MOS standard uses the .BYTE pseudo-

op for this purpose, in which strings are enclosed

in apostrophes. You should take this into account

o

- 18 -

c

c

c

ASSBNBLBR/NONITOB 64

when converting programs. Note the use of the double

quotes instead of single quotes.

11. «SYS expression

This pseudo-op allows machine language programs to

be called during assembly. The value of expression

determines the jump address. This pseudo-op is

identical to the SYS command in BASIC. The routine

located at the address specified by expression is

called is called during both pass 1 and pass 2. The

SYS command can be used by those familiar with the

internal workings of ASSEMBLER 64 to create custom

pseudo-ops.

12. .STM expression

This pseudo-op is used to raise the lower boundary

of the symbol table. The symbol table grows downward

from the end of the storage ($8000), exactly as

strings are saved in BASIC. At the start of

assembly, this lower boundary is set to the end of

the BASIC program and variables. You can set it

higher if you are working with .FILE or buffered

object code (.OPT 0). If the space for the symbol

table is too small, the message "SYM TABLE OVERFLOW"

is given and the assembly stopped.

- 19 -

ASSBMBLBR/NONITOR 64

13. .SST device number, secondary address, "filename"

o
Symbol tables may be saved to storage devices such V_

as the floppy disk, and from there loaded in again.

.SST is executed in pass 1 only, and saves the

symbol table that has been generated up to that

point.

The first argument is the device number, normally 8

for the disk drive. The secondary address can lie

between 2 and 14. The filename is given as in an

OPEN command, and therefore requires an w,SfWM

following the name (for sequential and write).

This pseudo-op is required if you want to later

print a sorted list of symbols and labels. The -—

program SYNPRINT then uses this file to list the V_

symbols to your printer.

The .SST command is also useful when assembling

source programs separately, but which must access

subroutines from the other programs. Simply save the

symbol table at the end of first assembler program

and read this same symbol table into the second

program using .LST.

c

- 20 -

c

c

c

ASSEMBLER/MONITOR 64

14. *LST device noiber, secondary address, "filename"

This pseudo-op loads the symbol table that was saved

by the .SST pseudo-op. You can use .1ST to load the

a symbol table created by other programs, such as a

table of kernal routines* Duplicate symbols are not

checked. The last definition of a duplicate symbol

is used and previous definitions are simply ignored.

Overflow of the symbol table is not recognized when

loading, although an error will occur as soon as you

try to define another symbol.

15. .FLP expression

If you often use the floating-point arithmetic of

the BASIC interpreter, you can use .FLP to place

floating-point constants into the object code. This

simplifies the use of floating-point routines. One

or more floating-point constants separated by commas

can follow the .FLP command, for example:

.FLP 10, 1E8

Each floating-point number occupies 5 bytes;

therefore our example generates 10 bytes. Note that

only the first three bytes of the converted number

are printed in the object code listing.

- 21 -

ASSBNBLBS/MONITOR 64

16. .BND [device, "filename"]

This pseudo-op ends a source program and is ^-

optional. .BND executes a .GTB at the end of pass

2. If there are additional BASIC statements

following the .END pseudo-op, they will be executed.

You can, for example, call the machine language

program just assembled with a SYS-statement.

When chaining source programs, .END must have the

additional arguments. The arguments are in the same

format as the .FILB pseudo-op and direct the

assembler to re-load the first source program at the

end of pass 1 and continue with pass 2 at the line

containing the SYS 32768. "filename** must therefore

be the name of the first program in the chain (which

contains the SYS 32768). "filename** has no further

effect in pass 2.

.SYM

This pseudo-op can be used to list a table of all

the defined symbols and their values after the

assembly of the program. This list is sent to the

screen or other device according to the output

option (.OPT P). Four symbols, together with their

values in hexadecimal form, are printed per line. If

you want a different number of symbols per line, you

can use this number as an argument for the .SYM

command. .SYM is useful when working on the screen,

- 22 -

c

c

c

c

ASSEMBLER/MONITOR 64

for example. The symbols are listed in the reverse

order from that in which they were defined. If you

want an alphabetically sorted list, you must save

the symbol table with .SST and use the program

SYMPRINT found on your ASSEMBLER 64 distribution

disk.

18. .PAGE page-length,left-Margin offset

This pseudo-op has three different functions and

serves to control the assembly language listing.

Without additional parameters, it forces a form feed

in the listing. This allows you to place a certain

section of an assembler listing on a new page.

ASSEMBLER 64 automatically inserts a form feed after

every 60th line, and begins the .next page with a

title and the current page number. If you want to

change the page length, you can set the number of

lines per page with the .PAGE command, for example:

.PAGE 66

This instructs ASSEMBLER 64 to write 66 lines on a

page. Values up to 255 are accepted. An additional

function is the determination the left margin. This

is useful for printed listings which you want to put

in a notebook. The second parameter of .PAGE gives

the number of spaces to be printer in front of each

assembler line in the listing. The standard value is

zero. With

- 23 -

ASSBNBLBR/MONITOR 64

.PAGE ,10

the listing can be indented 10 characters. The comma V_

is necessary in order to denote the 10 as the second

parameter. The two parameters can also be combined:

.PAGE 66,10

19. .TITLE -text"

This allows you to add text to the standard title

ASSEMBLER 64 V2.0 PAGE 1 -..

which appears on every page of the listing. This

text is given after the .TITLE command within

quotation marks, such as:

.TITLE "HARDCOPY ROUTINE"

This text will then be placed before the standard

title, and we get:

HARDCOPY ROUTINE ASSEMBLER 64 V2.0 PAGE 1

c

- 24 -

c

c

c

ASSEMBLER/MONITOR 64

20. .OPT option*{.option*}

The .OPT pseudo-op stands for OPTion and gives you

control over the assembly listing and the object

code. This syntax is the following

.OPT option,option,option...

The following options are available:

P - Print. You select this option when you want the

assenbly listing to appear on the screen. All other

P options (see below) also output to the screen

because the screen is the fastest output medium. The

listing will be formatted automatically. Lines which

contain errors or a .FILE command will be printed in

passes 1 and 2 regardless of the P option.

P# - Print to file. With this option, you can send a

listing to the printer, for example. In order to do

so, you must first open a logical file before the

SYS 32768 with an OPEN command, such as OPEN 1,4.

The logical file number (1 in our example) then

replaces the number sign (#), such as .OPT PI. using

this technique, you can also write the assembly

listing to disk or cassette with the appropriate

OPEN command. You can specify that a line feed

(CHR$(10)) be sent after each carriage return

(CHR$(13)) when selecting the logical file number in

BASIC. This accomplished by using a logical file

number greater than 127, such as OPEN 130,4 and then

.OPT P130.

- 25 -

ASSBNBLBR/NONITOR 64

P=expression - With this option you can direct the output

to a routine of your own. The start address of your —.

routine must be given as the expression. The \^

character to be outputted is passed in the accum

ulator. A zero indicates the last character (close

file). This allows custom output devices to be used

(such as an interface on the user port).

0 - Object means object code output. Without additional

characters, the object code goes to a special buffer

directly above the assembler program, where array

variables normally lie; the same pointers are also

used.

