Liobauap iy - 3

Do i e e an fad i
RORRLd e g Dird G s Coania

S4FCRTH
User’s Vianual

By Tom Zimmer

Copyright Notice

Copyright © 1983 by Human Engineered Software. All rights reserved. No
part of this publication may be reproduced in whole or in part without
prior written permission of HES. Unauthorized copying or transmitting of
this copyrighted software on any media is strictly prohibited.

Although we make every attempt to verify the accuracy of this document,
we cannot assume any liability for errors or omissions. No warranty or
other guarantee can be given as to the accuracy or suitability of this
software for a particular purpose, nor can we be liable for any loss or
damage arising from the use of the same.

64FORTH is a registered TM of HES.
Commodore 64 is a registered TM of Commodore.
Wordstar is a TM of MicroPro International Corporation.

DISCLAIMER

HES makes no warranties, either expressed or implied
with respect to the program described herein, its quality,
performance, merchantability, or fitness for any particular
purpose. This program is sold “AS IS.” The entire risk as to
its quality and performance is with the buyer. Should the
program prove defective following its purchase, the buyer
(and not the creator of the program HES, their distributors,
or their retailers) assumes the entire cost of all necessary
servicing, repair or correction and any incidental or
consequential damages. In no event will HES be liable for
direct, indirect, incidental, or consequential damages
resulting from any defect in the program even if it has
been advised of the possibility of such damages. Some
laws do not allow the exclusion or limitation of implied
warranties or liabilities for incidental or consequential
damages, so the above limitation or exclusion may not
apply.

64FORTH Dedication

This software is the result of the combined efforts of many people. Here
is a list of some of these people and their specific contribution.

Bob Reigling
Lyle Thompson

Ken Madell

Bill Ragsdale

Forth Inc. &
Leo Brodie

Forth Interest Group

FORTH DIMENSIONS
111/2 & SYN-1 Users
Group

Entered and debugged the original 6502 source.
Wrote all of the relative file disk interface primitives,

Wrote the sprite control words, and the sprite
editor.

Provided the Assembler and assembler docu-
mentation.

Created STARTING FORTH and the line editor
which is the primary basis of the editor included
in this package.

Provides support and assistance to the Forth
community.

Provided the basic form of the decompiler
provided in this package.

TABLE OF CONTENTS

1 General Introduction
May the FORTH Be-With YOu .:cuamicsmimmnsis ssasasssis
WHARIS B FORTH. . conmwossmsrmmanser oo e oSt T
How ToUse ThisManual..........ocuiiuiiiiinieienrannannnns

2 Learning FORTH

What Do You Need to Use 64FORTH?ovvvvviiiinieiennns

UG STRPEOI: s wrasaesons oo w0 oo 07ass 13499055 RS 8 PR A SR

BasiC CoNCePS ..ottt e e e
Vocabularies/Dictionary
Words

Using dhe EOIOrai i e e b S S e
List of Editor Commands

ONOE FORTH WOTHS oo i v s oossesi (€ A T ansiss s
IF ... ENDIF
BEGIN ... UNTIL
DO...LOOP
VARIABLE and CONSTANT
DOT, FETCH, STORE, and TICK

3 Graphics

BGROUND
BORDER
BORINOE wxi 0rarsmsaissroimism s s A a7 WS AR AT TR BRSNS S AT TS5
Using the Sprite Editor
Putting a Sprite into a Program
Saving and Retrieving Sprites

5 System Configuration
StACK PICLUIBS . ..o vvvtonrineeomnonaononsenssssssssssssesssssssss
Meamory Allocation . cuviircuiasirmmirm W viassicans visve et
M e MOEY VAR s o pvussasmssesem I NATRN AEe
S K S DR GO & S s R S R e T R e e
VOCADUIATIOS < wi:womtmissasirin s s o oA o AP SN oA
(9 1ot (o o F- 1 o
SYyStemCalls . .«amnmvisuasrriramsaiRseisi e g SRR RGeS
WhatS MISSING T vsuvmmevmersmum e e e A SR N Ee R
Uiser Variables i i s s n

11

6 Vectors

What Are TheY ? ..ot e e e 53
Vectored Words in 64FORTH.t 53
Vector Control e e 54
7 Input and Output
User Port. . o e e 57
Printer QUtpUL. e 57
Screen Buffer Control.coiniiiieiiiiiaieaieaanans 59
Cassette Interfacecooviiniiii i e eeieaaaans 59
Disk INterface ...t e e e e 61
File Transfersot e it 64
Loading Multiple SCreensoviiiiiiiiiiiieiennerinnennnn 65
8 Useful Definitions and Tools
DefinitioNS ..o i e 67
Sprites
Dumb Terminal
Vectoring
Directory

Copying Screens
FORTH-79 Extensions

Debugger
Decompiler
Dump Contents of Memory

9 6502 Macro Assembler

ASSEmMbIer. .. .t e 75
Appendix A FORTH-79 Differencescocvvvieiiiiiieiianneniss 89
Appendix B Error MESSAQES . .ovvvrriiitteie et ieiieienternnens 95
Appendix C Term GloSSaryvu vttt i eriereaaeannaens 97
BAFORTH GlOSSaIY ..ttt e e it e e e et eiieeaaeeaaeanann 101
LT L 155

1 INTRODUCTION

MAY THE FORTH BE WITH YOU

FORTH is a high level language designed to develop compact, efficient,
well-organized programs. The FORTH language offers program
development tools such as an operating system, a compiler, an
assembler, an interpreter, and a text editor.

The flexibility of the FORTH language forms the basis for its software
design philosophy. FORTH consists of a powerful set of standard
commands, and provides a method for you to create, or “define” your own
commands. These commands can be built upon your previous
“definitions.”

You build functions which are similar to subroutine calls in other
languages. You define new commands built upon your previous
definitions until ultimately one word defines and can perform the whole
procedure. You can even re-define some of the standard FORTH words to
adapt the language to fit your needs.

This extensibility feature makes it easy for you to add new data types,
features, operators, or other programming constructs to the language.
You customize FORTH to suit your own particular circumstances.

As a result, 64FORTH gives you a more powerful programming
environment than most other languages by putting you in direct control of
your computer. However, this also places a higher level of responsibility

. on you, the programmer. FORTH may be more difficult to learn than the
BASIC language, but you have greater control over your computer.

UNIQUE FEATURES

In FORTH, the term WORD refers to an identifiable function or
command, which in some computer languages is known as subroutine or
procedure.

In FORTH, words may be any length from one to thirty one characters
(letters, or symbols). You can use descriptive names in writing your
programs. As a result, FORTH programs can be well-documented and
easy to follow. FORTH is a structured language—it does not use GOTO
statements or statement labels. Instead, FORTH uses a stack which
encourages the storage of working variables on the stack rather than in
variables with names. Using the 6502 assembler provided, you can link a
FORTH program to a machine language subroutine for high speed
functions.

WHAT IS 64FORTH?

64FORTH is an implementation of the FORTH Interest Group (fig) version
of the FORTH language with the addition of many words to control the
unique sprite, color, and sound capabilities of the Commodore 64. Over
500 WORDS (Commands) are included, and because FORTH is

7

extensible, you can add many of your own commands to 64FORTH.
64FORTH also contains words that allow you to control the character,
border, and background colors of the screen.

64FORTH supports both multi-color and high resolution sprites with the
ability to set their position and color and to edit, save, and retrieve sprites
from cassette or disk storage.

You can control the special sound capabilities of the Commodore 64’s
SID chip using over thirty 64FORTH words provided.

If you have the 1541 disk drive, B4FORTH provides a true virtual disk
interface, which uses the Commodore relative file structure. This means
you can have FORTH files co-resident with program or other data files on
the same disk.

If you are using cassette, 64FORTH has 16 virtual memory buffers
located in high memory. You can work with reasonable sized source files
in memory, and minimize the amount of time spent reading and writing
data to cassette. Source screens may be read and written to cassette
with or without names, as desired. When upgrading to disk, programs may
be easily moved to disk from cassette.

64FORTH features four vocabularies, or groups of related words:
FORTH
EDITOR
ASSEMBLER
SYSTEM

Vocabularies are covered in detail in Chapter 5.

HOW TO USE THIS MANUAL
This manual is intended for two levels of experience. A tutorial chapter
(Chapter 2) provides an introduction to FORTH programming—presenting
fundamental FORTH concepts and commands. Examples lead you
through the use of the Editor and several of the FORTH commands.
Some familiarity with the BASIC language is assumed. An experienced
FORTH programmer familiar with the Editor commands and FORTH could
skip the tutorial chapter and proceed to the chapters covering the
specifics of 64FORTH. The 64FORTH package gives you a machine
optimized program of FORTH for the Commodore 64, and enough
documentation to make all of the extras included usable. These chapters
cover:

Graphics

Sound

System Configuration

Vectors

Input and Output

Useful Definitions and Tools

6502 Macro Assembler

FORTH Glossary

If you are a complete beginner to FORTH, slart with the short tutorial
provided in Chapter 2. The tutorial should help you get started, however
this manual is not intended to provide you with a complete, in-depth
course on FORTH. If you find you need a further discussion of FORTH
commands and concepts, obtain a copy of STARTING FORTH by Leo
Brodie, recommended as the best tutorial manual for learning FORTH.
STARTING FORTH describes a version of FORTH called FORTH-79,
which is not indentical to fig (FORTH Interest Group)-FORTH/64FORTH.
Refer to Appendix A of this manual covering the FORTH-79 differences
while using the book

In following the examples in the tutorial, follow the program listings
exactly (including spaces). Do not be afraid to experiment with the new
commands you learn. The program in the cartridge cannot be damaged
by any programming error. If you need to restart the program, (for
example if your screen freezes, or becomes a hopeless, confusing mess)
simply press the RUN/STOP and RESTORE keys simultaneously. The
64FORTH program will start again.

Once you feel comfortable with the basic concepts presented in the
tutorial, go on to the chapters on 64FORTH specifics to experiment with
the magical color, sprites, and sound features. Eventually you can
incorporate some of your graphic creations into an interactive game or
program. Later, you will be ready to tackle the assembler included with
64FORTH.

WHAT IS THE FORTH INTEREST GROUP?
The FORTH Interest Group is an independent group of FORTH
enthusiasts whose aim is to educate others and to promote FORTH. They
may be contacted at:

P.O. Box 1105

San Carlos, CA 94070
They publish a newsletter callec FORTH Dimensions ($15/yr) and have
many other publications available.

10

2 LEARNING FORTH

WHAT DO YOU NEED TO USE 64FORTH?

64FORTH runs on a standard Commodore 64, with either cassette or a
1541 disk drive for mass storage of your source screens.

GETTING STARTED
To start the 64FORTH program, do the following:

1 Make sure the power to the C64 and the monitor is turned off.
2. Insert the 64FORTH cartridge into the cartridge slot on the back of
the C64.

3. Now you can turn on the power to the monitor, the disk drive (if
applicable), and the C64.

About ten seconds will pass while 864FORTH performs a self-test before
you see the 64FORTH title screen on your monitor. The computer will
start up with the 64FORTH sign on message in white characters on a
cyan background with a green border. 64FORTH is now operable,
obediently waiting for your commands. The screen you see should look
like this:

535535533 64FORTH 1.2 $35555%8% \
COPYRIGHT 1983
HUMAN ENGINEERED SOFTWARE BY T.J. ZIMMER

S

POWER OFF

Before turning off the power to your Commodore 64, be sure to save the
program you are working on (see FCLOSE for disk or WRITE for
cassette). Remove any disk in your disk drive.

To exit the program, simply turn off the power to the C64 and your
monitor and then remove the cartridge.

NOTE: NEVER INSERT OR REMOVE A CARTRIDGE
WITH THE POWER ON.

FIRST IMPRESSIONS

Once the 64FORTH cartridge has been inserted, the FORTH operating
system is running with its compiler, assembler, interpreter, and text editor.

1

If you press the return key (hereafter RETURN), a few times, you will
notice an “ok" is printed after each RETURN is pressed. FORTH is telling
you that it recognized your request to do nothing, and is waiting for your
next command.

WORDS

In FORTH, a command is simply a sequence of characters called a word.
A word can be one of the standard FORTH commands, or one of your
own definitions, A line of commands consists of FORTH words separated
by spaces. FORTH recognizes these spaces as command separators.
When RETURN is pressed, FORTH “executes” or performs the line of
commands from left to right. If all commands are performed without
encountering an error, FORTH returns with the OK prompt to tell you its
mission was accomplished. If an error is encountered at any time during
execution, all processing stops. FORTH issues an error message and
waits for further instructions.

To “execute"” your first FORTH words, type in the following: (Your
response is in boldface type, and FORTH's response follows.)
191 EMIT <RETURN>
b
ok

191 is the ASCII code for the character % , and EMIT is the FORTH word
which generates the character specified by the preceeding ASCII code.
FORTH executes your command and dutifully prints the character for you.

Type the line again, this time adding the FORTH word CR before the word
EMIT.
CR 191 EMIT <RETURN>

%
ok

CR performs a carriage return before printing out the character.

Another standard FORTH word is SPACES. With SPACES, FORTH prints
out the number of blank spaces you indicate. Type in the following
command and notice the position of the character after you press return:

20 SPACES 191 EMIT " <RETURN>

DEFINING YOUR OWN WORDS

As mentioned earlier, FORTH commands are referred to as WORDS. A set
of standard, or pre-defined words form the basis of FORTH (see the
Glossary) and a set of user defined words (called colon-definitions)
supplement these commands. These definitions are compiled, or copied,
into a "Dictionary" residing in the computer's memory. (For a further
discussion on the dictionary, see Chapter 5.)

You create your own colon-definitions by entering the name of a
procedure and describing the processes to be performed.

12

You break down the procedure into specific tasks and name each task.
You can later group related tasks together producing a building block
effect.

A colon-definition is preceeded by a colon, :, and followed by a semicolon,
.. Type in the following definitions which will be explained as you go
along. Remember to leave spaces after the : and before the ;, and
between the words.

: CHESS 191 EMIT; <RETURN>

The : indicates to 64FORTH that a new definition follows. CHESS is
the name of the process that produces the character % .The; tells
64FORTH that the definition is complete. By pressing RETURN, you
compile the definition into the dictionary. You should see an OK prompt if
no errors were encountered.

The next definition creates an indentation using a combination of the
FORTH words you learned earlier.

: INDENT CR 5 SPACES ; <RETURN>
INDENT names the process; CR causes a carriage return before the next

command; and 5 SPACES tells 64FORTH to skip five spaces each time
the command INDENT is used. Type in the next definition.

: CHECK INDENT CHESS; <RETURN>
You can now combine your two new definitions to create a third
definition. This definition produces a checkered square on your screen

indented five spaces, although you will not see it until you execute the
program.

The next command uses the FORTH words “DO ... LOOP" to create a
looping effect. (DO ... LOOP will be discussed in detail in a later section.)

: CHECKERS 5 0 DO CHESS LOOP; <RETURN>
This looping effect performs the CHESS routine five times.

Now create a new definition using your words. INDENT and CHECKERS
: MATE INDENT CHECKERS; <RETURN>

This definition indents the CHECKERS routine before performing it.

The final step in your program is to name a whole procedure combining
your words CHECK and MATE.

: COMMODORE MATE CHECK CHECK CHECK CHECK MATE
CR; <RETURN>

Run the program by simply typing the procedure:
COMMODORE <RETURN>

The short program you just entered was interactive, that is, you compiled
your colon-definitions immediately after you entered them.

13

You can enter programs in two ways:

, interactively
2. using the Editor

You can enter a word or a program directly from the keyboard to the
interpreter, such as the short program you just entered. The word or
program is carried out by pressing RETURN, however you cannot save it.
If you want to save your program, you must edit your programs into
blocks (or screens) using the Editor. This method makes fixing typing
errors easier and you can save these blocks on disk or cassette.

EDITOR

The editor in 64FORTH is modeled after the editor described in the
introductory book STARTING FORTH by Leo Brodie. The editor has been
enhanced to provide immediate visual feedback on the results of each
edit command performed, and a screen editor with insert and over-write
modes has been provided. The function keys to the right of the keyboard
are operable while in the editor to perform useful functions such as
cursor and screen movements, and search and replace operations.

SCREENING

Before you can work with the Editor, you should understand a
fundamental FORTH feature — the concept of screens or blocks. Memory
storage in your C64 system can be cassette or disk based. This memory
is divided up into units called "blocks.” Each block holds 1 kilobyte, or
1024 characters, composed of 16 lines of 64 characters each. FORTH
stores and retrieves information from mass storage a block, or a screen at
a time. FORTH temporarily places these blocks into a screen buffer
making sixteen of these buffers available at any one time. (See Chapter 7
for more details on the screen buffers.)