00 - Object at origin. This option writes the object code

directly to the memory locations for which it was

written. This is vary useful for quickly testing {

programs, and allows maximum freedom when moving the

program pointer. Saving code to tape is also

made possible using the monitor. If an assembly

language program is intended to run in the memory

range where the source program or assembler lies,

this method may naturally not be used.

0# - As with P#, this allows output of the object code to

a file. The file must be previously opened as a

program file for writing (secondary address 1), such

as OPEN 1,8,1,"PROGRAM*1. With .OPT 01, the object

code goes to this file. First ASSEMBLER 64 writes

the start address to the file, and then the

generated code. If the assembler operation ends f~

normally, the program file will be closed again. The

- 26 -

c

c

c

ASSEMBLER/MONITOR 64

machine language program created in this manner can

be loaded directly with LOAD or with a monitor. Note

that .OPT 0# to a cassette is not possible. See the

next option and the appendix.

O-expression. This allows the object code to be sent to a

user-defined routine with the same syntax as the

•OPT P= command. The object code output routine must

be somewhat more complicated because it is called

only once per assembler line. Some symbols which are

required are found in the appendix. The most

important is LENGTH, which gives the number of bytes

to be output minus 1. If length is zero, for

example, one byte must be output. You routine must

be test for two special values. A value of $C0 means

"close the file." Otherwise, LENGTH contains a small

number from zero on up. The data to be output are

stored in two places. The first three bytes are

stored in the zero page at address OP. If more than

three bytes of object code are created (for .BYTE,

.WORD, .ASC, for example), the additional bytes are

stored at address OBJBUF. Your output routine may

change any registers or flags (with the exception of

the decimal flag). Caution is advised in using the

zero page however. A program is listed in the

appendix which makes it possible to output the

object code to a file in hex format. It is therefore

possible in principle to save data directly to the

datasette.

M - If you work with macros, you can decide whether you

want the entire macro containing the actual

parameters to be listed for each macro call, or just

- 27 -

ASSBNBLBR/NONITOR 64

the line containing the macro call. If you do not

enter this command, the complete macro will be

listed. You can suppress thie with .OPT M and cause

only the line with the macro call to be listed. (/

N - You can cancel the output options at any time with

.OPT N. N cancels all of the options except the N

option. If an option is supposed to remain in effect

or switched on again later, add that option. If, for

example, you want to turn off the screen listing,

but still want the object code to go to file 2, you

would write

.OPT N,02

and

.OPT P

when the listing is to go to the screen again.

o

- 28 -

c

c

c

ASSBNBLBR/NONITOR 64

D. A SAMPLE PROGRAM

The following example program writes the contents of the

zero page at line LINE on the screen. It illustrates the

general use of the assembler.

10 SYS 32768 ; CALL ASSEMBLBR

20 .OPT P,00

30 *= $C000 ; PGRM START ADDR

40 LINE = 10 ; LINE 10 ON SCRN

50 SCRMEM = $400 ; SCRN MEMORY

60 CLRMEM = $D800 ; COLOR MEMORY

70 COLOR = 1 ; COLOR IS WHITE

80 LDX #0 ; ZERO INDBX REG

90 LOOP LDA 0,X ; GET BYTE

100 STA SCRMEM+(40*LINE),X ; PUT IN SCRN MEMORY

110 LDA *COLOR

120 STA CLRMEM+(40*LINE),X ; SET COLOR

130 INX ; NEXT BYTE

140 BNE LOOP

150 RTS ;DONE

160 .END

If you start assembler this source program by typing RUN, the

following listing the screen:

2

ASSEMBLBR 64 V2.0

20:

30:

40:

cooo

cooo

000A

PAGE

LINE

1

.OPT

*=

=

P.00

$cooo

10

; PGRM

: LINE

START

10 ON

ADDR

SCRN

- 29 -

ASSBNBLBH/NONITOB 64

50: 0400

60: D800

70: 0001

80: C000 A2 00

BX RBGISTER

90: C002 B5 00

100: C004 9D 90 05

IN SCRN MBMORY

110: C007 A9 01

120: C009 9D 90 D9

COLOR

130: COOC B8

140: COOD DO F3

150: COOF 60

JC000-C010

NO BRRORS

SCRMBM

CLRMBM

COLOR

$0400

$D800

1

LDX $0

; SCRN MBMORY

; COLOR MBMORY

; COLOR IS WHITE

; ZERO INDEX REG

LOOP LDA 0,X ; GET BYTE

STA SCRMBM+(40*LINB),X PUT

LDA *COLOR

STA CLRMEM+(40*LINB),X ; SET

INX

BNE LOOP

RTS

; NEXT BYTE

; DONB

o

In the following example, the object code is sent directly

to disk and the listing is sent to the printer. The source

program consists of several individual programs.

10 OPEN 1,8,1, "0:OBJECT CODE"

20 OPEN 2,4 : REM PRINTER

30 SYS 32768

40 .OPT 01,P2

50 ; ASSEMBLER COMMANDS

1000 .FILE 8, "PROGRAM 2"

c

PROGRAM 2 contains

10 ; ADDITIONAL COMMANDS
o

- 30 -

c

c

ASSBNBLBR/NONITOB 64

1000 .FILE 8, "PROGRAM 3"

V. PROGRAM 3 contains

10 ; ADDITIONAL COMMANDS

• • •

1000 .END 8, "PROGRAM 1"

whereby PROGRAM 1 is the program which contains the SYS

32768.

- 31 -

ASSBNBLBR/MONITOR 64

B. MACROS

We now come now to a powerful feature of ASSEMBLER ^-

64 - MACROS. What are macros and what are they used for?

With macros we have the ability to combine a series of

instructions and assembler directives and give them a name.

If you have defined a macro in this manner, you can later

insert this set of instructions into the source code as

often as desired by simply using the name of the macro. An

example will make this clear.

In machine language programs, one repetitive task often

comes up in programming - namely incrementing the contents

of a 16-bit variable located in consecutive zero page

locations. The instructions to do this might look like this:

c

INC POINTER

BNE LABEL

INC POINTER+1

LABEL

At another place you might have to increment a different

variable called TEMP:

INC TEMP

BNE LABEL1

INC TBMP+1

LABBL1 ... _

With macros we can define a set of instructions once

- 32 -

c

c

c

ASSEMBLBR/MONITOR 64

and use this definition later. To define a macro, two new

pseudo-ops are used.

The first declares the macro definition, and the second

ends it. In order to able to refer to a macro later, it must

have a name. The same conventions apply as for other symbols

(first character must be a letter, then letters, digits, or

periods, eight significant places). Our definition looks

like this:

INC.PNT .MAC ADDRESS

INC ADDRESS

BNE .LABEL

INC ADDRESS+1

LABEL .MEND

The name of this macro is INC.PNT. A macro definition is

introduced with the pseudo-op .MAC. Parameters may follow.

Here we have a parameter called ADDRESS. Next the executable

instructions follow in their standard form. One special

feature is found in the line BNE .LABEL. The last line

contains the label definition and the end of the macro

definition with .MEND. Now we can call the newly-defined

macro:

'INC.PNT POINTER

This line replaces the above set of instructions. We

write an apostrophe followed by the macro name and any

parameters. In our case there was one parameter, although a

macro can have no parameters, or several parameters

separated by commas. When assembled, the macro is replaced

by the instructions:

- 33 -

ASSBNBLBR/NONITOR 64

INC POINTER

BNB LABEL:00

INC POINTER+1

LABEL:00

c

c

The next example illustrates a macro without

parameters.

RAM .MAC

SBI

LDA $01

AND **11111110

STA $01

.MEND

This macro requires no parameters and no so-called

local labels - labels within the macro definition. Macros

without parameters generate the same code each time and can

in principle be replaced by subroutines. Macros are aids

during the assembly and create object code each time it is

used. Subroutines can be thought of as aids during run-time,

and are found only once in the object program.

Macros are especially useful in combination with

conditional assembly. If you have macros ready for a variety

fundamental tasks, the main program can consist of a set

macro calls.

A few notes about using macros:

Macros must be defined at the start of the assembly

- 34 -

c

c

c

ASSBNBLBR/NONITOR 64

language source, before they are called. If you are chaining

source programs using .FILE, all macros must all be

contained in the first program. If you define labels within

a macro, a period must be placed before references to the

label, as illustrated earlier. This also applies within

expressions. Such labels are only significant to six

characters. If you call such macros several times and output

the symbol table, the labels are listed as many times,

together with different values. In order to distinguish

these from each other, the name is followed by a colon and

the number of the label, for example:

LABEL:00 0006 LABEL:01 C020 LABEL:02 C035

The number zero indicates the label value within the

definition, relative to the start of the macro.

If labels are defined with a macro, different names

must be used within different macros, or a "REDEFINITION

ERROR" will occur. Parameters may have the same names

because these are replaced by the actual values during a

macro call anyway. Arbitrary ASSEMBLER 64 expressions can be

used in a macro call; these are calculated by the assembler

and transmitted as parameters, for example:

'INC.PNT P0INTBR-8*2

Here, for example, the value of pointer is taken and the

result of 8 times 2 is subtracted from it. The order of

evaluation can be determined through the use of parentheses

as usual.

As ah example, we have a program which consists almost

- 35 -

ASSBNBLKR/MONITOR 64

entirely of macro calls. Two macros are defined. The first

serves to set the cursor. The operating system of the

Commodore 64 places this routine at our disposal. The macro

with the name CURSOR expects two parameters. The first is

the line in which the cursor is to be placed, and the second

is the column. If we want to set the cursor at a specific

place in our program, we need only call the macro, for

example:

'CURSOR 10,20

The second macro serves to output text. The parameter is the

address of the text. The string must be terminated by a zero

byte.

In the program you find first the definition of the two

macros and then the actual program which consists only of

four macro calls and an RTS. The strings are listed at the

end of the program.

The source program is listed on the next page followed by the

assembly listing:

50 OPBN128,4,5

100 SYS 32768

110 .OPT P128,00

120 ; DEMO PROGRAM FOR MACROS

130 ;

140 ; SET CURSOR

150 CURSOR .MAC LINE,COL

160 LDX #COL

170 LDY #LINE

180 STX $D6

190 STY $D3 (

200 JSR SETCRSR ;SET CURSOR V—
210 .MEN

- 36 -

ASSBNBLBR/MONITOR 64

c

220

230

240

250

260

270

280

290

300

310

320

330

340

350

360

370

380

390

400

410

420

430

440

J STRING OUTPUT

PRTSTR .MAC TEXT

LDA #<TBXT

LDY #>TBXT

JSR STROUT ;O/P TEXT TO SCREEN
.MEN

SETCRSR = $E56C

STROUT = $AB1E

* = $C000

'CURSOR 10,10

'PRTSTR TEXT1

'CURSOR 0,20

'PRTSTR TBXT2
RTS

TEXT1 .ASC "TEXT LINE # 1M

TEXT2 .ASC "TEXT LINE # 2"

!bnd

.BYT 00

.BYT 00

c Here's the assembly listing:

ASSEMBLER-64 V2.0 PAGE 1

c

110:

120:

130:

140:

150:

160:

170:

180:

190:

200:

210:

220:

230:

240:

250:

260:

270:

280:

290:

300:

310:

320:

330:

COOO

»

>

»

»

>

»

•

t

i

•

E56C

ABIE

COOO

.OPT P128,OO

; DEMO PROGRAM FOR MACROS

>

; SET CURSOR

CURSOR

i

.MAC

LDX

LDY

STX

STY

JSR

.MEN

LINE,COL

#COL

#LINE

$D6

$D3

SETCRSR ;SET CURSOR

; STRING OUTPUT

PRTSTR

i

SETCRSR

STROUT

.MAC

LDA

LDY

JSR

.MEN

=

* =

37 -

TEXT

#<TEXT

#>TEXT

STROUT ;O/P TEXT TO

$E56C

$AB1E

$C000

ASSBMBLBR/MONITOR 64

340:

350:

+

+

+

+

+

+

360:

+

+

+

+

370:

+

+

+

+

+

+

380:

+

+

+

+

390:

400:

410:

410:

420:

420:

430:

COOO

COOO

C002

C004

C006

C008

COOB

COOB

COOB

COOD

COOF

C012

C012

C012

C014

C016

C018

C01A

C01D

C01D

C01D

COIF

C021

C024

C024

C025

C032

C033

C040

A2

AO

86

84

20

A9

AO

20

A2

AO

86

84

20

A9

AO

20

60

54

00

54

00

OA

OA

D6

D3

6C

25

CO

IB

14

00

D6

D3

6C

33

CO

IB

45

45

B5

AB

B5

AB

!

58 TBXT1

58 TBXT2

'CURSOR 10,10

LDX

LDY

STX

STY

JSR

• MEN

#COL

#LINE

$D6

$D3

SETCRSR ;SET CURSOR

•PRTSTR TBXT1

LDA

LDY

JSR

.MEN

#<TEXT

#>TBXT

STROUT ;0/P TBXT TO

'CURSOR 0,20

LDX

LDY

STX

STY

JSR

• MEN

#COL

*LINB

$D6

$D3

SETCRSR ;SET CURSOR

'PRTSTR TBXT2

LDA

LDY

JSR

.MEN

RTS

. ASC

.BYT

.ASC

.BYT

#<TEXT

#>TEXT

STROUT ;0/P TBXT TO

"TBXT LINB # 1"

00

"TBXT LINB # 2"

00

c

c

Let's take a closer look at the listing. You recognize

that within the macro definition, an apostrophe appears

instead of the program counter. The object code field is

empty because no code is created by the macro definition

(lines 150-210, 240-280).

The first macro call is in line 350. The actual program

counter as well as the code created appear in the listing. A

plus sign (+) appears in place of the line number, which

shows that the created code comes from a macro call. You

c

- 38 -

ASSBNBLBR/NONITOB 64

c

recognize that the symbols LINE and COLUMN have the values

which they were assigned by the macro call. The subsequent

macro calls proceed in the same manner.