USING THE EDITOR
Using the Editor to create your programs allows you to make corrections
easily and enables you to save your programs in screens.
Start the editing session by entering:
1 EDIT <RETURN>

where the word EDIT is preceeded by the number of the screen you want
to edit. The EDITOR vocabulary is selected and the border color is green
indicating the editor has been selected.

The screen splits into two sections — the top section consisting of
sixteen lines is used for entering text (edit area) and the lower section
consisting of six lines is used for entering edit commands (command
area). If the edit area on your screen contains any unwanted characters
or data, you can clear out the edit buffer in preparation for editing. Type:

WIPE <RETURN>

14

Notice two double digit numbers displayed in the lower right corner of the
edit window. The rightmost number is the column position of the cursor in
the edit screen, and the left number is the number of the current edit
screen.

When your edit session is finished, you can leave the editor as follows.
Press the RUN/STOP and RESTORE keys simultaneously, or type
ABORT. Either of these operations will cause a FORTH warm start, and
you will return to the normal full scrolling screen.

LINE EDITING

There are two types of editing modes: line editing and screen editing. In
the line edit mode, the screen border color will be green.

| — INSERT
To enter some text, type the following at the cursor position:
I HELLO THERE <RETURN>

‘I'is the line edit command for insert. Remember to leave a space
between the command and the text. Press return and you will see the
text ‘HELLO THERE' in the upper left corner of the screen with the cursor
to the right of the E in THERE.

Enter some more text by typing:
I HOW ARE YOU <RETURN>

Notice that there are two spaces between the command ‘I' and the word
'‘HOW'. And the first few letters of HELLO have disappeared on the left of
the screen. The screen always tries to center itself around the cursor, and
when the cursor reached the center of the screen, the screen started to
scroll to the left lo keep the window centered around it. This is called
horizontal scrolling. This editor gives you a 40-column window into the
64-character wide FORTH screen.

To see HELLO again, press the function key <f5>. You will notice the
cursor has moved to the first character position of the next line, and the
word HELLO is now shown properly. Think of the <f5> key as the
equivalent of the return key, but for the edit cursor, rather than the
command line cursor.

T— SELECT A LINE
You can start text on any line (O to 15) you specify. To enter the next line
on the third line, type:

3T <RETURN>
P — PLACE
The command P places text on the cursor position line. You will learn
two ways to use P:

Yt P (text) Places text into an insert buffer (PADI),
then in current line

15

2. P <RETURN> Places the contents of the last insert
buffer into the current line.

As an example, type in the following:

P TOBEOR <RETURN>
P NOTTO BE <RETURN>

Notice that the NOT TO BE typed over the TO BE OR.

U — UNDER
To avoid this, use the U command.

U THAT IS THE QUESTION <RETURN>

The command U places the contents of the insert buffer on the line
under the current line. The two ways of using P also apply to U.

K — KILL

This command “kills" or blanks the current line. Type a K, press RETURN,
and notice that the current line has been erased.

F — FIND

This command finds a string of characters. First, insert a line of text so
that you will have an example to work with. Then, type TOP to move the
cursor to the top of the edit area. Type F followed by a word or letters you
want to correct.

I TO SEEK OUT NEW LIFE AND NEW CIVILIZATIONS
<RETURN>

TOP <RETURN>

F NEW <RETURN>

The F command puts the word new into the find buffer called PADF, and

searches for the first occurence of NEW from the current cursor position
in the editor screen. The cursor is positioned at the word new, waiting for
a command to erase or insert, for example.

E — ERASE

The word E will erase the text in PADF just found. By pressing E

and hitting RETURN, the NEW is erased. You could then use the |
command to insert a new word or text. For purposes of an example, re-
insert the word NEW.

E <RETURN>
I NEW <RETURN>

R — REPLACE

The command R is a combination of the two commands E and |. Position
the cursor to the top of the edit area (use the command TOP) and type in
the following sequence of commands:

16

TOP <RETURN>

F NEW <RETURN>

R OLD <RETURN>

F <RETURN>

R <RETURN>
The R command takes the word NEW (which is held in the find buffer,
PADF) erases NEW, and inserts the word OLD (which became the
contents of the insert buffer, called PADI).
Another feature of the editor uses a combination of Find and Insert. Type
in the following:

U ASLUG, A PEEL, ASPLIT <RETURN>

Use F to find the word, a.
F A <RETURN>

Then use | to insert a word after A leaving two spaces after the I:
| BANANA <RETURN>

“A" has been placed in the find buffer, PADF, “BANANA" has been placed
in the insert buffer, PADI. Type in the following and watch what happens:

F <RETURN>
| <RETURN>
F <RETURN>
| <RETURN>

SCREEN EDITING

Using the screen editor, you move the cursor around the current screen,
over-type words to correct typing errors, delete characters with the DEL
key, and insert spaces where needed to add text. To use the screen
editor, press the <INST/DEL> key in the upper right hand corner of the
keyboard along with the shift key. The screen border color should change
to yellow to signal that you are in the screen edit.insert mode. Now any
characters you type will be inserted in the edit screen, and the cursor will
move along to the right of the characters. Try it!

If you make a mistake, you can delete the characters preceeding the
cursor by using the (unshifted INST/DEL) key, or by using the
cursor keys to move to the character just after the error and press the
 key to start deleting there.

If you move to the middie of some of the text you have entered and start
typing, you will see the text to the right of your new characters move
automatically to the right to make room for the text you are typing. This is
the INSERT MODE because any text you type is inserted between
existing text. If you push text off the right end of the 64-character line, it
will be lost.

Another mode is called the OVER-WRITE MODE, and you enter this mode
by pressing the <INST> (shift-INST/DEL) key again. The border should
switch to light blue. When you type characters now, your new text will

17

replace the old text on the screen. This mode is useful when you are
correcting typing errors in existing text. Press the <INST> (shift-
INST/DEL) key a third time to return to the INSERT MODE.

To leave the INSERT or OVER-WRITE MODES, press <RETURN> and
the border will switch to green.

FUNCTION KEYS

64FORTH provides several helpful commands to use while in the editor.
First, the <f1> and <f3> keys can be used to TAB forward and TAB
backwards. The <f5> functions as a <RETURN> key while you are in the
screen editor. The <f7> is equivalent to typing “F <RETURN>" in the line
editor. The <f7> key finds the string held in PADF. The <f8> key (shifted
<{7>) allows you to easily replace strings you found with the <f7> key.
The <f8> key is equivalent to R <RETURN>.

The <f7> key should only be used after the editor command F has been
used at least once. And the <f8> key should only be used after the editor
command R has been used at least once.

The <f6> key (shifted <f5>) opens up a section of text at the cursor
position to make room for added text. The <f2> (shifted <f1>) and <f4>
(shifted <f3>) keys are used to move to a higher <f2> or lower <f4> edit
screen.

SAMPLE EDITING SESSION

Now that you are familiar with the use of the editor commands, try typing
in the Commodore program you entered earlier, or another program. Begin
by selecting a edit screen:

1 EDIT <RETURN>
Use the command WIPE to clear the screen:
WIPE <RETURN>

Then start typing in a program, starting with the | (insert) command, and
continue adding lines with the U (under) command.

When you have finished entering the program, you can list it with the
LIST command. Press the RUN/STOP and RESTORE keys together to
return to the FORTH screen. Indicate the screen number you want to list.

1 LIST <RETURN>

If you are satisfied with the screen, you can compile your definitions with
the word LOAD:

1 LOAD <RETURN> _
Each time you LOAD, you increase the size of your dictionary.

To execute your program, name the procedure. In the case of the
Commodore program, simply type the name of the final definition:
COMMODORE.

18

After you feel comfortable with the editor commands, experiment with the
additional commands listed in the summary section below. The sections
following the command summary cover the FORTH concepts of the stack
and arithmetic notation, and then you will learn some other FORTH
words.

NOTE ON GOOD PROGRAMMING PRACTICE

The first line of your source code should describe the particular
application of the block. You can enclose remarks about the program in
parentheses (leaving a space between the first parentheses and the
comments). Remarks serve as a reminder to you what the program does,
and aid another programmer in understanding what you had intended.
Remarks enclosed in parentheses are ignored by the text interpreter.

EDITOR COMMANDS
Line Editor (green border)

WORD FORMAT FUNCTION

T nl=-= Sets the edit pointer to the start of line n1.

P -—=<t> Text <t> following space is placed into line
holding the edit pointer.

U -—=<t> Text following the space after U is placed

under the current line and all lower lines are
moved down.

M ntn2--- Copies current edit pointer line under line
n2 in screen ni,

X -——— Deletes line containing the edit pointer and
moves lower lines up one. The deleted line
is held in PADI and line 15 becomes blank.

H - Holds the edit pointer line in PADI.

K - Kills (erases) the edit pointer line.

S - Spreads the lines at the edit pointer. All
lines from the edit pointer are moved down.
Line 15 is lost.

TOP —-— Move edit pointer to TOP of screen. Same
as HOME key.

F -———<t> Find first occurence of text following ‘F'.
Starts at current edit pointer.

E - Erases as many characters going backward

as the length of the last 'F' command.

19

TILL

DEL

EDIT

=== Lt>
===t
-—=<t>
e R B
=
nt---
nt---

Deletes the first occurence of text following
the D command, searches from edit pointer
until the end of the screen.

Deletes all text starting at edit pointer until
and including the string following the
command TILL. Works on current LINE only.
If string is not found, no deletion occurs.

Inserts text following the command | into
the edit buffer at the current position of the
edit pointer. Text following that is too long
for the line is lost (over 64 characters).

Replaces the string just found by 'F' with
the string following the R command.

Deletes n1 characters before the edit
pointer, and compresses the line to omit the
space.

Move the cursor by the signed amount n1
characters (positive for forward move,
negative for backward move). This word also
redisplays the current edit window.

Move the edit pointer to the top of the next
higher screen buffer. Limited by BMAX.

Move the edit pointer to the top of the
previous (lower) screen buffer. Limited by
BMAX.

Selects the edit mode, with n1 as the
screen to be edited. Moves the edit pointer
to the top of the screen n1. Revectors CR
and KEY to show the current edit window,
and make cursor and functions keys
operational.

MISCELLANEOQUS EDITOR WORDS

(F)

(1

PADF
PADI

---al
---af

Searches for text in PADF until end of
screen.

Inserts the current contents of PADI into
the edit buffer at the cursor. Text too long
for the line is lost.

Returns address of find buffer. Length = 80.
Returns address of insert buffer. Length =

20

PAD ---al

TEXT Clmm=t

GTEXT al---

ICUR N1---

Returns address of scratchPAD area a1.
Length = 80.

Accepts the text following the command
TEXT into the scratchPAD area until the
character with ASCII value c1.

Accepts text from the input stream until a
delimiting % is found, or the RETURN key is
pressed. The text is placed at address a1,
for a length of 64 characters.

Sets the edit pointer to value n1. (n1 is
limited to 0 <=n1 <= 1023.)

NOTE: In (- -- <t>), the <t> symbol indicates the text is optional.
Typing RETURN without any text will use the current contents of PADI, or

PADF.

KEY FUNCTIONS
Cursor Keys

HOME key

INST

FUNCTION KEYS
f1

f3
s
f2 (shift 1)

14 (shift 13)

Active, allow scanning through the edit
buffer character by character, or with auto
repeat.

Moves the cursor to the top of the edit
screen.

(Shift INST/DEL key). This key enables the
INSERT mode and the BORDER color is
changed to yellow to indicate the insert
mode. All keys are inserted into the edit
screen as they are typed. The DEL key is
alsc enabled, to delete characters on the
edit screen preceeding the cursor. Pressing
<INST> a second time toggles to the
OVER-WRITE mode indicated by a blue
border. The RETURN key leaves the
INSERT mode, and the BORDER color
returns to green.

Tabs cursor right 4 characters.
Tabs cursor left 4 characters.
Moves cursor to beginning of next line.

Move edit to the next higher screen
number.

Move edit back to the previous screen
number.

21

f6 (shift f5) Spreads the line at the cursor position.

f7 Finds the next occurence of search string
given by the last ‘F' command and leaves
insert mode if not found.

8 (shift f7) Replaces the most recently found string
with the text specified in the most recent ‘R’
command.

For the convenience to those of you familiar with WordStar™, a selected
number of WordStar compatible cursor function keys have been included
using a combination of the Commodore key (C<) and a letter key.

C< A Left tab. Same as f3 key.

C< S Left cursor.

C<D Right cursor.

C<F Right tab. Same as the f1 key.
C< G Forward character delete.
C<E Up one line.

C<R Back one screen. Same as f4.
C< X Down one line.

C<C Next screen. Same as f2.
C<yY Delete the line.

CzZ $e-lnsert the line you just deleted with C<
THE STACK

The stack is one of the important elements in FORTH. FORTH temporarily
stores information before processing in what is known as a stack. You
add numbers or data to the stack, and then apply various operations.
When the operations are applied, numbers or data are taken from the top
of the stack first. This process is called LIFO (last in, first out). You can
only remove the value that is on top of the stack.

Other programming languages also use the stack, but it is normally not
available to the programmer. In FORTH, you can control the stack
directly.

In most computer languages information is stored permanently in
memory using “variables” referred to its “variable name"” (this is also
possible in FORTH). Often, the data you are manipulating is transient. You
can put the transient data on the stack rather than storing it in memory
and giving it a name. The data on the stack is readily available and can be
discarded after use.

22

In FORTH, each stack element consists of 16 bits, or two bytes, of
information. This information can be stored in two ways:

16-bit signed number
16-bit unsigned number

Another method of storing information is known as double numbers.
Double numbers consist of two stack elements, or 32-bits. You can have:

32-bit signed number
32-bit unsigned number
STACK MANIPULATION WORDS

FORTH contains several pre-defined words used to manipulate the data
on the stack.

DROP Drops the top stack item.
DUP Duplicates the top stack item.
OVER Duplicates the second item on the stack

and puts it on top of stack. {(Becomes 1st
and 3rd elements of stack)

ROT Rotates the third item to the top
SWAP Exchanges the top two stack items.

To manipulate a double length (32-bit) number OR numbers in pairs, add
a '2' to the above words:

2DROP
2DUP

20VER
2SWAP

Examples of the use of these words can be seen in the PRIME program
listing following the section on OTHER FORTH WORDS.

Put some numbers on the stack and play around with the above words
and keep checking the stack to see the changes. Place numbers on the
stack simply by typing them in and hitting RETURN, and you can print the
stack contents with the word .S. For example:

12 3 435 <RETURN>
.S <RETURN>

The numbers should appear on your screen in the same order.

Remember that FORTH works from the top of the stack, and the last item
in is the first item out. Try some of the stack manipulation words, such as:

SWAP <RETURN>

.S <RETURN>

1 23 8§ 4 (should appear on screen)
ok

23

To clear the stack, type:
SP! <RETURN>

POST-FIX NOTATION

FORTH uses a non-traditional method to handle arithmetic functions.
First, you state the numbers of your calculation and then you state the
arithmetic operation. In other words,

2 + 2 becomes 2 2 +

This is known as post-fix notation and is often referred to as reverse
Polish notation. it is very similar to notation used by Hewlett Packard
calculators.

FORTH also uses the standard arithmetic operators:

+ n1in2 -- sum adds

- n1 n2 -- difference subtracts
* n1t n2 --—- product multiplies
/ n1n2 - quol divides

The following table lists the standard equation and its corresponding
reverse Polish notation:

5+4 54 +
90 - 4 904 —
60X 8 68+
21/7 217/

Enter the equations in reverse Polish notation on the keyboard and then
type a period . (called DOT) alter each equation to print the results,

Other operators are included in 64FORTH. Here is a sample of additional
math operators (full definitions appear in the glossary):

*
*/MOD
/MOD
MOD

OTHER FORTH WORDS

This section covers FORTH words used to create a branching effect in
your programs. These branching control structures allow you to program
the computer to make decisions and to repeat tasks.

DECISIONS

You can add a decision-making process to your FORTH programs, which
adds flexibility by allowing you to create logical paths to complete tasks.
Several FORTH words support these conditional executions:

24

IF.. ENDIF

IF... ENDIF

IF...ELSE... ENDIF
BEGIN...UNTIL

BEGIN... WHILE... REPEAT

NOTE: Conditional statements may only be used within colon-definitions.

The following comparison operators perform logical comparison
operations on the data stack and return boolean flags for use by the
above words:

o<
0=
XOR
AND
OR

These conditional statements make use of what is called a boolean flag.
A flag is a value left on the stack as a signal to another word or definition.
The value left on the stack is either a one (also called non-zero) or a zero.
A one (actualiy any non-zero value) indicates that the condition is true;
and a zero indicates that the condition is false. You do not type in the
word “flag,” but you leave the flag value on the stack.

AV LI

IF... ENDIF

The IF... ENDIF statement allows you to control the sequence of the
program depending upon certain conditions. The IF... ENDIF statement
is preceeded by a flag, or a signal as to whether a condition is true (non-
zero) or false (zero). The flags, or boolean values are left on the stack. If
the condition, or boolean value is true, execution continues with the next
word in the definition. If the condition is false, IF causes execution to skip
to ENDIF, from which point execution will proceed. Every IF needs a
corresponding ENDIF in the same definition. An example of an

IF... ENDIF statement follows.

: TRUE? IF.“ATRUE WAS ON THE STACK” ENDIF ;
To execute this example, type in the name of the definition; preceeded by
a value.

1 TRUE? <RETURN>
0 TRUE? <RETURN>

If the value on the stack is true (that is, non-zero), the statement "A TRUE
WAS ON THE STACK" is printed.

You can add another branching effect to the IF ... ENDIF statement with

the word ELSE. The branching to the word after ELSE takes effect if the

condition is false. The following is an example of an IF... ELSE... ENDIF
statement:

25

: TRUE/FALSE IF .** ATRUE ” ELSE ." A FALSE ”
ENDIF .* WAS ON THE STACK " ; <RETURN>
O TRUE/FALSE <RETURN>

1 TRUE/FALSE <RETURN>

The words after the |F are executed when the condition is true. If the
condition is false, the words after the ELSE are executed. When a
conditional statement completes, execution continues after the ENDIF.

NESTING

You can put an IF... ENDIF (or IF... ELSE... ENDIF) statement within
another IF ... ENDIF statement. This process is called nesting. However,
there must be a boolean value on the top of the stack for each IF and
each IF must have an ENDIF.

LOOPING

You can create control structures in your FORTH programs to perform a
certain operation repetitively. These control structures are called “loops.”
The following FORTH words are used to create loops:

BEGIN ... UNTIL (loops until condition is true)
BEGIN... AGAIN (loops forever)

BEGIN... WHILE... REPEAT (loops while condition is true)
DO...LOOP (loops specified number of times)

BEGIN...UNTIL

The BEGIN ... UNTIL statement sets up an indefinite loop which
continues processing until the flag condition is true. In other words, this
loop repeats indefinitely UNTIL a certain condition occurs. A sample
BEGIN... UNTIL statement is:

: COUNTER1 O BEGIN DUP. 1+ DUP 10 = UNTIL DROP;
COUNTER1 <RETURN>

If the flag remains false, the loop continues. As soon as the flag becomes
true, the loop ends.

BEGIN... AGAIN

In this statement, the BEGIN marks a start of a sequence that may be
executed forever. AGAIN causes a return to BEGIN and an example
follows:

: COUNTFOREVER O BEGIN DUP. 1+ AGAIN ;
COUNTFOREVER <RETURN>

All of the words between BEGIN and AGAIN will be repeated. This type of
loop can only be terminated by pressing the RUN/STOP and RESTORE
keys simultaneously.

26

BEGIN... WHILE... REPEAT

This construction performs a “test” in the middle of the loop. rather than
at the end. Execution continues as long as the test, or flag is true,
returning to BEGIN. When the flag becomes false, the words following
REPEAT are executed. An example of this loop follows:

: COUNTDOWN 20 BEGIN DUPO > WHILEDUP .1 -
REPEAT DROP;
COUNTDOWN <RETURN>

DO...LOOP
The DO... LOOP statement sets up a definite loop within a specified

index range. You specify the number of times the loop will repeat by
indicating the ending number plus one, and the beginning number before
the word DO. An example of a DO ... LOOP follows:

: COUNTBY2 100DOII+.LOOP;

COUNTBY2 <RETURN>
The DO... LOOP must always be part of a definition. The ending number

is called the limit (in this example, 10) and the beginning number is zero. |
returns the index of the current loop counter.

DOT QUOTE .“

A handy FORTH word, ." (pronounced “dot quote”) performs the same
function as a PRINT statement in BASIC. You can use ." within a
definition to cause some text to be typed on the screen. Type in the
following and see what happens:

:CHEER .*“ GO FORTH AND CONQUER " ; <RETURN>
CHEER <RETURN>

A blank space must follow the .". The ending quote marks the end of the
text string, and it is called a “delimiter."

Try putting the above definition in a DO... LOOP statement:

: CHEERS 200 DO CHEER LOOP; <RETURN>
CHEERS <RETURN>

GO FORTH AND CONQUER should appear on your screen 20 times.

For a more serious example of the above control structures, study and
type in the following program to select prime numbers;

27

:PRIME (n1---)DUP2/ 1+ SWAP." BEGINNING " CR
1 DODUPI 1 ROT
2 DO DROP DUP | /MOD
DUP 0= IF DROP DROP 1 LEAVE
ELSE 1 = IF DROP 1
ELSE DUP O > IF DROP 1
ELSE O= IF O LEAVE ENDIF
ENDIF
ENDIF
ENDIF
LOOP
IF 4 .R ELSE DROP ENDIF
LOOP DROP CR . DONE *;

LOAD the block to compile the definitions. Execute the program by typing
in 100 PRIME and pressing RETURN. This will print the prime numbers
between 1 and 99. Try other values.

TICK’

The FORTH word ' (pronounced “tick”) gives you access to addresses or
locations in memory of any dictionary word. Tick is used in the form:

’ word <RETURN> (leaves address on the stack)
. <RETURN> (prints the address)

USING VARIABLES

If you are used to working with variables as in other programming
languages, you can use two words in FORTH to create variables:
VARIABLE.

You can use variables to store a certain type of information permanently

rather than using the stack. To create a variable, type the word VARIABLE
followed by a name or label, and preceeded by its initial value:

n VARIABLE name

When VARIABLE is executed, it creates the definition (name) with its
parameter field address initialized to n. When (name) is later executed,
the address of its parameter field is left on the stack. Once the address is
on the stack, you can have access to the location using the FORTH
words @ and ! (discussed below).

USING CONSTANTS

You can also use constants in FORTH, and they are defined like
VARIABLES. A constant is like a variable except it returns a value instead
of the address of the value. And @ and ! are not required.

(value) CONSTANT (name)
STORE ! and FETCH @
The FORTH word ! (pronounced “store”) takes a value and an address.
The value is stored into memory at the address. The address may be the

28

address of a variable as returned by the name of the variable.

(value) (address) !
(value) (variable name) !

The FORTH word @ (pronounced “fetch”) takes the information back out
of the variable. You supply the address of the information by naming the
variable:

(variable name) @ (fetches contents of address)
5 (prints the contents)

@ can also be used to retrieve information from the address you specify:

(address) @ (fetches contents of address)
a (prints the contents)

You can also use @ and ! with the variables pre-defined by 64FORTH.
Some of the user variables are:

CONTEXT BLK CURRENT D#

DP DR# F# FENCE
HLD IN ouT SCR
R# TIB VOC-LINK

You type the name of the variable followed by a space and @, a value is
left on the stack To store a value into the variable, type the value and
then the variable name followed by a space and !.

CAUTION: Changing system variables may cause a system crash. Handle
with care.

29

30

3 GRAPHICS

This chapter covers the graphics capabilities of 64 FORTH: changing
colors and creating sprites.

COLOR

64FORTH provides you with words to control the background, border, and
character colors of the Commodore 64 without having to POKE into
memory using an obscure calculation. The background color is controlled
as follows:

n1 BGROUND <RETURN>

where n1 is a number from O to 15, giving a range of 16 possible
background colors. The colors are:

0 black 8 orange
1 white 9 brown
2 red 10 light red
3 cyan 11 gray 1
4 purple 12 gray 2
5 green 13 light green
6 blue 14 light blue
7 yellow 15 gray 3
You can control the border color similarly:
n1 BORDER <RETURN>

where n1 is the number of the color, 0 to 15.

Select character color by pressing the <CTRL> key, and the color key
together. To select the color of the characters as displayed during the
program execution, use the codes of the desired color. You can
determine the value of the color key desired by typing in:

KEY <RETURN> (wili wait for key to be pressed)
<CTRL> 1 (this places the CTRL 1 key on the data
stack)
<RETURN> (prints the value of the key)
144 (printed by the computer as the value of

the CTRL 1 key)

You can use this routine to find the ASCII value of any key. You can then
EMIT the value to the screen. To make the characters black, EMIT the
value:

144 EMIT <RETURN>

Experiment with other colors by finding the ASCII value of the color, and
then EMIT the value.

31

SPRITES

The Commodore 64 has the capability to produce high resolution,
programmable graphics called sprites. Sprites are designs which you can
create in practically any shape. You can easily move the shapes, change
their color, or change their size. High resolution (hires) refers to the ability
to control the individual dots on a screen, and these dots are called
pixels. In creating a sprite, you determine its characteristics by making
each pixel visible or invisible, that is turning them on or off.

Type in the following short program to create and display a sprite,
remembering to leave spaces between numbers and words. This program
is presented just to get you started using sprites. When you learn to use
the 64FORTH sprite editor you will have a more convenient and flexible
method of creating your sprites.

DECIMAL <RETURN> (sets the number base to
decimal)

SYSTEM <RETURN> (selects the SYSTEM)

SPBASE <RETURN> (initializes sprite data area)

0 —-SPOBJ 64 255 FILL {puts some date in sprite 0)
<RETURN>

170 140 0 CXY <RETURN> (positions sprite O on screen)

10 COLOR <RETURN> {set sprite O color to white)

0 SHOW <RETURN> (displays sprite 0)

In the second line of the program, you entered the SYSTEM vocabulary in
order to execute two system words from the sprite editor. These words
are normally needed only by advanced programmers and will be
described in the last section on sprites FOR THE ADVANCED
PROGRAMMER.

POSITIONING A SPRITE
Two words are available for positioning your sprites on the screen. They
are XY and.CXY. These words have the form:

x# y# sp# CXY

where x# is the x screen position in pixels, y# is the y screen position in
pixels, sp# is the sprite number (0 - 7). So to move your sprite to X=200,
Y=100 you enter:

200 100 0 CXY <RETURN>

If you play around with this you will see what x and y values are on and
off the screen.

The second word for positioning a sprite is XY. This word works just like
CXY except that the X position must be less than 256. This word is
provided for high speed movement but will not work on the right 1/6 of
the screen.

32

EXPANDING A SPRITE

Next try changing the size of the sprite with the word eXPAND. This word
has the form:

(xexpand: 1 or0) (yexpand:1o0orQ0) sp# XPAND
The following command would make your sprite wider:

1 00 XPAND <RETURN> (expand sprite 0 in the x
direction)

The next command makes your sprite taller:
010 XPAND <RETURN> (expand sprite O in the y

direction)
To make the sprite both wider and taller, type:
110 XPAND <RETURN> (expand sprite 0 in both
directions)

To return the sprite to its original size, type:
000 XPAND <RETURN> (return sprite O to original size)

You can move the sprite to the lower left of the screen (for editing
purposes described in the next section):

20 200 O XY <RETURN> {moves sprite O to new X and Y)

USING THE SPRITE EDITOR

The sprite editor consists of a grid — 24 squares wide by 21 squares tall.
Each square equals one dot, or pixel. You forma sprite by indicating which
pixels are “turned on" and which are “turned off.”

To see the editing screen cf the sprite you created in the above program,
type:

0 SPEDIT <RETURN> (selects edit screen for sprite 0)

33

The following screen should be displayed where * means that the pixel is
on and a blank means that the pixel is off:

BU'LDING L R R
SPR'TE LR R O B B B B O I 2 I 2 O B B IR B L B
LR I I 2 O 2R R A R O
LA I I
LR L B I I I IR R I B
L
LA R B R L B O R I A L B
LA R O I A
LA I I I R R O R R R
ok ok ok ok ok ok ko ko ko ko ko ko
dodk ok ok ok ok ok ok ok ok ok ok ok ok ok kR ke
ok ok ok ok ok ke ok ko ok ko kW ko ke ke ko ok
sk ok ok ko ok ko ke ok ok ok kR ko Rk
LR A R AR I I I O I O I
LR A B R O 2 I 2 b b 20 b 2R IR Bk R L 2R O B
LA AR I I 2 B I
LA
LA R A I B 2 O
LA R L IR R R R I B L B
LA AR R I 2 2 2 R 2k b 2 Ok 2R R 2R IR BE 2R L B R I 2
LA AR R A A I B L

Notice the actual sprite which you positioned in the lower left corner of
the screen. This sprite represents the current contents of the sprite being
edited. Each * in the edit area is one point on the sprite shown.

Use the cursor keys (up, down, left, right) to move the cursor around the
edit area. Moving the cursor keys around does not affect the on/off
condition of the pixel. Press any key to fill in a pixel, or press the space
bar to erase a pixel. Experiment with these keys to change the shape,
and when you are finished press the RETURN key. 64 FORTH builds the
new sprite, and the sprite shown in the left corner of the screen refiects
the changes you made.

64FORTH supports up to eight sprites, numbered O to 7. To create a new
sprite, use the word NEWSPRITE preceeded by the number of the sprite
you want to create.

1 NEWSPRITE <RETURN>

You enter the sprite editor after the sprite data area is cleared. Create a
new shape using the cursor keys, the space bar, and the * key. Do not
use the <INST/DEL> key to back up and erase. Create shapes for space
ships, animals, fruit, l[arge letters—anything you might want to use in a
program. Press RETURN when you are ready to build your sprite.

34

Once the sprite is built, you can
® display it
give the sprite a position
change its color
make it multi-colored
change its size
modify it
put it in a program
save it and retrieve it later

DISPLAY A SPRITE

Now that you are done drawing your new sprite (sprite number 1 in this
case) set its position using the word CXY (see section on positioning a
sprite) and then display it on the screen by saying:

1 SHOW <RETURN> (displays sprite number 1)

If you do not see it, your X and Y position values may be off the screen.

Type 20 140 1 CXY, and press RETURN. If you still don't see it, its color
may be set to the same color as the screen. Type 1 1 COLOR and press
RETURN.

COLORING A SPRITE

Change the sprite color with the 64FORTH word, COLOR. A sprite can be
any of the sixteen colors available on your Commodore 64. The colors
available and their corresponding numbers were covered in the previous
section on color control. The word COLOR is used to select a hires single
color for your sprite, and the format of the command is:

color# sp# COLOR

where color# is from O to 15 and sp# is the number of the sprite from O
to7.

HIDING A SPRITE

To remove a sprite from the screen display, use the 64 FORTH word,
HIDE. To remove the sprite on the lower left of the screen, type:

0 HIDE <RETURN> (hides sprite number 0)

MULTI-COLORED SPRITES

Up until now, you have been working with high resolution sprites.
64FORTH also supports sprites in a multi-color mode, although use of
this mode cuts the horizontal resolution in half. This means that instead
of 24 pixels across the sprite, there are only 12 pairs of pixels. Every two
pixels represents one color. Multi-color mode allows you to use three
different colors in one sprite. The three available colors are:

sprite color (set with the COLOR command)
multi-color 1 (set with the MCLR1 command)
multi-color 2 (set with the MCLR2 command)

35

To set a sprite to the multi-color mode, use the word MULTI in the form:
sp# MULTI

When you are in multi-color mode the two additional colors are selected
using the words MCLR1 and MCLR2 in the form:

color# MCLR1
color# MCLR2

where the color number is in the range O to 15.

In multi-color mode, a pair of pixels is needed to select each color dot in
the sprite. The following chart specifies the colors indicated (- indicates a
blank space on the sprite edit screen):

- - =BGROUND -*= MCLR1
*_ = sprite COLOR ** = MCLR2

Create a new sprite, or edit a previous sprite with these color
combinations in mind. Build the sprite by pressing RETURN after you
have edited it. Then set its position (CXY or XY), and then display it
(SHOW). Before going into multi-color mode, you must set the two colors,
MCLR1 and MCLR2, using the sixteen available colors. To set a sprite to
multi-color mode, type the number of the sprite followed by the word,
MULTI.