If you have many macros in your source program or you

call certain macros often, you have the option of supressing

the macro-created code in the assembly listing. Only the

line containing the actual call will appear. The option .OPT

N performs this function. See the next example:

ASSEMBLER -64 V2.0 PAGE 1

c

c

110:

120:

130:

140:

150:

160:

170:

180:

190:

200:

210:

220:

230:

240:

250:

260:

270:

280:

290:

300:

310:

320:

330:

340:

350:

360:

370:

380:

390:

400:

410:

410:

420:

420:

430:

COOO

E56C

ABIE

cooo

cooo

COOB

C012

C01D

C024

C025

G032

C033

C040

60

54 45

00

54 45

00

; DEMO]

i

.OPT P128,M,OO

PROGRAM FOR MACROS

; SET CURSOR

CURSOR

*

.MAC

LDX

LDY

STX

STY

JSR

.MEN

LINE,COL

♦COL

#LINE

$D6

$D3

SETCRSR ;SET CURSOR

; STRING OUTPUT

PRTSTR

i

SETCRSR

STROUT

»

I

58 TEXT1

58 TEXT2

.MAC

LDA

LDY

JSR

.MEN

* =

TEXT

#<TBXT

#>TEXT

STROUT ;O/P TEXT TO

$E56C

$AB1E

$C000

•CURSOR 10,10

'PRTSTR TEXT1

•CURSOR 0,20

'PRTSTR TEXT2

RTS

. ASC

.BYT

.ASC

.BYT

"TEXT LINE # 1"

00

"TEXT LINE # 2"

00

- 39 -

ASSBNBLBR/MONITOR 64

Supressing the macros makes the listings shorter and

often easier to read. In the next example we have added a

prints a list of the symbols and their values together with

the defined macros and the number of times which they were

defined as a two-digit hexadecimal number. The first part

of the listing is the same as the previous page. Only the

symbol table and macro table are printed as follows:

o

ASSBMBLBR -64 V2.0 PAGE 2

SYMBOLTABLB:

TBXT2 C033 TEXT1 C025 TEXT C033 COL 0014
LINB 0000 STROUT AB1B SBTCRSR B56C
7 SYMBOLS DBFINBO

MACROTABLB: /~

PRTSTR 02 CURSOR 02 V_
2 MACROS DBFINBD

c

- 40 -

c

c

c

ASSBMBLER/MONITOR 64

F. BRROR MBSSAGBS

ASSEMBLER 64 has a set of error messages. Errors are printed

in both pass 1 and pass 2. If the assembler recognizes an

error, 4 asterisks followed by the error message is

displayed. The line containing the error will then be

displayed on the screen, regardless of the .OPT P settings.

For a syntax error, a digit will also be displayed in front

of the four asterisks which describes the error in greater

detail. There are 10 different types of syntax errors which

can occur. They are listed below. Still other errors can

occur when using macros; these are indicated by a prefixed

letter.

Some errors are "fatal," meaning that they cause the

assembly to stop. An exclamation point is displayed in front

of lines containing fatal errors. The assembly is stopped

after the message is displayed. The first byte of the object

code created for such a line is a zero, which is the 6502

BRK command. If you try to execute such a program, a BRK

command is executed when it comes to the erroneous line,

which either performs a warm start, or returns you the

monitor, if it is loaded. In general, you should first

correct the errors before you execute an assembly language

program.

One type of error which ASSEMBLER 64 cannot detect is a

phase error. This error does not usually occur, but can be

encountered with certain combinations of conditional

assembly containing .BYTE or .WORD pseudo-ops. A phase error

occurs when the program counter is different in pass 2 than

it was in pass 1. You can recognize a phase error with an

- 41 -

ASSEMBLER/MONITOR 64

PHASB .IF PHASE-* : PHASE ERROR

Normally, PHASE has the same value as the program

counter and the code behind the colon is never executed. If

a phase shift occurs, the result is not zero and the

additional statement results in a syntax error which you can

recognize.

Brror statistics

Before the start of pass 2, ASSEMBLER 64 outputs the

number of errors in pass 1, if any were found. For example:

2 ERRORS IN PASS 1

After pass 2, when the assembly is complete, the number of

errors in pass 2 is displayed. If the assembly was error-

free, the message (

NO ERRORS

is displayed. If errors were encountered, that number is

displayed. For example:

4 ERRORS

Messages

SYNTAX - This error message is preceded by a digit which

describes the error in greater detail. These digits have the

following meaning: f~

- 42 -

c

c

c

ASSEMBLER/MONITOR 64

0 - Label for empty assignment not allowed (the line

contains only one string).

1 - Illegal opcode

2 - Illegal addressing mode - this command may not be used

with this addressing mode.

3 - Unknown operator in expression (unallowed character in

an expression)

4 - Unpaired parentheses

5 - Illegal expression - illegal character in an expression,

or an empty string "".

6 - Missing comma - a pseudo-op is expecting a comma

7 - Illegal pseudo-op. The .XXX string is not recognized as

a pseudo-op.

8 - Symbol does not start with a letter. A symbol was

expected, but an alphabetic character was not found.

9 - Opcode with unallowed addressing mode.

The following syntax errors can occur for macros:

B - .MEND command without previous .MAC

C - Unclosed macro definition

D - Nested macro definition - macros within macros are not

allowed.

F - Illegal number of parameters. The number of parameters

in the macro call does not match the number in the

macro definition.

ILLEGAL QUANTITY - The expression evaluated to a value which

lies outside the borders for this command or pseudo-op.

The expression yields a value greater than 65535.

OVERFLOW - The input buffer which ASSEMBLER 64 uses in order

to decode source lines is to small. Divide the line into

- 43 -

ASSBMBLBR/MONITOR 64

several instructions or use a temporary variable in

order to simplify the expression.

BRANCH OUT OF RANGE - A relative jump (branch command) over V_

a distance greater than 128 bytes was attempted.

REDEFINITION - An attempt was made to define a symbol twice

without using the redefinition operator.

UNDEF'D STATEMENT - A label or expression is not defined.

REVERSAL - An attempt was made to assemble code at an

address which is lower than the last address. This error

does not occur when you assemble directly to memory.

This is a fatal error, as are all of the following.

SYM TABLE OVERFLOW - You have tried to define more symbols

than space in the symbol table permits. Either set the (

minimum lower with .STM, or divide your program into

several parts. This error message can also appear when

loading a source program with .FILE if the program is

too large and part of the symbol table has been

overwritten. Divide the program into smaller parts.

OUT OF MEMORY - The buffer for the object code (.OPT 0 mode)

is too small. You should choose some other type of

output, such as disk.

UNDEF'D STATEMENT - A GOTO to a non-existent line (exactly

as in BASIC). In contrast to the error named before,

this one is fatal.

c

- 44 -

c

c

c

ASSBHBLBR/HONITOR 64

DBVICE NOT PRESENT - The addressed device is not present on

the bus, or does not answer.

IEEE - another error on the IEEE bus.

DISK - Disk error. The disk drive error message was given

just prior to this.

- 45 -

ASSEMBLER/MONITOR 64

G. Appendix

The following source program is another example of the

use of ASSEMBLER 64. It demonstrates outputting of object cod^f

by a user-defined routine. It sends each byte in hex format to

a previously opened file with the logical file number 1. It is

therefore possible to write the object code directly to the

datasette, for example. It is possible to read code in this

format with the BASIC program following it.