To leave the multi-color mode and return to high resolution mode, enter
the following command:

1 HIRES <RETURN>

SPRITE VOCABULARY
You have learned the following words for creating and displaying your
sprites:

WORD FORM
SPEDIT sp# SPEDIT
NEWSPRITE sp# NEWSPRITE
XY x# y# sp# XY
CXY x# y# sp# CXY
COLOR color# sp# COLOR
SHOW sp# SHOW
XPAND xx yy sp# XPAND
xx=0 or 1, yy=0 or 1
MULTI sp# MULTI
MCLR1 color# MCLR1
MCLR2 color# MCLR2
HIRES sp# HIRES
HIDE sp# HIDE

36

PUTTING A SPRITE INTO A PROGRAM

The following short program moves sprite #1 diagonally across the
screen using the words you learned in Chapter 2.

1 EDIT (enter edit screen 1)
WIPE (clear the screen)
| DECIMAL (select decimal number base)

U: MOVES 2000 DO 111 CXY LOOP;
U: MOVIT 3 1 COLOR

U 1 SHOW 147 EMIT

U BEGIN MOVES AGAIN ;

Then type 1 LOAD to compile the program. Press RUN/STOP RESTORE
to exit the editor. Then type the new word MOVIT and watch what
happens. You can stop the program by pressing RUN/STOP RESTORE.

If you use the word XY instead of CXY the sprite will move faster.

SAVING AND RETRIEVING SPRITES

The sprites you create are saved with their ASCII values, not the actual
shape you created. The screens, or blocks, in 64FORTH can only contain
ASCII data; not binary data. (You created your sprites using binary —
on/off — data). The screens are designed to contain source text, not
graphics. Therefore, screens 1 and 2 of the sprite files hold the ASCII
values of your sprites. When you save a sprite, you save one or both
screens containing the ASCII data of the sprites you want to save.

Two words, SPWRITE and SPREAD, allow you to write and read sprite
definitions to disk or cassette. Disk operations will be covered first.

Disk

Before creating a sprite you would like to save, you must open a file to
contain the sprite data. CLOSE ANY CURRENTLY OPEN FILE! Use the
word FCLOSE to close the file. You don’t want to write the sprite on top
of any of your source code screens. Now open the file you want to use for
sprite data, as follows:

FILE SPRITEDATA <RETURN>

After creating a sprite, you can save the sprite to the file, by entering the
following:

1 SPWRITE <RETURN>

This operation takes about five seconds to convert your sprite definition
to the proper data statements, read the screen from disk, and transfer the
data statements to the disk screen. When the command completes, type
FCLOSE and wait for this operation to complete. It will take about 10
seconds.

If you get a disk error flashing on the drive, type ?D to clear the error. The
error occurs because you created a new file, and read and wrote to it

37

when there was no data in it yet.

To read sprites from a disk file, first open the file containing the sprite
data definitions.

FILE SPRITEDATA <RETURN>
Then read the definitions for the proper sprite:

1 SPREAD <RETURN>

The sprite is read from the disk, into a screen buffer, Then the data
statements are read from the screen file into the proper sprite definition
area. This operation takes approximately eight seconds.

To write all of your sprites to the disk at one time, use the following
definition; used in the format SAVESPRITESTODISK <filename>
<RETURN>:

: SAVESPRITESTODISK (--- <text>)
FILE
80
DO | SPWRITE LOOP
FCLOSE ;

And to read the sprites back in:

: READSPRITESTODISK (--- <text>)
FILE
80
DO | SPREAD LOOP FCLOSE ;

Cassette

If you are using a cassette for sprite storage, insert a cassette prepared
for recording into the cassette drive. Enter the following commands:

1 SPWRITE <RETURN> (indicates saving function)
NAME SPRITEDATA <RETURN> (names the file)
1 WRITE <RETURN> (save sprite edit screen)

The computer responds, “PRESS RECORD AND PLAY ON TAPE". After
you press the record and play buttons, the screen blanks for a while and
then returns with the message, “SAVING OK",

This writes the screen containing sprite number one to cassette. The “1
WRITE" above works for any of those sprites on screen 1 — sprites 0 to
3. If you are working with sprites 4 to 7, you will have to replace the
above WRITE statement with “2 WRITE" to write the screen that holds
those sprites.

To load a sprite once you have saved it, type:

NAME SPRITEDATA <RETURN>
1 READ <RETURN>

SPREAD <RETURN>

38

The screen will blank, and then display the messages:

SEARCHING
FOUND
LOADING

It is recommended that all sprites to be used in a particular program be
read or written at once. The following colon-definitions can be used to

write and read all sprites on cassette format as follows: SAVESPRITES
<cassette filename> <RETURN>:

: SAVESPRITES (--- <text>)
NAME
80
DO | SPWRITE LOOP
1 2 WRITES ;

And to read the sprites back in:

: READSPRITES (--- <text>)
NAME 1 2 READS

80
DO | SPREAD LOOP;

SPRITE DATA DEFINITIONS

If you would like to see the data definitions of the sprite with which you
have been working, enter the editor after performing a SPWRITE
operation.

1 EDIT <RETURN>

Screens 1 and 2 of the sprite files hold the ASCIl values for your sprites.
Screen 1 contains the sprites 0 to 3 and screen 2 contains sprites 4 to 7.
Each sprite has a four line area on the screen to hold its sprite data
assignments. For example, lines 4 through 7 on screen 1 contain the
ASCII data for sprite 1. You can use the editor to modify the data
statements for the sprites, but use caution as errors ¢an easily occur.

FOR ADVANCED PROGRAMMERS

A number of system words are used by the sprite editor. These words are
SB, SPBASE, —SPOBJ and SBLK. See the glossary for their descriptions.
Note that the constant SB is in ROM and is used by the other system
words. Therefore sprites are always edited and read and saved from

RAM $0C00 - $0DFF. You may put an additional 8 sprites from $0EQO -
$0FFF by CMOVEing them from $0C00 and changing the sprite pointers
$07F8 - $07FF (see Commodore 64 Programmers Manual for information
on sprite pointers). If you want to put your sprites elsewhere in RAM or
have even more of them, be careful not to over-write any memory needed
by 64FORTH.

39

40

4 SOUND CONTROL

64FORTH includes a complete set of words to control the complex sound
generation capability of the Commodore 64 computer.

Before selecting or adjusting any voice you need to initialize the sound
system with the SINIT word as follows:

SINIT <RETURN>

This word sets up the control mechanisms provided, and automatically
selects VOICE1.

The Commodore 64 uses a sound integrated circuit 6581 to generate
complex waveforms with three separate voices. The sound control words
provided work with whichever voice is currently selected. You select a
voice with one of the following words:

VOICE1 VOICE2 VOICE3
Each voice can be one of four general waveforms, as follows:
TRIANGLE SAWTOOTH SQUARE NOISE

Each voice can be turned on and off with the following words. GATE1
turns (on) the voice, and GATEQ turns (off} the voice.

GATE1 GATEO
The volume setting affects all voices, and is set or read with the words:
VOLUME! VOLUME®@

The ATTACK, DECAY, SUSTAIN, and RELEASE of each voice can be set
and read with the following words:

ATTACK! ATTACK@ DECAY! DECAY®@
SUSTAIN! SUSTAIN@ RELEASE! RELEASE®@

The frequency of each voice is set or read with the words:
FREQ! FREQ@

41

Type in the following commands and you will hear a relatively low
frequency tone in your television speaker, (be sure the volume is up):

SINIT <RETURN> (initialize sound)
VOICE1 <RETURN> (select voice #1)
TRIANGLE <RETURN> (make it triangular)
15 VOLUME! <RETURN> (volume on high)

4 ATTACK! <RETURN> (Attack fairly fast)
0 DECAY! <RETURN> (Decay very fast)

8 SUSTAIN! <RETURN> (Sustain medium)
0 RELEASE! <RETURN> (Release very fast)
3000 FREQ! <RETURN> (set the frequency)
GATE1 <RETURN> (turns voice on)

S! <RETURN> (causes all of the above to take

GATEO
S!

Wait a while and then enter:

<RETURN>
<RETURN>

effect)

(turns voice off)
(causes GATEO to take effect)

All of the above parameters must be set before turning the voice on, but
you only have to change the frequency to change the note if that is all
you want to change.

The word S! must be executed following any sound word or group of
sound words to modify the characteristics of a voice. S! actually causes
the sound control words to take effect all at once.

Several other sound control words are available and are included in the
64FORTH glossary:

CURVOICE
cv

ENV3@
FILTER@
FILTER!
FMODE®@
FMODEI
FSELECT@
FSELECTI
0OSC3@
PWIDTH®@
PWIDTH!
RESONANCE®@
RESONANCE!
SYNCO
SYNC1

TESTO

TEST1

42

5 64FORTH SYSTEM CONFIGURATION

This chapter describes some of the aspects of how 64FORTH is organized
and how it is similar and/or dissimilar to other FORTH systems.

STACK PICTURES

FORTH uses a form of abbreviation called a stack picture to indicate what
values are passed into or out of a WORD (or command). This abbreviation
provides concise information about how a word is used in a program.
Below are the symbols used to complete the stack pictures in this
manual.

SYMBOL MEANING

al,a2... 16-bit address

N1, N2 16-bit signed number

ut, u2... 16-bit unsigned number
di,d2... 32-bit signed double length number
b1, b2... 8-bit byte value

cl. 6. 7-bit ASCII character
f1,f2... boolean flag

tf true boolean flag — non-zero
ff false boolean flag — zero

1, 12... ASCI| text string

<sp> the space bar

<RETURN> the return key

<text> a string of text follows

—-—— symbolic for the current word
/ separates stack parameters

Here is an example of a typical stack picture:
(n1/al ---a2 <text>)

ni/al The stack parameters required before the word
executes.

- Symbol for the word being executed.
a2 The stack contents after the word executes.

<text> A text string which follows the word being executed in
this example.

In the above example, you will notice the slash (/) between the stack
value n1 and a1l signifying that two values must be placed on the data
stack before the above word can be executed. In actually putting the
values on the stack the slash is not used — the values are separated by a
space. The number to the right of the slash will always be placed on the
stack last, whereas the value on the left will be placed on the stack first.
FORTH uses a LIFO (last in, first out) stack, so the last value placed on
the stack will always be on top of the stack and will be the first value
returned. Address a2 to the right of the three dashes (---) indicates an

43

address a2 returned by the word after it was executed. Values n1 and a1
are not shown on the right side of the three dashes, because they were
used by the word and have been discarded. The word <text> to the right
of address a2 indicates a string of text which follows the word being
executed, before the <KRETURN> key is pressed.

MEMORY ALLOCATION

64FORTH will run on any Commodore 64 computer. The 64k bytes of
computer memory is used as follows:

Amount Memory contents Address range
1k Kernel variable space ($0000-$0400)
1k Display screen space ($0400-$07FF)
1k FORTH system space ($0800-$0BFF)
1k Sprite storage ($0CO0-$0FFF)

25k Dictionary user space ($1000-$7400)
1k Sound control variables ($7400-877FF)
1k Communications buffer ($7800-37BFF)
1k Screen buffer ($7CO0-$7FFF)

16k 684FORTH kernel ($8000-$BFFF)
16k Virtual mass storage ($CO00-$FFFF)

You may notice an odd thing about the above memory map. The usage of
the area from $D000 to $FFFF appears to conflict with the 64’s |/0 and
KERNEL routines, which reside in this area. 64FORTH however carefully
switches these routines out of memory while using this RAM, and then
switches it back in before performing any I/0 or KERNEL calls.

44

MEMORY MAP

The following table is a graphic representation of the memory allocation.
LOW END

$0000

[FORTHS DATA STACK]

$0060 SO
[64 KERNAL DATA AREA]

$0100 TIB
[TIB / RETURN STACK]

$01FF RO
[64 KERNAL DATA AREA]

$0400
[SCREEN MEMORY SPACE]

$0840
[64FORTH USER VARIABLES]
[AND VECTOR TABLES

$0B40
[SPRITE DEFINITION RAM]

$1000 DPO
[]
[25K USER DICTIONARY SPACE]
(

$7400 EM
[SOUND CONTROL EMULATOR]
[VARIABLE SPACE

$77FC
[MASS STORAGE COMM BUFFER |

$7BFC FIRST
(ONE FORTH SCREEN BUFFER]

$8000 LIMIT
(]
(16K FORTH KERNAL]
l ,

$C000
[]
[16K VIRTUAL SCREEN BUFFERS |
[

$FFFF

HIGH END

45

STACK SPACE

FORTH uses two stacks, DATA and RETURN, located in the low end of
memory. The data stack is located in page zero (the first 256 bytes in
memory), from about $0010 to $0060 HEX (numbers preceeded by a $
are specified in HEXADECIMAL). The data stack has room for about 40
stack entries. The return stack is located in page one as the 6502
hardware stack. This page is shared with the Terminal Input Buffer and is
limited to about 60 levels of nesting.

VOCABULARIES

FORTH uses vocabularies to segment similar words into groups or
classes. The 64FORTH system has four vocabularies: FORTH, EDITOR,
ASSEMBLER, and SYSTEM. To select a vocabulary, simply type its name.
A description of the contents of these vocabularies follows:

FORTH This vocabulary is selected at a cold start and contains all of
the words you will frequently need in application programming. The
FORTH vocabulary includes sound, sprite, and color control words, in
addition to standard FORTH words.

EDITOR This vocabulary contains all of the words used specifically to
edit text. This group of words is automatically selected when you enter
the editor with the EDIT command. The FORTH vocabulary is
automatically reselected when you leave the editor.

ASSEMBLER This vocabulary contains all of the assembly mnemonics
and addressing mode words used in the macro assembler. Assembler is
selected automatically by the word CODE used whenever you start an
assembly definition.

SYSTEM This last vocabulary is used as a catch all for various system
call words and words in the system not normally used in everyday
programming. SYSTEM will be useful to you after you have become
familiar with the FORTH system and want to proceed into more complex
usage of the Commodore 64’s hardware.

The words in these four vocabularies all reside in one dictionary. All
definitions you create are added to the dictionary in the order they are
compiled, and are not subdivided into separate vocabularies. Instead,
your definitions are linked to one vocabulary.

Two user variables are used in conjunction with the vocabularies:
CONTEXT and CURRENT.

CONTEXT contains a pointer to the vocabulary where dictionary searches
will first begin. For example, whenever you enter the word ASSEMBLER,
ASSEMBLER becomes the CONTEXT vocabulary and that vocabulary will
be searched first.

CURRENT contains the variable of the vocabulary into which you are
adding new word definitions. CURRENT vocabulary is normally the
FORTH vocabulary. In order to link words to one of the other

486

vocabularies, you need to use the word DEFINITIONS.

DEFINITIONS sets the current vocabulary to the context vocabulary. If
you were to SOURCE (a command which displays the actual definition)
the word DEFINITIONS, you would see the following:

SOURCE DEFINITIONS <RETURN>
: DEFINITIONS CONTEXT @ CURRENT !;S
To add words to the ASSEMBLER vocabulary, type:
ASSEMBLER DEFINITIONS
To restore FORTH as the CURRENT vocabulary, type:
FORTH DEFINITIONS

To see a listing of all the names of the definitions in the vocabularies, use
the word VLIST and press RETURN. The CONTEXT vocabulary is listed
first. Pressing any key temporarily halts the scrolling and pressing any
key again continues the scrolling. Hitting the RUN/STOP key ends the
listing.

THE DICTIONARY

64FORTH allocates 25k of RAM memory for your dictionary space. Every
new definition you compile is placed in the dictionary. 64FORTH includes
several words used to manage this dictionary space: FORGET, EMPTY,
DSAVE, DLOAD, ALLOT, and HERE.

FORGET deletes a definition from the dictionary along with all the entries
physically following it. Use FORGET in the form:

FORGET <name of definition>

EMPTY, on the other hand, cleans out the entire dictionary by forgetting
ALL of the definitions you have added. You can use this word by typing in
EMPTY at the beginning of a program load.

All of your added definitions would also be “forgotten” whenever you end
a 64FORTH session and turn off your computer. Using the words DSAVE
and DLOAD, you can save your dictionary entries <DSAVE> and load
your dictionary when you need it again <DLOAD>. Your definitions will
be linked into the FORTH dictionary and you do not need to recompile
them.

To save your definitions, type if you are using a cassette drive:
CASSETTE DSAVE (filename) <RETURN>

or, type the following if you are using a disk drive:
DISK DSAVE (filename) <RETURN>

64FORTH responds “SAVING (filename)" and an OK prompt appears
when completed.

47

To load your definitons, type (for cassette):

CASSETTE DLOAD (filename) <RETURN>
Or, for disk type:

DISK DLOAD (filename) <RETURN>

64FORTH responds, “SEARCHING FOR (filename) LOADING". You are
returned to FORTH upon completion of DLOAD.

You can increase the ALLOTed space in the dictionary by using the word
ALLOT. For example,

O VARIABLE SMALLARRAY 6 ALLOT

This would reserve an additional six bytes of space to the variable
SMALLARRAY. Reserving this extra space in the dictionary is useful for
creating arrays. In this case, SMALLARRAY is an array of 8 bytes (2 are
automatically allocated when SMALLARRAY is created) and the address
of the first byte of the array will be returned.

Another word, HERE, tells you the address of the next available dictionary
location. HERE leaves the address on the stack, and . (dot) prints the
address:

HERE . <RETURN>

The dictionary makes use of an area of memory called the “pad.” This pad
works in the sense of being a landing pad, storing strings of text
temporarily before being sent to an output device, such as a printer or
monitor. The word PAD leaves the beginning address of the text output
buffer (or pad) on the stack, and the . (dot) prints the address:

PAD . <RETURN>
PAD moves as the dictionary expands, floating 66 bytes above here.
CHANGING NUMBER BASES
64FORTH can work with different number bases including decimal and
hexadecimal, and you can change the number base at any time.
64FORTH starts up in the decimal base, and the word HEX converts to
the hexadecimal base. Use the word DECIMAL to convert back to the
decimal base. The word BASE is a user variable containing the current
number base. You can create a word which selects the binary number
base with the following definition:

DECIMAL <RETURN>
: BINARY 2 BASE ! ;

SYSTEM CALLS

Commodore has built a very powerful KERNEL into the 64. In BASIC, you
do not generally have access to the KERNEL because several
parameters in the machine registers must be passed to the KERNEL to
control the operation of the KERNEL call. In 64FORTH, however, a word

48

SYS (in the SYSTEM vocabulary) has been provided to allow you to set all
of the machine's registers, including the status of the carry flag, before
performing a system call. Once the call returns, the contents of A, X, and
Y registers are placed on FORTH’s stack and are available to you. This
versatile word allows you to have access to all KERNEL functions from
high-level FORTH definitions.

Here is the glossary entry for the SYS word:
SYS (<f1>/b1/b2/b3/al === <f1>/b4/b5/b6)

The SYS command allows calling any assembly language routine. “f1” is
an optional carry set/reset flag; it is returned unmodified. b1, b2, and b3
are the A X, and Y registers respectively as sent to the assembly routine.
b4, b5, and b6 are the returned values of A, X, and Y. a1 is the assembly
call address. Any called routine must return with an assembly RTS
instruction, and must not destroy the hardware stack contents. To those
who understand Assembly language: the contents of the processor status
register is returned after a SYS in the ASSEMBLER variable N.

The following is an example fo a system call:

HEX (sets the hexadecimal number base)
: MESSAGES.OFF (turns off KERNEL message printing)
SYSTEM (selects the system vocabulary)
0 0O (places 3 dummy values for A, X, Y)
FF90 SYS (calls KERNEL at address $FF90)
3DROP; (clears the returned values)
DECIMAL (reselects the decimal number base)

The word, MESSAGES.OFF, will turn off all KERNEL messages for errors
and warnings, etc. 64FORTH is initialized with all messages ON. The
three zeros in the above definition are the mandatory A, X, and Y register
values required by any assembly language call being performed. The
word SYS performs the system call, and 3DROP after SYS removes the
returned values of the A, X, and Y registers from the data stack

Many KERNEL calls are provided. A complete list of these calls follows
and their definitions may be found in the 64FORTH glossary at the end of
this manual.

SETLFS OPEN SAVE SLOAD CHKOUT
CLALL SETNAM SLSN DLSN DTLK
SECOND ClouT LISTEN ACPTR UNLSN
UNTLK TKSA TALK - CHKIN CLOSE

WHAT IS MISSING?
64FORTH is a very complete implementation of FORTH, however, an
experienced FORTH programmer will notice some functions are missing

in this system. A list of the missing words and the reason they have not
been included follows:

49

BUFFER
+BUF
PREV
USE

These words are part of the standard FORTH virtual disk interface.
64FORTH contains an improved double buffered virtual disk interface,
which has been tailored to the Commodore 64's particular memory
configuration.

WARNING
(ABORT)

These words are part of the error handling system in a standard fig-
FORTH system. The word WARNING is used in a standard FORTH system
to specify whether a disk is available for the printing of error messages.
This variable is not required because 64FORTH prints error messages
from ROM. The word (ABORT) is a method used in fig-FORTH to allow you
to redirect the error handling to a user selected and written program, if
desired. This was done primarily because fig-FORTH does not support
vectored words. ERROR is a vectored word in 64FORTH, and as a result
(ABORT) is not needed.

INDEX

This word prints the first line of each screen within a specified screen
range. It was not included in this system due to space constraints. The
following is a definition of a version of INDEX which has been optimized
for the Commodore 64:

DECIMAL

: INDEX (n1/n2 ---)
SYSTEM (selects the SYSTEM vocabulary)
D# @4> (only index if disk file open)
IF 1+ SWAP

DOI1-8*1+ POS
PAD RECREAD DROP ?DERR
PAD 64
—TRAILING | 2 .R SPACE TYPE CR
LOOP
ELSE 2DROP .“ NO DISK FILE OPEN" CR
ENDIF;

Edit this definition into a screen and save it for later use. This version of
INDEX will run fairly fast, because it only reads in the first record of each
screen.

50

USER VARIABLES

The following tables show how the user variable space is set up:

User Table Definitions

Address Function
$0940 Start of user table
$0940-0949 Not used
$004A Terminal input buffer TIB
$094C WIDTH
$094E Not used
$0950 FENCE
$0952 DP (dictionary pointer)
$0954 VOC-LINK
$0956 BLK
$0958 IN
$095A ouT
$095C SCR
$095E BMAX
$0960 CONTEXT
$0962 CURRENT
$0964 STATE
$0966 BASE
$0968 DPL
$096A Not currently used
$096C CSP
$096E Ri#
$0970 HLD
I/0 Vector Table Vector Offset
Address Function Decimal HEX
$0972 KEY 00 00
$0974 EMIT 02 02
$0976 ?7TERMINAL 04 04
$0978 CR 06 06
$097A CREATE 08 08
$097C NUMBER 10 0A
$097E ERROR 12 oC
$0980 .(DOT) 14 OE
$0982 —FIND 16 10
$0984 . (COMMA) 18 12
$0986 C, 20 14
$0988 R/W 22 16
$098A CTBL Capture table address variable
$098C F# Logical file number for file
access
$098E D# Device number for file access

51

$0990
$0990-$09BC

User Vector Space Vector Offset
2 bytes per user vector 30to 72

$09BE-09FE FN File name array for file
$0A00 EFLAG Edits STATE flag
$0A02 DR# Device # of current disk drive
$0A04 DCHAN Disk drive channel for data read
and write
$0A06 Not currently used
$0A08 CURVOICE Sound current voice variable
$0A0A MODE Assembler mode variable
Emulator User Variables
$0A0C ERP Emulated return pointer
$O0A0E EIP Emulated interpreter pointer
$0A10 'STEP Redirectable single step variable
$0A12 'CONT Redirectable continue variable
$0A14 IFLAG Insert mode flag, insert/overwrite
Sprite Variables
$0A16 SPOBJ
$0A18 SPINDX
$0ATA SPBYT
$0A1C SCPTR
$0A1E-$0A40 Available user space

52

6 VECTORS

WHAT ARE THEY?

FORTH is a macro language, that is, FORTH is made up of many simple
words written in assembly language. By stringing several of these smaller
words together in a line, you can create more powerful words. This simple
technique makes FORTH a very powerful tool in writing programs.
However, one small problem arises with this method. Occasionally, a low
level word needs to perform a slightly modified function, in order for a
higher level word to do something a little differently. This process is
known as vectoring.

As an example, suppose you had a parallel printer. The Commodore 64
has an 8-bit user port where you would connect your parallel printer. At
times you may need to send all of your listings to that port, rather than to
the video screen. The only problem with this is that the KERNEL does not
know about your printer on the user port, and can not easily be made to
talk to it. In 64FORTH this will not be a major problem because all I/O
(input and output) in 64FORTH go to your own routine rather than just the
routines that the Commodore 64 already knows about.

VECTORED WORDS IN 64FORTH

64FORTH includes a minimum set of words which should fill the needs of
most users wishing to revector various operations in FORTH. Here is a
list of all of the VECTORed words in 84FORTH, and their positions in the
two vector tables: 1/O and VWORDS.

POSITION WORD

HEX DECIMAL

00 00 KEY

02 02 EMIT

04 04 ?TERMINAL
06 06 CR

08 08 CREATE
OA 10 NUMBER
oC 12 ERROR
OE 14 . (dot)

10 16 —FIND
12 18 '

14 20 C,

16 22 R/W

18 24 CTBL

Note: User created vectored words start at an index of 30, and may
consist of up 20 total vectors, two bytes each.

53

VECTOR CONTROL
Here is an example of how to revector the character output of a device
other than the video screen. Suppose you need a printer driver for the
USER port for a 7-bit printer driver, with the eighth (8th) bit used as a
strobe.

(==--) (initializes the user port)

: PINIT 255 UPORT 2+ C! 0O UPORT C! ;

Next you need a word to send characters to the user port and to strobe
bit 8 of the port:

(==-) (strobes bit 8 of user port)
: STROBES8 UPORT 128 TOGGLE UPORT 128 TOGGLE ;
(nl—---) { sends character to user port)

: PORTOUT 127 AND UPORT C! STROBES ;

You have a routine to send characters to the user port. All you have to do
is vector EMIT to the new character output word.

: TO.UPORT ' PORTOUT CFA I/0 2+ 1

The routine above takes the CFA (code field address) of the new driver
word, and stores it into the thrid and fourth bytes of the I/O vector table
in user memory. The instant this has been done, any further character
output will go to the new driver routine. If it doesn't work, the program
may hang. To restore the I/0O vectors to their initial values, press the
RUN/STOP and RESTORE keys together or type VRESET. Either method
will restore all of the VECTORS to their initial values.

Note: The example above shows how to revector EMIT, not how to
create a complete printer driver. Most printers require handshaking
protocols which are beyond the scope of this manual. You will have to
study the data sheets on the 6522 chip for a while before attempting
such a driver.

See the section on vectors in Chapter 8 for other examples of vector
control.

VECTOR WORD GLOSSARY

VECTOR (n1===¢)
This is a new defining word used to add additional
words to 64FORTH that are to be vectored. It is used as
follows:

30 VECTOR <vector name>

After the above is executed, any time <vector name> is
executed, it will perform the routine whose CFA is in I/O
+ 30. You must therefore store the CFA of a valid
dictionary word into it before executing <vector name>.
Note: User VECTORs are from 30 to 70 decimal.

54

VWORDS

170

VRESET

(el]

This word returns address a1 of the beginning of the
initial value vector table in ROM. This data may be
accessed in the same manner as the I/O table to obtain
the actual routine's CFA for a given vectored word.

(---at)

This word returns the address a1 of the beginning of
the user vector table in RAM. This table is used to
change the function of selected dictionary words.

(===}
This word when executed RESETS all of the vectored
dictionary words to their initial values, by moving the
data at VWORDS to the RAM table at I/0.

55

56

7 INPUT AND OUTPUT

In this chapter, you will learn how 64FORTH handles the input and output
(1/0) of data from your Commodore 64. The input/output operations
include:

user port access
printer output
screen buffer control
cassette interface
disk interface

file transfers

USER PORT

The Commodore 64 comes with a full 8-bit port. You can control this port
using the 64FORTH word, UPORT. UPORT contains a system constant
which returns the address of the data register of that port. You can use
UPORT to have access to the 8 bits of external data to connect to a
printer, a modem, or other hardware.

CAUTION: Study the user port section in the Commodore 64
Programmer’'s Reference Guide before attempting to make changes
using UPORT. You could damage your computer!

The user port is initialized as an INPUT port, and you can observe any
TTL (Transister Transister Logic) level as follows:

UPORT C@ <RETURN>

This places the value of the data at the port on the FORTH data stack.
Once the data is on the stack, you can display or print the data (using the
. command), and you can change the data. If you wish to use the user
port as an OUTPUT port, you can initialize UPORT as follows:

255 UPORT 2+ C! <RETURN>

This stores a binary value of all ones into the UPORT data direction
register of the 6522 VIA chip in the computer. The VIA chip is designed to
make any data bits OUTPUTS if the corresponding bits have been set in
the data direction register.

To control the output data on the port:

n1 UPORT C! <RETURN>
where n1 is a number in the range 0 to 255 decimal. This number is then
sent to the user port.

PRINTER OUTPUT

64FORTH includes words to produce listing of data or programs on a
serial printer. The word PRINT allows any character output from the line
of commands following PRINT to be sent to the printer connected via the
serial bus port. After the line has been interpreted, output returns to the

57

video screen. A lower level word PRON in the SYSTEM vocabulary turns
on the printer port, and leaves all character output going to the serial bus
printer, until another word, PROFF (also in the SYSTEM vocabulary) is
executed. These lower level words would be used within a program to
control printer output.

PRINTING A PROGRAM LISTING

To obtain a print-out of a program listing, use the following sequence of
words:

PRINT n1 LIST <RETURN>

where n1 is the number of the screen or block you want to list. You
cannot print and read a scteen in from the disk at the same time. You
must read the screen containing the program you want to list into one of
the sixteen screen buffers, and then you can print the listing. Otherwise,
the serial bus will hang, and the only way to get out is to turn off the
printer or turn off the computer.

Since PRINT operates on the serial bus, it is important that no other
serial bus operations be performed while printing is occuring. Therefore
when using PRINT to make listings of screens, the screens to be printed
must be brought into memory before attempting to print. This may be
done using EDIT. This problem occurs because no serial bus arbitration is
built into the Commodore DOS.

RS-232 SERIAL PRINTER

You can send data to the RS-232 port by using the following lines of
FORTH required to send data to an RS-232 serial printer:

(RS-232 serial printer output words)
DECIMAL

659 CONSTANT SCONTROL (serial control location)

: SOFF SYSTEM 3 CHKOUT 5 CHKIN
2 CLOSE 3 CLOSE 5 CLOSE ;
: SON SYSTEM SCONTROL 4 SETNAM 2 2 0 SETLFS OPEN
33 0 SETLFS OPEN 5 5 0 SETLFS OPEN ;

: SWAIT BEGIN 669 C@ 670 C@ = UNTIL ;

: SPRINT (print the command <text> following - -- <text>)
SYSTEM SON 2 CHKOUT INTERPRET SWAIT SOFF ;

:BAUD (n1---) (ni1=baud rate, i.e. 300, 1200...)
1000 1000 ROT*/2 /100 —
SCONTROL 0 OVER ! 2+ |;

You must set the BAUD rate before using the SPRINT word, or you may
get some very strange results.

58

SCREEN BUFFER CONTROL

Memory storage in your Commodore 64 system can be cassette or disk
based and it is divided up into units called “blocks.” FORTH stores and
retrieves information from memory a block, or a screen at a time.

64FORTH places these blocks temporarily in screen buffers. Each of
these screen buffers hold the contents of one block or screen (1024
bytes) of code in RAM where you can load, edit, or have access to the
block. This buffer is the temporary storage between the cassette or disk
and your current screen. The system transfers data to and from disk or
cassette and places the data in screen buffers. You can use one screen
at a time. This arrangement is known as virtual memory because it
appears as if all of the mass storage area were in your RAM memory
space. You have access to the amount of virtual screen buffer space
currently specified with the word BMAX.

In a cassette based system the range of available screens that you can
have access to is limited to the range of available virtual buffers in the
system — 16 in 64FORTH. The variable used to specify the highest
screen accessible is named BMAX.

If you have a disk based system, the value in BMAX will control the
highest screen available in each FORTH file. For example, if you have a
need for a disk file larger than 16 screens, you can increase the value of
BMAX to a larger number, and you will be allowed to access screens up
to this higher value.

In no case, however, should you create a file larger than 90 screens. 90
screens is the limit of the relative file system in the Commodore disk
drive. Also, each time you reopen a file larger than 16 screens, you must
reset the vaue of BMAX to the higher value or you will not be able to
access screens above 16.

The FORTH word EMPTY-BUFFERS clears out the screen buffer area
without saving the updated blocks to disk or cassette.

USING CASSETTE

When 64FORTH starts up, the system expects to work with a cassette
with sixteen virtual screens available for data and editing. You do not
have to tell 64FORTH that you will be using cassette. The words that
control the reading and writing to and from cassette are:

READ T
READS (nt===)
WRITE fnt=——)
WRITES (n1/n2 ---)
LOADS (n2===)
CASSETTE

In these words, n1 is the number of the screen or biock to be read or
written. When n2 is present, it represents the number of screens to read
and write.