100 SYS 32768 ;CALL ASSEMBLER

110 .OPT

120 LENGTH = $4E ;BYTES TO 0/P - 1

130 OP = $4B ;BUFFER FOR FIRST 3 BYTES

140 ADDR = $56 ;PGRM START ADDR

150 OBJBUF = $15B {BUFFER FOR ADDITONAL BYTES

160 CHKOUT = $FFC9 ;O/P TO LOGICAL FILE

170 CLRCH = $FFCC ;O/P TO DEFAULT

180 PRINT = $FFD2 ;O/P A CHARACTER

190 CLOSE = $FFC3

200 LF = 1 ;LOGICAL FILENUMBER

210 *= $CO0O ;START ADDRESS

220 LDA LENGTH

230 CMP #$C0 ;CLOSE

240 BEG CLOSEF

250 LDX #LF : JSR CHKOUT ;OUTPUT TO LOGICAL FILE 1
260 LDX #0 : LDA LENGTH

270 CMP #$80 ;OPEN

280 BEQ STARTADDR

290 OUT LDA OP,X

300 OUT1 JSR WROB ;OUTPUT BYTE AS HEXNUNBER

310 CPX LENGTH

320 BEQ EX1

330 INX

340 CPX #3

350 BCC OUT

360 LDA OBJBUF-3,X

370 JMP OUT1

380 EX1 JMP CLRCH

390 CLOSEF LDA #LF

400 JMP CLOSE

410 STARTADDR LDA ADDR : JSR WROB ;START ADDR LOW

420 LDA ADDR+1 : JSR WROB ;START ADDR HIGH

430 JMP CLRCH

440 WROB PHA ;O/P BYTE AS HEX NUM

450 LSR : LSR : LSR : LSR ;UPPER NYBBLE

- 46 -

ASSBMBLBR/NONITOR 64

c

460 JSR ASCII

470 PLA

480 AND fftllll SLOWER NYBBLE

490 ASCII CLC

500 ADC #-10

510 BCC ASCI

520 ADC #6

530 ASCI ADC *"9"+l

540 JMP PRINT

550 .END

If you assemble

assembly listing:

this program, you get the following

ASSBMBLBR-64 V2.0

110:

120:

130:

C!^r60:
170:

180:

190:

200:

210:

220:

230:

240:

250:

250:

260:

260:

270:

280:

290:

300:

310:

320:

0:

360:

370:

C000

004E

004B

0056

015B

FFC9

FFCC

FFD2

FFC3

0001

C000

C000 A5

C002 C9

C004 FO

C006 A2

C008 20

COOB A2

COOD A5

COOF C9

C011 FO

C013 B5

C015 20

C018 E4

C01A FO

C01C E8

C01D EO

COIF 90

C021 BD

C024 4C

4B

CO

24

01

C9 FF

00

4E

80

1C

4B

3C CO

4E

OB

03

F2

58 01

15 CO

PAGE 1

.OPT P128.OO

LENGTH = $4E

OP = $4B

ADDR = $56

OBJBUF = $15B

CHKOUT = $FFC9

CLRCH = $FFCC

PRINT = $FFD2

CLOSE = $FFC3

LF =1

*= $C000

LDA LENGTH

CMP *$C0

BBQ CLOSEF

LDX *LF

JSR CHKOUT

LDX *0

LDA LENGTH

CMP #$80 ;OPEN

BEQ STARTADDR

OUT LDA OP.X

OUT1 JSR WROB ;O/P BYTB AS HEX #

CPX LENGTH

BEQ EX1

INX

CPX #3

BCC OUT

LDA 0BJBUF-3.X

JMP OUT1

;BYTES TO THB O/P - 1

;BUFFER FOR FIRST 3 BYTES

;PGRM START ADDR

5 BUFFER FOR MORE BYTES

;O/P TO LOGICAL FILE

;O/P TO DBFAULT

;O/P A CHARACTER

;LOGICAL FILBNUMBBR

;START ADDRESS

:CLOSB

O/P TO LOGICAL FILE 1

- 47 -

ASSBNBLBB/NONITOB 64

380:

390:

400:

410:

410:

420:

420:

430:

440:

450:

450:

450:

450:

460:

470:

480:

490:

500:

510:

520:

530:

540:

C027

C02A

C02C

C02F

C031

C034

C036

C039

C03C

C03D

C03B

C03F

C040

C041

C044

C045

C047

C048

C04A

C04C

C04E

C050

]C000-C053

NO BRRORS

4C

A9

4C

AS

20

AS

20

4C

48

4A

4A

4A

4A

20

68

29

18

69

90

69

69

4C

CC

01

C3

56

3C

57

3C

CC

47

OF

F6

02

06

3A

D2

FF

FF

CO

CO

FF

CO

FF

EX1

CLOSBF

JMP

LDA

JMP

STARTADDRLDA

WROB

ASCII

ASCI

JSR

LDA

JSR

JMP

PHA

LSR

LSR

LSR

LSR

JSR

PLA

AND

CLC

ADC

BCC

ADC

ADC

JMP

CLRCH

#LF

CLOSB

ADDR

WROB

ADDR+1

WROB

CLRCH

ASCII

#%1111

#-10

ASCI

#6

#M9"+1

PRINT

;START ADDR L

;START ADDR H

;OUTPUT BYTE

;UPPER NYBBLB

{LOWER NYBBLE

o

AS HBX #

c

If you assemble this program, you can write the object code

in hex format to the datasette with this format:

100 OPBN 1,1,1,"OBJECT CODE" : REM WRITE TO TAPE

110 SYS 32768

120 .OPT P,0=$C000 ; OBJECT CODE TO CUSTOM ROUTINE

The program can be loaded from tape with a small loader

program in BASIC.

- 48 -

c

c

c

ASSBNBLBR/NONITOB 64

100 OPBN 1,1,0,"OBJECT CODE" : RBM RBAD FROM TAPE

110 GOSUB 1000 : AD = A : RBM LOW BYTE OF START ADDRESS

120 GOSUB 1000 : RBM HIGH BYTE OF START ADDRESS

130 AD = A*256 + AD : REM START ADDRBSS

140 IF ST=64 THBN CLOSE 1 : BND : RBM PROGRAM END

150 GOSUB 1000 : RBM RBAD BYTB

160 POKE AD,A : AD = AD + 1

170 GOTO 140

1000 REM READ HEX NUMBER

1010 GET*1, A$,B$

1020 H = ASC(A$)-48+(A$>="A")*7 : RBM HIGH NYBBLE

1030 L = ASC(B$)-48+(B$>="A")*7 : REM LOW NYBBLE

1040 A = L+16*H : RBTURN

Your ASSEMBLBR 64 distribution diskette contains a

BASIC program called "SYMPRINT". This program serves to

output a symbol table in alphabetic order, which you have

written to disk previously with .SST.

The program asks for the name of the symbol table on

disk as well as the number of output device (3=screen,

4=printer, 8=disk). For disk output, you must give the name

of the file to which the symbol table will be written.

Finally, you can determine how many symbols will be printed

per line. Two fit per line on the screen, 4 on a printer.

The output format corresponds to that of the .SYM command

when assembling.

- 49 -

ASSBNBLBR/NONITOB 64

THB MONITOR

MONITOR 64 is an extended machine language monitor that

has features not found in more conventional software. It can

be loaded concurrently with ASSBMBLBR-64 and thus forms a

complete machine language development package.

c

A. Summary of MONITOR 64 Commands

Here is a list of the commands that can be performed

with M0NIT0R-64:

Com

R

M

G

L

S

D

C

T

H

F

B

W

Q

U

X

mands:

Register display

Memory display

Go

Load

Save

Disassemble

Compare

Transfer

Hunt

Fill

Bank

Walk

Quicktrace

Breakpoint

Exit

display register contents

display memory contents

execute machine language program

load machine language program

save machine language program

disassemble machine language prog,

compare memory areas

move memory area

search through memory range

fill memory range with value

select memory configuration

single-step mode

Trace with break points

set breakpoint

return to BASIC

c

c

- 50 -

ASSBNBLBR/NONITOR 64

B. LOADING MONITOR-64

c

c

The monitor occupies 3K bytes of memory from $C000 to $CBFF

outside the BASIC area and is loaded from diskette. Type:

LOAD "MONITOR 64",8,1

and press <RBTURN>. The messages

SEARCHING FOR MONITOR 64

LOADING

MONITOR 64 V2.0 IS LOADING ...

appear on the screen. Once loaded, the monitor responds with

V_ *** MONITOR 64 V2.0 ♦**

(C) 1984 DATA BECKER GMBH

C*

and displays the register contents.

All monitor input and output is done using 2 or 4 digit

hexadecimal numbers.

- 51 -

ASSBNBLBB/MONITOR 64

C. COMMAND Descriptions

o
Here is a description of the MONITOR-64 commands:

1. Switch leiory configuration >BX

With this command you can have access to the entire memory

of the Commodore 64. After starting the monitor, all

commands operate on the normal memory configuration. With

>BA you can switch the memory configuration to all RAM,

while >BC also adds the character generator. You can switch

back to the normal ROM configuration with >BR. This

configuration effects only the commands

M, D, C, T, H, and F

The following table illustrates the three configurations.

Address range >BR >BA >BC

c

$E000

$D000

$C000

$AO0O

$0000

- $FFFF

- $DFFF

- $CFFF

- $BFFF

- $9FFF

ROM

I/O

RAM

ROM

RAM

RAM

RAM

RAM

RAM

RAM

RAM

CHAR ROM

RAM

RAM

RAM

o

- 52 -

c

c

c

ASSBNBLBR/MONITOH 64

2. Cowpare leaory areas >C XXXX YYYY ZZZZ

The memory area from addresses XXXX through YYYY is compared

with the area starting at ZZZZ byte by byte. Any address

whose contents differ are displayed.

Example: >C 8000 8100 9000

8056

The contents of address $8056 differ from the contents of

address $9056.

3, Disassemble a Machine language program >D XXXX YYYY

The machine language program beginning at address XXXX

through YYYY will be displayed in mnemonic (operation code)

form. If the ending address YYYY is omitted, only one line

is displayed. Three question marks will be displayed for

invalid instructions.

Example: >D B016 B021

>, B016 20 90 AD JSR $AD90

>, B019 BO 13 BCS $B02E

>, B01B A5 6E LDA $6E

>, B01D 09 7F ORA #$7F

>, B01F 25 6A AND $6A

>, B021 85 6A STA $6A

- 53 -

ASSBNBLBR/NONITOR 64

If the displayed addresses are in RAH, then you can change

the bytes following the address. Type in your change and

press <RETURN>, to make the change. The instrtuction is re- f~

disassembled. On the next line, the following address is

automatically displayed and the cursor is placed over the

first byte of the instruction, so that the next instruction

can be changed. This mode can be exited by erasing the

character after the address before pressing <RBTURN>.

4. Fill ■eaory range >F XSXX YYYY ZZ

The area from addresses XXXX through YYYY are filled with

the byte ZZ.

Example: >F 8000 8FFF 00 C

5. Execute program >G XXXX

The Go command executes a jump to address XXXX and executes

the machine language program found there. If XXXX is not

entered, the value of the program counter (PC) is used as

the starting value.

If the machine language program encounters the command BRK

($00), control returns to the monitor which displays *B *~

(break) and displays the register contents. The program V

counter points to the address after the BRK command. When

- 54 -

c

c

c

ASSBNBLBR/NONITOB 64

testing programs, we recommend that you terminate them with

BRK ($00).

6. Searching leiory areas. There are two options when

searching: search for a byte combination or search for ASCII

text.

6.a Search for byte combination >H XXXX YYYY BB BB BB

The memory range from addresses XXXX through YYYY is

searched for the byte combination BB. The combination can be

up to 29 bytes long.

Example: >H B000 EFFF 20 D2 FF

The memory area from addresses XXXX through YYYY is searched

for the combination $20 $DF $FF (subroutine call). Addresses

at which this combination is located are displayed.

6.b Search for text >H XXXX YYYY "TEXT"

The memory area from address XXXX to YYYY will be searched

for the ASCII text "TEXT". The text can be up to 29

characters long. Addresses at which this text is located

will be displayed.

Example: H> A000 AFFF "READY"

A378

- 55 -

ASSBMBLBR/MONITOB 64

7. Load a Machine language program >L "naae".XX,YYYY

o
The program "name" is loaded beginning at address YYYY from w

device XX. Normally YYYY is omitted; the program then loads

at the address from which it was saved. If the device

address is also omitted, device 8 is assumed.

Example: >L "PROG",8

SEARCHING FOR PROG

LOADING

>

If you want to load from cassette, enter 01 for XX.

8. Display leiory contents >M XXXX YYYY

The contents oi memory starting at XXXX and ending at YYYY

is displayed. Both XXXX and YYYY are four digit hexadecimal

numbers. If the ending address YYYY is omitted, only one

line is displayed. The ASCII representation of the memory

contents is displayed in reverse following the hexadecimal

representation. Un-printable control characters are

displayed as a period.

Example: >M AOAO AOAF

>: AOAO C4 46 4F D2 4E 45 58 D4 DFORNEXT

>: A0A8 44 41 54 Cl 49 4E 50 55 DATAINPU

Memory contents can be changed in the same way as register

contents, by overwriting the byte value and pressing

<RETURN>.

- 56 -

o

c

c

c

ASSBNBLBR/NONITOR 64

9. Program execution with breakpoints >Q XXXX

The single-step mode often takes too long when working with

machine language programs. Therefore MONITOR 64 offers you

the option of controlling machine language programs by

setting breakpoints.

You can specify that a machine language program is to be

interrupted when it reaches a certain place. Should the

program never reach the breakpoint, it can be stopped by

pressing the <RUN/STOP> key. The breakpoints are set with

the U command, described shortly. The syntax of the Q

command is the same as for the G and W commands.

10. Display the register contents >R

The contents of the processor registers are displayed.

The labels identifying the registers are:

PC program counter

IRQ interrupt vector

SR

AC

XR

YR

SP

status register

accumulator

X register

Y register

stack pointer

In addition, the flags of the status register are displayed

individually:

- 57 -

ASSBNBLBR/NONITOR 64

N

V

-

B

D

I

Z

C

Example:

negative flag

overflow flag

not used

break flag

decimal flag

interrupt flag

zero flag

carry flag

>R

PC IRQ

>; 0003 BA31

c

SR AC XR YR SP NV-BDIZC

32 34 02 A2 F8 00110010

If you want to change the register contents, you simply move

the cursor to the appropriate place, overwrite the old

contents with the new value and press <RETURN>. The new

register contents are placed into the register. If the

contents of the status register are changed, the flags are

also changed and displayed.

c

11, Save a Machine language program >S "naae".XX.YYYY.ZZZZ

XX is again the device address, YYYY is the starting

address, and ZZZZ is the ending address plus one of the

program to be saved.

Example: >S "PROG",01,C900,C9DE

SAVING PROG

- 58 -

c

c

c

ASSBMBLBH/MONITOH 64

The program "PROG11 is saved onto cassette from address $C900

to $C9DD.