59

To save an edited program, type the number of the edit screen(s)
containing the program you want to save, followed by the WRITE
command. For example, to save edit screen 1, type:

1 WRITE <RETURN>

You are then asked to press record and play on the cassette recorder.
The screen will blank for few seconds while 64FORTH saves the
screen(s).

To retrieve a program from cassette, type the number of the screen you
want to load and the word READ.

1 READ <RETURN>

The screen will blank during the READing process and will respond with
an OK when the process is complete. Once the screen is available, you
can EDIT it, LOAD it, LIST it, and then execute it.

To retrieve and compile a block or screen in one step from cassette, use
the LOADS command:

n1 LOADS <RETURN>

The command retrieves a series of screens from cassette. When
complete your program is ready to run. Each screen is read into buffer
number one and a 1 LOAD is performed.

FILES

If you have used BASIC files, using LOAD and SAVE, you will find FORTH
VIRTUAL files to be very different. But in a very short time you won't know
how you ever did without them.

First, to give you some basis for comparison, the BASIC method of file
operation will be covered. When you LOAD a file under BASIC, the entire
file is pulled in from disk, into main computer memory. Under BASIC,
there is somewhat less than 40k bytes of memory available for programs,
and no file larger than 40k can be loaded or run. While this may seem like
a lot of memory, there are many applications which would like to have
more than that, not the least of which is word processing. While there are
several word processors for the Commodore 64, none allow manipulation
of files larger than can be held in memory.

FORTH contains a word named BLOCK, which it uses and which you may
use in your programs, to perform the interface between the computer and
your disk drive. As mentioned above, a block in FORTH is 1024 bytes or
characters. Blocks are numbered sequentially from one to “n,” with “n"
being the highest block number contained within the current file. The
FORTH word BLOCK is passed the number of the block of characters you
wish to access, and it returns the address of the first character of that
block.

For example, suppose you wanted the 2097th character of a file. To

60

obtain that character, you must perform a block operation that will cause
block 3 to be read in from disk, since block three contains characters
2048 to 307 1. Each time you want to get a character, it may be in a
different block. Therefore, it would seem difficult to remember what block
contains each character desired but in FORTH it is not difficult at all.
Here is a simple command sequence which will obtain a numbered
character in the range 0 to 65535:

(n1=---c1)
: GET.CHAR.N
B/BUF /MOD 1+ BLOCK + C@ ;

And here is a word that will place a character into a disk file:

(c1/n1-==)
: PUT.CHAR.N
B/BUF /MOD 1+ BLOCK + C! UPDATE ;

You may have noticed a couple of differences in this definition from the
one above. The second definition uses the C! operator, which stores a
character into memory; and the word UPDATE, which tells FORTH that
you have modified a block (you stored a character into it). UPDATE also
writes the block back to disk when it is convenient for the system to do
so. In 64FORTH this write operation will occur at one of two times: either
when the file is closed, or when the virtual buffer holding the data is
needed by another block that you requested.

It is important to realize that the write operation is deferred to a later time,
and it is therefore not proper to turn off the computer or disk drive until
an FCLOSE has been performed. Note also that when you open another
file, a close is automatically performed, and data will not be lost.

This method automatically reads and writes to disk as needed, without
your having to worry about whether a particular block of data is already in
memory.

64FORTH adds one additional structure to the FORTH block interface,
specifying that the blocks are within a file, and that BLOCK can only have
access to the blocks within the currently open file. To allow BLOCK to
access the blocks of your program, the file containing them must be
open. This is done with the FILE command. When you enter FILE
<filename> <RETURN>, you are not loading in a file from disk as in
BASIC. You are simply telling FORTH that if a block of data is requested,
it should get the block from the file you have just opened. An ideal
example of this is entering the EDITOR with the EDIT command. This
issues a block command to the system requesting the block you want to
edit, and if a file is open, the block will be read in from disk.

USING A DISK DRIVE

84FORTH differs from other FORTH systems significantly in the area of
disk operation. Most FORTH systems provide only a block interface to

61

mass storage, bypassing the operating system file structure. This method
requires a separate disk to be used for FORTH, and prevents interaction
between FORTH and other operating system files. 64FORTH, on the
other hand, runs under the Commodore file system, allowing you to have
several files on a disk. These files can contain separate sets of FORTH
blocks, along with BASIC program files, and other files.

Before a file on disk can be opened, the disk drive must be connected
and turned on, and a formatted disk inserted. If you want to format a new
disk, the following command line will initialize the disk and erase all
existing data on it

CMD N:(disk name), XX <RETURN>

The text following CMD is sent to the disk as a command to "NEW" (using
the Commodore system command, NEW) the inserted disk with the name
(disk name) and the disk ID# (XX). Any disk command can be sent to the
disk drive with the CMD word. The sequence CMD | <RETURN> may be
used to initialize a new disk but should never be used while a file is open
on the disk.

OPENING FILES

To save a file to disk, you must open the file before you begin to edit it
with the editor. Use the word FILE, which opens a disk file, followed by a
file name. When you open a disk file, you open the disk

FILE (new or existing file name) <RETURN>

The disk drive will activate, and the file will be opened.

Note: If you do not have a disk drive, do not use the disk FILE command.
The system will hang because the Commodore KERNEL tries to talk to a
device that is not present. Certain other disk related words may also
cause trouble when they are used without a disk drive connected to the
system, such as 7D, DISK 4 FILE, and (FILE).

If you have just created a new file, you start running into some interesting
peculiarities of the Commodore disk operating system. If you try to EDIT a
screen in a file that does not yet exist, the system issues a disk error
because there was not data to read. EDIT the file created with the word
FILE:

1 EDIT <RETURN>

The drive will activate, and return shortly with the empty screen of the
editor. The light on the disk drive will blink signifying a disk error. If you
now type:

7D <RETURN>

the system will clear the error, and type out the error message that no
data was found.

For a new file, type in the following command to clear the current screen:
WIPE <RETURN>

62

You have now cleared the screen buffer you are editing to blank spaces
and you could begin editing. But first, write the screen to disk to extend
the file to a size large enough to hold it. Enter the following command:

FLUSH <RETURN>

The disk starts again, writing out your screen #1 to the disk. If you get
another disk error, type ?D and press RETURN to clear the error. Errors
are reported when you access a relative record that does not exist, and
when you wrote a non-existent relative record. These errors are normal
for the Commodore disk operating system, and can be cleared with 72D
and ignored. Now you can start editing. To save the completed screen,
use the word FCLOSE. FCLOSE performs a FLUSH and then CLOSES
the file.

Or you could switch to another file by entering:
FILE (next file name) <RETURN>

The currently open file will be checked for updated screens, and these
will be written to the currently open file if required. The current file will
then be closed, and the next file will be opened. This process may take
several minutes if many screens in the current file are updated and need
to be written to disk.

LOADING AN EXISTING FILE
To retrieve an existing file from disk, type the following:

FILE (existing file name) <RETURN>
1 EDIT <RETURN>

To run the program, it must first be compiled. The THRU word will load a
range of screens as follows:

14 THRU <RETURN>

In this example screens 1 through 4 are loaded. You can then execute
the program by entering the name of the appropriate procedure followed
by return.

IF YOU FORGET TO OPEN A FILE

Occasionally, you may forget to open a file before editing. In this
situation, the system has no open file in which to put the contents of your
memory, and you would not be able to write to disk.

If, once having realized your error, you perform a FILE command to open
a file, your data will be lost. The word FILE wipes out the contents of the
virtual memory buffers before opening a new file.

To illustrate why the system works this way, suppose you had two files:
FILEA containing a game you have written, and FILEB containing some
graphics routines. If you edit screen one of FILEA, and make a

modification to that screen, then switch to FILEB, the graphics routines,

63

there is a good chance that the modified screen from FILEA will be
written to FILEB by accident. This would be disasterous for your
programming, and would soon cause you to stop using the system. So,
the primary rule to remember when you are about to edit a routine you
want to save, is to OPEN A FILE FIRST, THEN START TO EDIT.

However, in the interest of assisting you in recovering from the above
situation, a word has been provided which will open a file without clearing
out memory. This word is (FILE), and should only be used with great care,
since it is possible to read a screen from one file, and write it to another.
If you create a program without first opening a file, you can open a file to
write the screen out to, as follows:

(FILE) <file> <RETURN>
Then the data can be written out to it as follows:
FCLOSE <RETURN>

All updated screens will be written to the file before it is closed.
REMEMBER HOWEVER THAT ANY DATA ALREADY IN THE FILE WILL
BE OVERWRITTEN!!!

TRANSFERRING FILES

Two lower level words have been provided to facilitate the transfer of
screens between disk files, or between cassette and disk: (FILE) and
(FCLOSE). The primary difference between these words and their non-
parenthesis versions, is that these words do not clear out memory in the
process of closing or opening the file specified. Here is an example of
how a screen might be read in from cassette to disk:

1 READ <RETURN>
(FILE) CASSTODISK <RETURN>
FCLOSE <RETURN>

In this example, one screen was read into screen buffer #1, and then the
disk file CASSTODISK was created, or opened. The FLCOSE word then
closed the file, automatically FLUSHing any updated screens to disk.
One thing to note here is that READ and READS automatically UPDATE
the screen after it has been read in from cassette.

The (FCLOSE) word is similarly useful when transferring screens from
one disk file to another. There is a utility source screen included, which
allows the transfer of up to 16 screens from one disk file to another on
the same or a different disk.

Two final words are provided which allow your programs to manipulate
files: (4FILE) and 9 FILE. These two words require you to pass them an
address of a string, and a count of the length of the string. The string is
then opened as a file on disk. ({ FILE) is a lower level word, which does
not clear out memory before opening the file. } FILE performs a full
FCLOSE before opening the new file. Here is an example of how /| FILE

64

might be used:

: DATA.FILE.OPEN } DATA? AFILE;

Here the % symbol is used to specify an in-line string, called DATA, which

is the name of the out data file. { returns the address and count of the
in-line string when executed, and these parameters are used by , FILE to
open the file DATA on the current disk drive. Later this file can be closed
with FCLOSE, or another file can be opened.

LOADING MULTIPLE SCREENS

The word FLOAD opens a file from the disk drive and loads screen 1.
Screen 1 is then expected to load the rest of the file.

FLOAD can be used within a file to load other files. However, the files
loaded from within a file using FLOAD cannot themselves perform an
FLOAD. In other words, the FLOAD command is not nestable.

For example, suppose you had a file called TEST which you would like to
load three other files called TEST1, TEST2, and TESTS. The following
statements can be placed in screen 1 of the file TEST to cause it to load
these other files:

FLOAD TEST14
FLOAD TEST24
FLOAD TEST3/4

FLOAD may not be used in a colon-definition.

When FLOAD is executed from within a file during a load, the current file
is saved during the FLOAD operation. When FLOAD completes, operation
will revert to the file which contained the FLOAD.

FLOAD can also be executed from the keyboard. When FLOAD
completes, it closes the files and returns to the keyboard.

The advantage in using this method is that you can break up your
program into smaller files. This type of file system allows you to
modularize your program by placing small programs in separate files.

65

66

8 USEFUL DEFINITIONS AND TOOLS

DEFINITIONS

This section provides several useful definitions you might need in
experimenting with your C-64. These defined words are not in 64FORTH,
but may be entered into an edit screen and saved to cassette or disk.

Sprites
First, some extra sprite words:
DECIMAL
(turn on all sprites, white across screen)
VIEW (==-=)
80
DO 140 * 30 + 100 | CXY
11 COLOR | SHOW
LOOP;
(turn all sprites off)
:RID(==--)
80
DO | HIDE LOOP ;
(place all sprites on, around sprite edit area)
:EDVIEW (---)
40
DO 40114 50*1CXY 1 COLORISHOW
LOOP
84

DO 29413 —50*1CXY 1 COLOR | SHOW LOOP ;

(reset the position of sprite n1 t0 0.0)
:SPRESET (N1 -=--)
0 0 ROT CXY ;

Dumb Terminal
In addition to the definitions for the RS-232 serial printer words in the
Printer Output section, here are some words you can use to make a simple
dumb terminal:
HEX
(scan serial port for a character waiting)
: S?TERMINAL (==-¢1)
SYSTEM 2 CHKIN ?TERMINAL 5 CHKIN ;

(send character to serial port)
:SEMIT(c1 ===)
SYSTEM 2 CHKOUT EMIT 3 CHKOUT ;

67

(a simple dumb terminal program—can be aborted by
pressing CTRL D)

TERM (---)
SYSTEM
SCONTROL 2+ @ 0=
IF 300 BAUD (default to 300 baud)
ENDIF (if no other baud set)

SON 3 CHKOUT 5 CHKIN
BEGIN ? TERMINAL —DUP
IF DUP 4 = (CTRL D will abort)
IF SOFF .” ABORTING" DROP QUIT
ENDIF SEMIT
ENDIF
S?TERMINAL —DUP
IF EMIT ENDIF
AGAIN ;

Vectoring

This group of definitions allows you to control the vectoring capability of
64FORTH at a higher level, in a simpler fashion

DECIMAL
(check a1, to assure it is the PFA of a vectored word)
:?VECTOR (a1 ==--a1)

DUP CFA @ LITKEY @ —
IF CR HERE ID. ." NOT A VECTORED WORD" SP! QUIT
ENDIF ;

(redirect vectored word <text1> to perform function
specified by <text2>)
: VECTOR! (---) (VECTOR! <text 1> <text 2>)
—FIND 0= 0 ?ERROR DROP ?VECTOR C@ 1/0 +
—FIND 0= 0 7ERROR DROP CFA
STATE @
IF [COMPILE] LITERAL [COMPILE] LITERAL
COMPILE !
ELSE SWAP !
ENDIF ; IMMEDIATE

(reset vectored word <text1> to its default function)
: RESETVECTOR (—) (RESETVECTOR <text1>)

—FIND 0= 0 ?ERROR DROP

C@ DUP VWORDS + @ SWAP /O + SWAP

STATE @

IF [COMPILE] LITERAL [COMPILE] LITERAL

COMPILE !
ELSE SWAP |
ENDIF ; IMMEDIATE

Now that you have good vector control, you can put it to use. Suppose you
have an RS-232 printer, which needs a linefeed to follow each carriage

68

return. The following set of words will redefine CR to accomplish this
new function.

DECIMAL
(the new definition of CR)
: CRLF (---)

13 EMIT 10 EMITOOUT | ;

(here is a word to revector CR to CRLF)
:LFON (==--)
VECTOR! CR CRLF ;
{ and a word to restore the vector to its original function)

: LFOFF (--~-)
RESETVECTOR CR ;

Directory
If you have a disk drive, you can use this utility to get a directory from the
disk in the drive. However, this is not a perfect directory program and empty
directory entries are likely to show up as garbage.
DECIMAL
(read in n1 characters from serial bus, and throw them away)

:ACPTRS (n1 ==~}

0
DO SYSTEM ACPTR DROP
LOOP;

(close a disk channel, n1)

:DCLOSE (n1 ==-=)
SYSTEM 15 AND 224 OR DR # @ LISTEN
SECOND UNLSN ;

(print the file type of value n1)

: FTYPE (n1 ---)
DUP 132 = IF." REL FORTH FILE" ENDIF

DUP 130 = IF." PRG" ENDIF
129 =IF." SEQ" ENDIF;

69

(and finally the directory word itself)
:DIR(---)SYSTEM CMD |
DCHAN @ 1+ 240 OR DLSN | $ T STYPE 13 CIOUT UNLSN
?DERR
DCHAN @ 14 DTLK 142 ACPTRS CR 4 SPACES 180
DO ACPTR DUP 128 <
IF EMIT ELSE DROP ENDIF
LOOP.”,"60
DO ACPTR 127 AND EMIT LOOP CR CR
" FILENAME SECTORS TYPE" CR 88 ACPTRS
BEGIN ACPTR DUP ASCII G 128 + —
WHILE DUP 0= IF 28 ACPTRS DROP
IF CR 2 ACPTRS SPACE 150
DO ACPTR 127 AND EMIT
LOOP 9 ACPTRS
ACPTR ACPTR SWAP 256 * + 3 .R SPACE
.FTYPE ENDIF 1+ DUP 8 =
IF DROP 0 ACPTR DROP ELSE 3 ACPTRS ENDIF
REPEAT DROP UNTLK DCHAN @ 1+ DCLOSE CR ;
Copying Screens

This next utility is also for disk drive owners. It allows you to copy
screens from one file to another, either on the same disk or on another
disk with one disk drive. There is a limit of sixteen screens that can
be moved at once, since that is the number of screen buffers in
this system.