12. Transfer ■eiorv area >T XXXX YYYY ZZZZ

The memory area from addresses XXXX through YYYY are moved

to the memory area beginning at ZZZZ.

Example: >T 6000 6FFF 3000

The memory range from $6000 through $6FFF is transferred to

$3000 to $3FFF. The contents of the original range remains

unchanged.

13. Set a breakpoint >O XXXX YYYY

If you want to use the Q command, you must first set a

breakpoint. The U command performs this function. XXXX is

the address at which the program is to stopped. If you start

your program with the Q command, it will stop executing at

the address given by XXXX. You are then placed in the

single-step mode (W). With <RUN/STOP> you can halt or

single-step a program. The U command offers the additional

option of stopping the program after it reaches the given

breakpoint a certain number of times. The YYYY parameter

specifies the number of times the breakpoint is ignored

before execution is halted.

- 59 -

ASSBNBLBR/NONITOR 64

Example: >U 1000 0050

Here the program is interrupted when it passes address $1000 ^-

for the 80th time (hexadecimal 50). Values up to $FFFF =

65535 are allowed.

c

14. Single-step Mode >W XXXX

One special feature of MONITOR 64 is the single-step (walk)

mode. With this you can execute machine language programs

instruction by instruction. The command has the same

syntax as the G command, either starting at address XXXX or

at the address contained in the of program counter if only a

W is given. When you enter W, the command at that address is

executed and the contents of the registers and flags are

displayed in the same format as with the R command.

Displayed on the next line is the following instruction in

disassembled form. If you press a key, the next command is

executed and the resulting register contents are again

displayed. You can exit the single-step mode with the

<RUN/STOP> key.

Bxample: >W BC16

>; BC18 EA31 22 69 34 00 F6 00100010

>, BC18 86 70 STX $70

The single-step mode works with all "normal" programs. It ^—

should not be used with programs that use the I/O kernal V

functions.

- 60 -

c

ASSEMBLER/MONITOR 64

IS. Return to BASIC >X

The >X command returns you to Commodore BASIC. After exiting

the Monitor with the X command you can enter SYS 2 or a SYS

to any location containing a zero, as long as the

<RUN/STOPXRBSTORE> key has not been pressed in order to

return to MONITOR (otherwise use SYS 12*4096).

C

C

- 61 -

ASSBMBLBR/NONITOH 64

D. BRROR MESSAGES

r
If you have made an error in your input, MONITOR 64 will V, '

echo the input along with a question mark. You can then

correct the input.

In addition to these syntactical errors, the error routines

of the kernal are activated through MONITOR 64. If an error

occurs when saving or loading, for example, an error message

of the following form appears:

I/O BRROR #X

in which X can be a number from 1 to 9 and has the following

significance:

1 ... too many files (

2 ... file open

3 ... file not open

4 ... file not found

5 ... device not present

6 ... not input file

7 ... not output file

8 ... missing filename

9 ... illegal device number

c

- 62 -

c

SERIOUS 64 SOFTWARE
INDISPENSIBLE TOOLS FOR YOUR COMMODORE 64

r

**"*!

c

c

PASCAL-64
This lull compiler produces fast 6502

machine code. Supports major data Types:

REAL. INTEGER. BOOLEAN, CHAR,

multiple dimension arrays. RECORD. FILE.

SET and pointer. Olfers easy string handl

ing, procedures (or sequential and relative

data management and ability to write IN

TERRUPT routines in Pascal! Extensions

included for high resolution and spnto

graphics. Link to ASSEM/MON machine

language. DISK $39.95

DATAMAT-64
This powerful data base manager handles

up to 2000 records per disk. You select the

screen format using up to 50 fields per

record. DATAMAT 64 can sort on multiple

fields in any combination Complete report

writing capabilities to all COMMODORE or

ASCII printers. D)SK $39 93

Available November

TEXTOMAT-64
This complete word processor displays 80

columns using horizontal scrolling. In

memory editing up to 24.000 characters

plus chaining of longer documents.

Complete text formatting, block operations,

form letters, on-screen prompting.

Available November O1SK $39.95

ASSEMBLER /
MONITOR-64

This complete language development

package features a macro assembler and

extended monitor. The macro assembler

offers freoform input, complete assemblei

listings with symbol table (label), condi -

tionat assembly.

The extended monitor has all (he standard
commands plus single step, quick trace

breakpoint, bank switching and more.

DISK $39.05

BASIC-64
This is a full compiler thai won t break your

budget Is compatible with Commodore 64

BASIC Compiles to fast machine code

Protect your valuable source code by com

piling with BASIC 64

Available December
DISK $39.95

ADA TRAINING COURSE
This package is an introduction to ADA. the

official language ot Ihe Department of

Defense and the programming language of

the future Includes editor, syntax

checker/compiler and 110 page stop by

step manual descnbint Ihe language.

Available November

OtSK $79.95

OTHER NEW SOFTWARE COMING 8OON1

All software products featured above

have inside disk storage pockets,

and heavy 3-ring-binder lor maxi

mum durability and easy reference.

DEALER INQUIRIES INVITED

AVAILABLE AT COMPUTER STORES. OR WWTE:

/Abacus nnSoftware
P.O. BOX 7211 GRAND RAPIDS. Ml 49510

U.t. DATA NCWI

For peataQa 4 handtaQ. add MOO(US and

Canada}, addM.00 lor tortfgn. Mate paymant

•n u.8 doBan by dtact, money ordar et

FOR OUICX SERVICE PHONE (QU) 241-5510

•4«awg TM olC

XREF-64 BASIC CROSS REFERENCE
This tool allows you to locale (hose hard-to-ftnd variables in your programs

Cross-references all tokens (koy words), variables and constants m sorted

order. You can even add you own tokens from other software such as

ULTRABASIC or VICTREE Listings to screen or all ASCII printers.

DISK SI7.95

SYNTHY-64
This is renowned as tho fmesl music synthesizers available at any pneo.

Others may havo a lot of onscroen frills, but SYNTHY-64 makes muse better

than thorn ail Nothing comos ck>so to the performance of this package

Includos manual with tutorial, sample music

DISK $27.05 TAPE S24.95

ULTRABASIC-64

This package adds 50 powerful command* (many found in VIDEO BASIC,

abovel ■ HIRES. MULTI. DOT. DRAW.CIRCLE. BOX. FILL. JOY. TURTLE.

MOVE. TURN. HARD. SOUND. SPRITE. ROTATE, more AN commands

aie easy to use Includes manual with two-pan tutorial and demo

DISK $27.95 TAPE $24.95

CHARTPAK-64
This finest charting package draws pie. bar and line charts and graphs from

your data or OIF. Multiplan and Busicaic files Charts are drawn in any of

2 formats Change format and build another chart immediately Hardcopy

to MPSBOt. Epson, Okidala. Prownler Includes manual and tutorial

DISK $42.95

CHARTPLOT-64
Same as CHARTPACK-64 lor highosl quality output to most popular pen

plotlora DISK SS4.95

DEALER INQUIRIES ARE INVITED

CADPAK-64
This advanced dosign packago has outslanding features • two Hues

screons. draw LINEs. RAYs, CIRCLES. BOXEs: froehand DRAW: FILL with

patterns: COPY areas: SAVE/RECALL pictures, define and use intricate

OBJECTS, insert tail on screen; UNOO last function. Requires high quality

lightpen. We recommend McPen. Includes manual with tutorial.