DECIMAL

{ copy screens from one file to another, possibly on another
disk drive; all input is prompted)

:FCOPY (---)

CR .”" SOURCE FILE —>" QUERY

BL WORD HERE DUP C@ 1+ FN SWAP CMOVE

CR .” DESTINATION FILE —>" QUERY

BL WORD HERE DUP C@ 1+ FN 20 + SWAP CMOVE

FN COUNT % FILE

CR .” FIRST SCREEN —>" QUERY INTERPRET

CR .” LAST SCREEN —>" QUERY INTERPRET

DO | BLOCK UPDATE

LOOP (FCLOSE) CR

" SWAP DISKS IF REQUIRED AND PRESS ANY KEY"

KEY DROP CMD |

FN 20 + COUNT (Y FILE) FCLOSE ;

Time

HEX (=-~-d1) (returns a double number time)
:?TIMEOOOFFDE SYS >R 100 *+ R>;

Auto-Repeat
This definition causes all keys to repeat when held down.

70

(]
(Toggle the auto-repeat switch in the system)
(WARNING: May also cause some keybounce)

DECIMAL
: AUTO .REPEAT 650 128 TOGGLE ;

Sound Extensions
The following definitions control some of the sound features:

DECIMAL
: RANDOM VOICES3 20000 FREQ! NOISE
VOLUME® 128 AND VOLUME! GATE1 S!;
(Turn on random generator)
:RND (---c¢) OSC3@ ; (Returns value between 0 and 255)
: BEEP VOICE2 FREQ! SQUARE 15 VOLUME! 2 ATTACK!
2048 PWIDTH! 0 DECAY! 15 SUSTAIN! O RELEASE! GATE1 S!
200 0 DO LOOP GATEO 0 FREQ! S! ;
: BEEPS 20 0 DO 8000 BEEP LOOP ;
FORTH-79 Extensions
Here are some sample extensions to make 64FORTH more compatible
with FORTH-79.
DECIMAL
(n1==-=-n2)
e s
12=2 =
Gl ke B
S o i

(Returns the limit value ina DO ... LOOP)
:I' R> R> R SWAP >R SWAP >R SWAP > R;

(Returns index value of DO ... LOOP outside of current
DO...LOOP)

(Can only be used with nested DO ... LOOPs)

:J R> R> R SWAP >R SWAP >R SWAP >R ;

(Clears the screen)
PAGE 147 EMIT ;

(n1/n2---)
(Prints n1 unsigned in a field of n2 characters)
:UROSWAPD.R;

(Record length/number of records = --)

(n1/n2 - - - <text>) (compiling)

(n1---a1) (executing)

: ARRAY <BUILDS OVER, * ALLOT

DOES> DUP @ ROT * + + 2+ ;

When compiling, an array with name <text> is created with n2 records
each having a length of n1 bytes. At execution time, when <text> is
executed, address a1 (the first byte of record n1) is returned.

71

Miscellaneous Extensions
(d1/d2 ---d1/d2/d1)
(Duplicate double number d1 over top of double number d1)
: 2 OVER >R >R 2DUP R> R> 2SWAP;

(===n1) (Return the amount of free memory)
: FREE EM @ HERE —;

(===-n1)
HEX

(Read the system status byte)

: STATUS 00 O FFB7 SYSTEM SYS 2DROP ;

(Print name of current vocabulary)

()
: VOC CONTEXT @ 4 — NFAID. ;

(Print the value of the current base in decimal)

: .BASE BASE @ DUP DECIMAL . BASE ! ;
TOOLS
This section describes some of the useful FORTH words to help you
in your programming efforts.
Debugger
64FORTH includes a very useful debugger that allows you to TRACE
and STEP through high level FORTH definitions. Here is an example
of a TRACE:

TRACE HEX <RETURN>

The computer displays the following:

CLIT >> 16
BASE >> 16 2406
! >> EMPTY

OK
The actual definition of HEX is as follows:

: HEX 16 BASE ! ;
The word CLIT stands for character literal; the value 16 is less than
256 and as a result it was compiled as a character literal. Numbers in
FORTH definitions cannot be directly interpreted at run-time, so FORTH
places a word before them called LIT or CLIT. LIT or CLIT then picks up
the number following and places it on the data stack. The numbers to
the right of the >> symbols represent the status of the data stack after
each word in the definition has been executed. You will also notice the
word EMPTY after the final >> symbol indicating the data stack was
empty. Almost any high level definition can be traced in this way,
however some words will need to have parameters passed to them
before your trace can be performed. The following is an example of
such a word:

3 4 TRACE « <RETURN>
72

This operation traces the multiplication of two numbers: 3 and 4. The
computer prints the result:

Uw >> 12 0
DROP >> 12

The definition of » is:
:« U*» DROP;

The numbers 3 and 4 were placed on the stack before the word TRACE
was entered. Then TRACE was entered followed by +—the word you
want to trace. The result is the execution of U+, which multiplies the two
numbers together and returns the double number result, 12. The high
word of the double number result is not needed, so it is discarded with
the following DROP. The final result 12 is left on the data stack. You
can print it out with the . (dot) command:

2 <RETURN> (entered by you)
12 (printed by the computer)

You can interrupt a TRACE at any time by pressing the space bar. You
can then list the definition one line at a time with the STEP command,
or continue the trace with the CONT command:

TRACE VLIST <RETURN>

Press the space bar after a few seconds.

STEP <RETURN> (causes a single step execution)
STEP <RETURN> (step again)

CONT <RETURN> (resumes tracing continuously)
Press the space bar again after a few seconds.

If you were to trace all of the definition for VLIST, it would take several
hours to complete. Tracing actually runs the definition you are tracing,
but it is much slower than actual execution. Clear the stack with the
SP! word:

SP! <RETURN>

If you want to start a trace of a definition in the single step mode rather
than a continuous listing, you can select a word to trace without
actually starting the trace with the EMULATE word as follows:

EMULATE DECIMAL <RETURN>

The computer will return with the OK prompt, and wait for further
instructions. You can now use STEP or CONT to actually perform the
emulation or trace.

Decompiler

A decompiler has been included in the 64FORTH to help you learn how
a FORTH system is designed. The word SOURCE followed by any high-

73

level word decompiles and prints out the words used to make up the
definition. An example follows:

SOURCE / <RETURN>
Prints: ./ /MOD SWAP DROP ;S

This shows you that the word / is created by using the /MOD operator,
and discarding the second stack entry. You can dissect this definition
further by decompiling /MOD:

SOURCE / MOD <RETURN>

Prints: : /MOD >R S=>D R> M/ ;S

/MOD is created with a word M/, which you can SOURCE:
SOURCE M/ <RETURN>

Prints: : M/ OVER >R >R DABS R ABS U/ R> XOR +-—
SWAP R> +— SWAP ;S

If you want more information, each of the words appearing above is a
standard fig-FORTH word appearing in the Glossary.

Dump Contents of Memory
64FORTH includes a DUMP utility used in the following way:

<address> <count> DUMP <RETURN>

This word displays memory contents starting at the address specified
for the number of bytes in length <count>. Each line will have eight
bytes preceeded by the address of the first byte in the line.

74

9 ASSEMBLER

This chapter is a reprint of the documentation which accompanied

W. Ragsdale's 6502 assembler as published in FORTH DIMENSIONS
Volume Ill, Number 5. This chapter is intended for programmers already
familiar with assembly programming.

6502 FORTH ASSEMBLER by W. Ragsdale

Introduction

This article should further polarize the attitudes of those outside the
growing community of FORTH users. Some will be fascinated by a label-
less, macro assembler whose source code is only 96 lines long! Others
will be repelled by reverse Polish syntax and the absence of labels.

The author immodestly claims that this is the best FORTH assembler
ever distributed. It is the only assembler that detects all errors in op-code
generation and conditional structuring. It is released to the public
domain as a defense mechanism. Three good 6502 assemblers were
submitted to the FORTH Interest Group but each had some lack. Rather
than merge and edit for publication, the author chose to publish his

with all the submitted features plus several more.

Imagine having an assembler in 1300 bytes of object code with:
1. User macros (like IF, UNTIL,) definable at any time.

2. Literal values expressed in any numeric base, alterable at
any time.

3. Expressions using any resident computation capability.
4, Nested control structures without labels with error control.
5. Assembler source itself in a portable high level language.

Overview

FORTH is provided with a machine language assembler to create
execution procedures that would be time inefficient, if written as
colon-definitions. It is intended that “code” be written similarly to high
level, for clarity of expression. Functions may be written first in high
level, tested, and then re-coded into assembly, with a minimum of
restructuring.

The Assembly Process
Code assembly consists of interpreting with the ASSEMBLER vocabulary
as CONTEXT. Thus each word in the input stream will be matched

according to the FORTH practice of searching CONTEXT first, and then
CURRENT.

75

ASSEMBLER (now CONTEXT)

FORTH (chained to ASSEMBLER)
user's (CURRENT if one exists)
FORTH (chained to user's vocabulary)

try for literal number
else, do error abort.

The above sequence is the usual action of FORTH's text interpreter,
which remains in control during assembly.

During assembly of CODE definitions, FORTH continues interpretation of
each word encountered in the input stream (not in the compile mode).
These assembler words specify operands, address modes, and op-
codes. At the conclusion of the CODE definition, a final error check
verifies correct completion by “unsmudging” the definition’s name, to
make it available for dictionary searches.

Run-Time, Assembly-Time

One must be careful to understand at what time a particular word
definition executes. During assembly, each assembler word interpreted
executes. Its function at that instant is called ‘assembling’ or assembly-
time'. This function may involve op-code generation, address calculation,
mode selection, and so forth.

The later execution of the generated code is called ‘run-time’. This
distinction is particularly important with the conditionals. At assembly
time each such word (that is, IF, UNTIL, BEGIN, etc.) itself ‘runs' to
produce machine code which will later execute at what is labeled ‘run-
time' when its named code definition is used.

An Example
As a practical example, here's a simple call to the system monitor
(KIM-| only), via the NMI address vector (using the BRK op-code).

CODE MON (exit to monitor)
BRK, NEXT JMP, END-CODE

The word CODE is first encountered and executed by FORTH. CODE
builds the following name “MON" into a dictionary header and calls
ASSEMBLER as the CONTEXT vocabulary.

The “(" is next found in the FORTH and executed to skip until “)". This
method skips over comments. Note that the name after CODE and the
“y* after “(" must be on the same text line.

Op-Codes

BRK, is next found in the assembler as the op-code. When BRK,
executes, it assembles the byte value 00 (zero) into the dictionary as
the op-code for “break to monitor” via “NMI".

Many assembler word's names end in “,". The significance of this is:

76

1. The comma shows the conclusion of a logical grouping that
would be one line of classical assembly source code.

2. “" compiles into the dictionary; thus a comma implies the
point at which code is generated.

3. The “" distinguishes op-codes from possible HEX numbers
ADC and ADD.

Next

FORTH executes your word definitions under control of the address
interpreter, named NEXT. This short code routine moves execution from
one definition, to the next. At the end of your code definition, you must
return control to NEXT or else to code which returns to NEXT.

Return of Control

Most 6502 systems can resume execution after a break, since the
monitor (KIM-1 only) saves the CPU register contents. Therefore, we
must return control to FORTH after a return from the monitor. NEXT is a
constant that supplies the machine address of FORTH's address
interpreter ($8115 for 64FORTH). Here it is the operand for JMP,. As
JMP, executes, it assembles a machine code jump to the address of
NEXT from the assembly time stack value.

Security
Numerous tests are made within the assembler for user errors:

1. All parameters used in CODE definitions must be removed.
2. Conditionals must be properly nested and paired.

3. Address modes and operands must be allowed for the
op-codes.

These tests are accomplished by checking the stack position (in CSP) at
the creation of the definition name and comparing it with the position at
END-CODE. Legality of address modes and operands is insured by
means of a bit mask associated with each operand.

Remember that if an error occurs during assembly, END-CODE never
executes. The result is that the “smudged” condition of the definition
name remains in the “smudged” condition and will not be found during
dictionary searches.

The user should be aware that one error not trapped is referencing a
definition in the wrong vocabulary:

i.e., 0= of ASSEMBLER when you want
0= of FORTH

77

Summary (KIM-1 only)
The object code of our example is:

3059 83 4D 4F CE CODE MON

305D 4D 30 link field
305F 61 30 code field
3061 00 BRK

3062 4C 42 02 JMP NEXT

Op-Codes, revisited

The bulk of the assembler consists of dictionary entries for each
op-code. The 6502 one mode op-codes are:

BRK, CLC, CLD, CLI, CLV,
DEX, DEY, INX, INY, NOP,
PHA, PHP, PLA, PLP, RTI,
RTS, SEC, SED, SEl, TAX,
TAY, TSX, TXS, TXA,

When any of these are executed, the corresponding op-code byte is
assembled into the dictionary.

The multi-mode op-codes are:

ADC, AND, CMP, EOR, LDA,
ORA, SBC, STA, ASL, DEC,
INC, LSR, ROL, ROR, STX,
CPX, CPY, LDX, LDY, STY,
JSR, JMP, BIT,

These usually take an operand, which must already be on the stack.
An address mode may also be specified. If none is given the op-code
uses z-page or absolute addressing. The address modes are described by:

SYMBOL MODE OPERAND
A accumulator none
immediate 8 bits only
X indexed X z-page or absolute
Y indexed Y z-page or absolute
X) indexed indirect X z-page only
Y indirect indexed Y z-page only
) indirect absolute only
none memory z-page or absolute
Examples

Here are examples of FORTH vs. a conventional assembler. Note that
the operand comes first, followed by any mode modifier, and then the

78

op-code mnemonic. This makes best use of the stack at assembly time.
Also, each assembler word is set off by blanks, as is required for all
FORTH source text.

FORTH ASSEMBLER CONVENTIONAL ASSEMBLER
A ROL, ROL A

1# LDY, LDY #1

DATA X STA, STA DATAX

DATA Y CMP, CMP DATA)Y

06 X) ADC, ADC (06,X)

POINT)Y STA, STA (POINT)Y
VECTOR) JMP, JMP (VECTOR)

(.A distinguishes from the HEX number 0A)

The word DATA and VECTOR specify machine addresses. In the case of
" 06)X ADC, " the operand memory address $0006 was given directly.
This is occasionally done if the usage of a value does not justify
devoting the dictionary space to a symbolic value.

6502 Conventions

Stack Addressing

The data stack is located in z-page usually addressed by “Z-PAGE,X".
The stack starts near $009E (64FORTH is at $0060) and grows down-
ward. The X index register is the data stack pointer. Thus, incrementing
X by two removes a data stack value; decrementing X twice makes
room for one new data stack value.

Sixteen-bit values are placed on the stack according to the 6502
convention; the low byte is at low memory, with the high byte following.
This allows “indexed,indirect X" directly off a stack value.

The bottom and second stack values are referenced often enough that
the support words BOT and SEC are included. Using:

BOT LDA, assembles LDA (O,X) and
SEC ADC, assembles ADC (2,X)

BOT leaves 0 on the stack and sets the address mode to ,X. SEC leaves
2 on the stack also setting the address mode to ,X.

Here is a pictorial representation of the stack in z-page:

[sec high]
[sec low]
| bot high]
[bot low] <-- X offset above $0000

Here is an example of code to “or” to the accumulator four bytes on
the stack:

BOT LDA, LDA (O,X)

BOT 1+ ORA, ORA (1,X)

SEC ORA, ORA (2,X)

SEC 1+ ORA, ORA (3,X)
To obtain the 14-th byte on the stack:

BOT 13 + LDA, LDA (13,X)

Return Stack

The FORTH Return Stack is located in the 6502 machine stack in

page 1. It starts at $01FE and builds downward. No lower bound is set or
check as Page 1 has sufficient capacity for all (non-recursive)
applications.

By 6502 convention the CPU's register points to the next free byte
below the bottom of the return stack. The byte order follows the
convention of low significance byte at the lower address.

Return stack values may be obtained by: PLA, PLA, which will pull the
low byte and then the high byte from the return stack. To operate on
arbitrary bytes, the method is:

1. Save X in XSAVE.
2. Execute TSX, to bring the S register to X.

3. Use RP) to address the lowest byte of the return stack. Offset
the value to address higher bytes. (Address mode is
automatically set to ,X)

4. Restore X from XSAVE.

As an example, this definition non-destructively tests that the second
item on the return stack (also the machine stack) is zero.