OISK S49.9S McPen lightpen $49.95

MASTER 64
This professional application development package adds (00 powerful

commands to BASIC including fast ISAM tndeied files: simplified yet
sophisticated scroen and pnntor management: programmer's aid: BASIC

4 0 commands. 22-digit anthmotic; machine language monitor. Runtime

package for royalty-froo distribution ol your programs. Includes 150pp

manual.

DISK $84.95

VIDEO BASIC-64
This superb graphics and sound development packago lets you write soft

ware for distribution without royalties. Has hires, multicolor, sprite and
turtle graphics; audio commands for xmplo or complox music and sound

effects, two sues ol hardcopy to most dot matrix printers; game foaturos

such as sprite collision dotoction. lightpen, game paddle; memory

management for multiple graphics screens, scroen copy. etc.

DISK S59.95

TAS-64 FOR SERIOUS INVESTORS
This sophisticated charting systom plots more than 15 technical indicators

on split scroen. moving averages; oscillators; trading brands; loasl squares;

trend linos, suponmposo graphs; dvo volumo indicators: rolativo strength,

volumes, moro Onlino data collection DJNR/S or Warner. 175pp. manual.

Tutorial DISK $84.95

c

FREE CATALOG Ask for a listing of other
Abacus Software for Commodore-64
OKTRitunms

QrutlttblK Itftite: Frtto:
AMMSOFT taW. Smfcts KCRO/UVUUIDN
tlNonrUiAvt. AVGubantao 147 Avtnut PeMoww
RocMDi. lines. Brand ttSO. togulrn fed MjHuaon. fnoct
70S-S241M 2460-1447 1732-92S4 6MM

Wttt Qtraaay: Svtdta: AKtrtfls:

saassr ssasr jg&ssr
Commodore 64 is a rag. T.M. ol Commodore Business Machines

or Vlc-20 AVAILABLE AT COMPUTER STORES, OR WRITE:

Abacus HISoftware
P.O. BOX 7211 GRAND RAPIDS. MICH. 49510
Forportags & funding, addKM (US. and Canada), add 18.00
(or torsion. Mafcs paymant in U.S. doQani by chscfc, monsy order
or chares card. (Mttldgan Rasktenb add 4% salts tax).

FOR QUICK SERVICE PHONE 616-241-5510 c

c

c

FOR
HACKERS ONUT!

E-64
TIM ultimate snores
(or ConuoiMtort-M

OTHER 5OOXS AVAILABLE SOON

c

THE ANATOMY OF THE C-64

is Die insider's guide Io the lesser known leatures ol

the Commodore 64 Inducts chapters on graphics,

sound synthesis, input/output control, sample programs

usng the kernal routines more Foi those who need to

know, d includes the complete disassembled ano

documented ROM listings

ISBN-O9164390O-3 30000 119.95

THE ANATOMY OF THE 1S41

DISK DRIVE

unravels me mysteries ol using the misunderstood disk

drive Details the use ol program sequential relative

and Greet access tiles Include many sample programs

FILE PROTECT DIRECTORY DISK MONITOR. BACKUP.

MERGE. COPY, others Describes internals ot DOS with

completely dsaddembled and commented listings ol me

1S41 ROMS

ISBN0-91643901I 320pp J19.95

MACHINE LANGUAGE FOR C-64

■s aimed at those who want to progress beyond BASIC
Write laslei. more memory ettccnt programs in machine

language lesl is specifically geared to Commodore 64

Learns all 6510 instructions Includes listings lor 3 lull

Know programs ASSEMBLER DISASSEMBLER and

arnamg 6510 SIMULATOR so you can see the opera

lion ot the 64

ISBN0-916439-02-X 200pp $14.95

TRICKS & TIPS FOR THE C-64

>s a cotecton ot easy to use piogrammng techniques tot

ine 64 A pertect companion lor those who have run

up against those hard to solve programming problems

Covers advanced graphics easy data input. BASIC

enhancements CP/M cartridge on the 64 POKl'i usci

delned chancier sets loystiCWmouse simulation trany

lerrrng data between comuters more A treasure chest

ISBN-O-916439-03-8 250pp S19.9S

GRAPHICS BOOK FOR
THE C-64

lakes you from the fundamentals ol graphic Io

advanced topics such as computer aided design Shows

you how to program new character sets, move sprites,

draw m HIRES and MULTICOLOR, use a lighlpen.

handle iROs do 3D graphics proiectons. curves and

animation Includes do/ens ol samples

ISBN-O-916439-05-4 260pp S19.SS

ADVANCED MACHINE

LANGUAGE FOR THE C-64

gives you an intensive treatment ol me powerful 64

leatuies Author Lolhar Eng&ch delves mto areas such

as interrupts, the video controller the timer, the real

time clock parallel and serial I/O eitending BASIC and

tips and tucks Irom machine language, more

ISBN-0-916439-06-2 200pp $14.95

IDEAS FOR USE ON YOUR C-64

is lor those who wonder what you can do with your 64

n is written lor the novice and presents dozens ol

program listing the many, many uses for your

computer Themes include auto fmenses. electronic

calculator recipe Me. stock lists construction cost

•'Senator personal health record d«t planner store

window advertising, computer poetry party invitations

and more

ISBNO-916439-07-0 200pp $12.95

PRINTER BOOK FOR THE C-64

maty simplifies your understanding ol the 1525

MPS'801. 1520 1526 and Epson compatible printers

Packed with examples and utAty programs, you'll learn

now to make liardcopy ol tent and graphics, use secon

dary addresses, plot m 3D and much more Includes

commented listing ol MPS 801 ROMs

ISBN-0-916439-08-9 350pp. $19.95

SCIENCE/ENGINEERING

ON THE C-64
is an introduction to the work) o! computers m science.

Oescnbes variable lypcs. computational accuracy,

various sort alognlhms Topics include linear and

nontnear regression. CHI-square distrtution. Fourier

analysis, malm calculations, more Programs Irom

chemistry physics, biology, astronomy and electronics

Includes many program listings

ISBN-0-916439-09-7 250pp $19.95

CASSETTE BOOK FOR THE C-64
(or Vic 20) contains all the information you need to

know about using and programming the Commodore

Oalaselie Includes many enample programs Also con

tains a new operating system lor last loading, saving

and finding ol dies

ISBN-O-916439-04-6 160pp. $12.95

DEALER INQUIRIES ARE INVITED

IN CANADA CONTACTS
ThoBook Centre. 1140 BmuUc Strsot

Montreal. Ouoboc H4R1RS Phoo«: (514) 322-4154

AVAILABLE AT COMPUTER STORES, OR WRITE:

/Joacus ill Software
P.O. BOX 7211 GRAND RAPIDS. Ml 46510

Ezduarn U.S. DATA KCXCR HlMMrni

For postage • handling. adO MAO (U.S. and

Canada). addWOO lor toraign. Maka payment

in U.S. dotan by dwek. morwy ordar ol

cnarg* cam. (Michigan RaaUant* add 4H

aaln tax.)

FOR QUICK SERVICE PHONE (610) 241-5510

g .H»»II»«HQ T M. dCu—ngooi I