CODE IS-IT (zero?)
XSAVE STX, (save current value of X register)
TSX, (setup for return stack access)

RP) 2+ LDA,
RP) 3 + ORA,

0= IF, INY, { if zero bump Y to one)
ENDIF,
TYA,
PHA, (save result on stack)
XSAVE LDX, (restore return stack pointer)
PUSH JMP, { go push a boolean from stack)
END-CODE (terminate the CODE definition)

80

{]
{ Return Stack)

(high byte] second
RP) = $0101,X ---> | low byte | item
[high byte] bottom
[low byte] item
| free byte]

FORTH Registers

Several FORTH registers are available only at the assembly level and
have been given names that return their memory addresses. They are:

IP Address of the Interpretive Pointer, Specifying the next
FORTH address which will be interpreted by next.

W Address of the Interpretive Pointer, specifying the next
definition just interpreted by NEXT.

UP User Pointer containing address of the base of the user area.
N A utility area in z-page from N-1 through N+7.

CPU Registers
When FORTH execution leaves NEXT to execute a CODE definition,
the following conventions apply:

1. The Y index register is zero. It may be freely used.

2. The Z index register defines the low byte of the bottom data
stack item relative to machine address $0000.

3. The CPU stack pointer S points one byte below the bottom
return stack item. Executing PLA, will pull this byte to the
accumulator.

4. The accumulator may be freely used.

5. The processor is in binary mode and must be returned in
that mode.

XSAVE

XSAVE is a byte buffer in z-page, for temporary storage of the X register.
Typical usage, with a call which will change X, is:

CODE DEMO
XSAVE STX, (save current value of X)
USER'S JSR, (Go to a user’s routine)
XSAVE LDX, (restore value of X register)
NEXT JMP, (return to FORTH)
END-CODE (terminate the CODE definition)

81

N

When absolute memory registers are required, use the ‘N Area' in the
base (zero) page. These registers may be used as pointers for indexed/
indirect addressing or for temporary values. As an example of use, see
CMOVE in the “fig MODEL" installation manual.

The assembler word N returns the base address (64FORTH=$0068).
The N area spans 9 bytes, from N—1 to N+7. Conventionally, N—1
holds one byte and N, N+2, N+4, N+6 are pairs which may hold 16 bit
values. See SETUP for help on moving values to the N area.

It is very important to note that many FORTH procedures use N. Thus, N
may only be used within a single code definition. Never expect that a
value will remain there, outside a single definition.

CODE DEMO HEX

6 # LDA,

N1- STA, (setup a counter)
BEGIN,

8001 BIT, (tickle a port in KIM-1)

N1- DEC, (decrement the counter)
0= UNTIL, (loop till counter = zero)

NEXT JMP, (return to FORTH)

END-CODE (complete the definition)

SETUP

Often we wish to move stack values to the N area. The subroutine
SETUP has been provided for this purpose. Upon entering SETUP the
accumulator specifies the quantity of 16-bit values to be moved to the
N area. That is, A may be 1, 2, 3, or 4, only:

3 # LDA, (setup to move three values)
SETUP JSR, (move 3 16 bit values to N area)

stack before N after stack after
H

G low bot-G

F
E
D
sec-> C C

B B
bot-> A N-->A

Control Flow

FORTH discards the usual convention of assembler labels. Instead, two
replacements are used. First, each FORTH definition name is
permanently included in the dictionary, This allows procedures to be
located and executed by name at any time as well as compiled within
other definitions.

82

Secondly, within a code definition, executing flow is controlled by
label-less branching according to “structured programming”. This
method is identical to the form used in colon-definitions. Branch
calculations are done at assembly time by temporary stack values
placed by the control words:

BEGIN, UNTIL, IF, ELSE, ENDIF,
(THEN, is used in some assemblers in place of ENDIF,)

Here again, the assembler words end with a comma to indicate that
code is being produced and to clearly differentiate from the high-level
form.

One major difference occurs! High-level flow is controlled by run-time
boolean values on the data stack. Assembly flow is instead controlied by
processor status bits. The programmer must indicate which status bit to
test, just before a conditional branching word (IF, and UNTIL,).

Examples are:

PORT LDA,
0= IF, (read port, if equal to zero do)
<function A> (<function A>)
ENDIF,
PORT LDA,
0= NOT IF, (read port, if not equal to zero)
<function A> (do <function A>)
ENDIF,
The conditional specifiers for 6502 are:
CS test carry set C=1 in processor status
CS NOT test carry clear C=0
0< byte less than zero N=1
0< NOT test positive N=0
0= equal to zero Z=1
0= NOT test not equal zero Z=0
ovs overflow set V=1 (added to 64FORTH)
OVS NOT overflow clear V=0 (added to 64FORTH)

Conditional Looping

A conditional loop is formed at assembler level by placing the portion
to be repeated between BEGIN, and UNTIL,:

6 # LDA,
N STA, (define loop counter in N)
BEGIN,
PORT DEC, (repeated action)
N DEC,
0= UNTIL, (N reaches zero)

83

First, the byte at address N is loaded with the value 6. The beginning of
the loop is marked (at assembly time) by BEGIN,. Memory at PORT is
decremented, then the loop counter N is decremented. Of course, the
CPU updates its status register as N is decremented. Finally, a test for
Z=1 is made; if N hasn't reached zero, execution returns to BEGIN,.
When N reaches zero (after executing PORT DEC, 6 times) execution
continues ahead after UNTIL,. Note that BEGIN, generates no machine
code, but is only an assembly time locator.

Conditional Execution

Paths of execution may be chosen at assembly in a similar fashion as
done in colon-definitions. In this case, the branch is chosen based on a
processor status condition code.

PORT LDA,
0= IF,
<function A> (executed if PORT is zero)
ENDIF,
(then continue on with rest)

In this example, the accumulator is loaded from PORT. The zero status
is tested if set (Z=1). If so, the code (for zero set) is executed. Whether
the zero status is set or not, execution will resume at ENDIF,.

The conditional branching also allows a specific action for the false
case. Here we see the addition of the ELSE, part.

PORT LDA,

0= IF,
<function A> (executed if PORT is zero)
ELSE,
<function B> (executed if PORT is not zero)
ENDIF,

(then continue on with rest)

The test of PORT will select one of two execution paths, before
resuming execution after ENDIF,. The next example increments N based
on bit D7 of PORT:

PORT LDA,
o< IF,
N DEC, (if D7=1, decrement N)
ELSE,
N INC, (if D7=0, increment N)
ENDIF,

(continue ahead)

Conditional Nesting

Conditionals may be nested according to the conventions of structured
programming. That is, each conditional sequence begun (IF, BEGIN,)
must be terminated (ENDIF, UNTIL,) before the next earlier conditional

84

is terminated. An ELSE, must pair with the immediately preceeding IF,.

BEGIN, <code always executed>
CS IF, <code if carry set>
ELSE, <code if carry clear>
ENDIF,
0= NOT UNTIL, (loop till condition flag is non-zero)
<code that continues onward>

Next is an error that the assembler security will reveal.

BEGIN, PORT LDA,
0= IF, BOTINC,
0= UNTIL, ENDIF,

The UNTIL, will not complete the pending BEGIN, since the immediately
preceeding IF, is not completed. An error trap will occur at UNTIL,
saying “conditionals not paired".

Return of Control, revisited

When concluding a code definition, several common stack manipulations
often are needed. These functions are already in the nucleus, so we
may share their use just by knowing their return points. Each of these
returns control to NEXT.

POP Remove one 16-bit stack value.
POPTWO Remove two 16-bit stack values.
PUSH Add two bytes to the data stack.
PUT Write two bytes to the data stack, over the

present bottom of the stack.

Our next example complements a byte in memory. The bytes' address
is on the stack when INVERT is executed.

CODE INVERT (a memory byte) HEX
BOT X) LDA, (fetch byte addressed by stack)
FF # EOR (complement the accumulator)
BOT X) STA, { replace result in memory)
POP JMP, (discard pointer from stack)
END-CODE (and return to next)

A new stack value may result from a code definition. We could program
placing it on the stack by:

CODE ONE (Dm;(t 1 on the stack)
EX,
DEX, ({ make room on the data stack)
1% LDA, (get a 1 in accumulator)
BOT STA, (store low byte)
BOT 1+ STA, (high byte stored from Y since=zero)
NEXT JMP, (return to FORTH)
END-CODE

85

A simpler version could use PUSH:

CODE ONE
1 # LDA,
PHA, (push low byte to machine stack)
TYA, (clear accumulator, high byte=zero)
PUSH JMP, (go push to data stack)
END-CODE

The convention for PUSH and PUT is:

1. push the low byte onto the machine stack.
2. leave the high byte in accumulator.
3. jump to PUSH or PUT.

PUSH will place the two bytes as the new bottom of the data stack.
PUT will over-write the present bottom of the stack with the two bytes.
Failure to push exactly one byte on the machine stack will disrupt
execution upon usage!!

Fooling Security

Occasionally we wish to generate unstructured code. To accomplish
this, we can control the assembly time security checks for our purpose.
First, we must note the parameters utilized by the control structures at
assembly time. The notation below is taken from the assembly glossary.

The - - - indicates assembly time execution, and separate input stack
values from the output stack values of the words execution.
BEGIN, == -=-=-addrB 1
UNTIL, == addrB 1 cc -
IF, == cc - == addrl 2
ELSE, == addrl 2 - =—=—addrE 2
ENDIF, == addri 2 -
or addrE 2 -———

The address values indicate the machine location of the corresponding
'B'EGIN, 'I'F, or 'E'LSE,. cc represents the condition code to select the
processor status bit referenced. The digit 1 or 2 is tested for conditional
pairing.

The general method of security control is to drop off the check digit and
manipulate the addresses at assembly time. The security against errors
is less, but the programmer is usually paying intense attention to detail
during this effort.

To generate the equivalent of the high level:
BEGIN <a> WHILE REPEAT
We write in assembly:

86

BEGIN, DROP (the check digit 1, leaving addrB)
<a>
CS IF, (leaves addr! and digit 2)

ROT (bring addrB to bottom)
JMP, (to addrB of BEGIN,)
ENDIF, (complete false forward branch from IF,)

It is essential to write the assembly time stack on paper, and run
through the assembly steps, to be sure that the check digits are
dropped and re-inserted at the correct points and addresses are
correctly available.

NOTE: The ASSEMBLER glossary is included in the main glossary at
the end of this manual.

87

88

APPENDIX A FORTH-79 DIFFERENCES

64FORTH is a fig-FORTH implementation of the FORTH language. The
differences between 64FORTH and FORTH-79 will be covered here on a
page by page basis from STARTING FORTH to help you understand and
adjust to the differences.

Page in

STARTNG FORTH Comments

12,13 Change the definition of margin to:

: MARGIN CR 10 SPACES ;
The Commodore 64 has a 40 column screen. The above
change will improve the appearance of the demo.

60 The screens in 64FORTH are numbered 1 to 16.

68 Remember that lines in 64FORTH longer than 40
characters will wrap around. 64FORTH still has 64
character lines internally.

T S The editor S command is not included, due to
space restriction. Use the F (find) command. In
64FORTH, the S command is used for Spread a line,
which makes room at the current edit line for additional
text to be inserted.

91 0> This operator is not supported. Use O >. (leave a
space).

101 ?DUP Not supported. Use —DUP.

ABORT" Not supported. Use the following colon-
definition:
IF .* ERROR MESSAGE " SP! QUIT ENDIF

107 1—2-2*2/ NotsupportedUse:1 —-2—-2*2/
(Leave a space between the numbers and the
operands.)

110 I"and J are not supported. You can define them as
follows:

;' R> R> R SWAP >R SWAP >R ;
:J R> R> R> SWAP >R SWAP >R SWAP >R ;
143 PAGE Not supported. You can define it as follows:
DECIMAL : PAGE 147 EMIT;
U.R Not supported. A definition follows:
:U.RO SWAPD.R;

89

163

161

164

173

174

183

193

207

216

2* and 2/ not usable. Leave a space between the
number and the operator: 2 *and 2 /.

/LOOP Not needed in 64FORTH.

DOUBLE NUMBER DELIMITERS. 64FORTH only
recognizes the decimal point “." as a double number
delimiter.

Only D+ and D.R supported; for DNEGATE use DMINUS.

Only M* and M/ supplied, but use the definitions in the
fig-FORTH installation manual for these words.

VARIABLE The definition of VARIABLE used in
64FORTH is the fig-FORTH definition, which requires an
initial value to be on the stack before creating the
variable. For example,

12 VARIABLE DATE
This will create a variable with an initial value of 12.

2VARIABLE, 2CONSTANT, 2@, and 2! are not supplied
in 64FORTH.

CREATE The word functions differently in 64FORTH/
fig-FORTH than in this book Use the following to create
the definition of limits as shown in the book:

220 VARIABLE LIMITS 340,170,100, 190,

The rule of thumb is to use VARIABLE in place of
CREATE for definitions which do not have DOES> in
them. If the definition is of the form:

CREATE xxxx DOES> xxxx
then use: <BUILDS xxxx DOES> xxxx
This conforms to the fig-FORTH usage.

220 VARIABLE LIMITS 340,170,100, 190,

The rule of thumb is to use VARIABLE in place of
CREATE for definitions which do not have DOES> in
them. If the definition is of the form:

CREATE xxxx DOES> xxxx
then use: <BUILDS xxxx DOES> xxxx »
This conforms to the fig-FORTH usage.

FIND and EXECUTE 64FORTH uses the fig-FORTH
word —FIND in place of FIND. In fig-FORTH the word
execute must receive the code field address (CFA)

90

instead of the parameter field address (PFA). Change
the example on this page as follows:

' GREET CFA EXECUTE <RETURN>

FORTH responds with:

HELLO | SPEAK FORTH ok

217

VECTORED EXECUTION The techniques will work on
84FORTH with the modification that the addresses
obtained with ' (tick) are converted to code field
addresses (CFA) by the use of CFA As an example, line
6 would read:

"HELLO CFA'ALOHA!

SAY The definition of SAY in 64FORTH is:

: SAY [COMPILE] ' CFA'ALOHA!;

219

There are two changes here. The word ' (tick) is used,
and because in fig-FORTH it is immediate, it must be
compiled by the [COMPILE] word. The second change
is the use of CFA to prepare the address for EXECUTE.

NUMBER This definition is vectored in 64FORTH. To
revector NUMBER as shown on this page, in 64FORTH
you must say:

DECIMAL ' (number) 1/O 10 + !

220

230
232
233, 237

235
239
240

243

64FORTH uses a table, where each entry in the table
does not have to have a header. Again due to space
restrictions.

("] This word is not supported in 64FORTH.
Functionally it is the same as ' (tick).

NAME LENGTHS 64FORTH supports full names up
to 31 characters in length.

EXIT In 64FORTH, use ;S.
RELOAD Not needed; all code is in ROM.
H In 64FORTH use DP.

'S In 64FORTH use SP@.
OPERATOR Not needed in 64FORTH.

>IN Use IN in 64FORTH.
OFFSET Not needed in the cassette version.

ASSEMBLER A full 6502 Macro Assembler built into
64FORTH.

91

245 LOCATE Not supported in 64FORTH.

255-257 UPDATE, FLUSH, SAVE-BUFFERS, EMPTY-BUFFERS,
BUFFER These words not used with cassette.
259 LABEL In 84FORTH, change the definition to:

: LABEL 8 *" “LABEL" 3 + + 8 TYPE SPACE;

64FORTH does not support ['] and the word ' serves the
same function in a definition.

261 >TYPE Not needed in 64FORTH. Use TYPE.

266 MOVE,<CMOVE Not in 64FORTH.

272 H Use DP.

281 —TEXT In 64FORTH, use (MATCH).

291 VARIABLE, CREATE To create the STARTING FORTH

type of definition for VARIABLE, use:
: VARIABLE <BUILDS 2 ALLOT DOES> ;

To create the 84FORTH/fig-FORTH definition for
VARIABLE, define it as follows:

: VARIABLE <BUILDS , DOES> ;

The fig-FORTH word CREATE is use only for creating
CODE word headers.

292 DEFINING WORDS The definition of a DEFINING
WORD in the book must be changed to:

: DEFINING-WORD <BUILDS (compile time action)
DOES> (run-time action) ;

The example for CONSTANT is then:
: CONSTANT <BUILDS , DOES> @ ;

297 ARRAY The definition of ARRAY must be
changed to:

: ARRAY <BUILDS OVER, * ALLOT
DOES> DUP @ ROT * + + 2+ ;

313 DOES> For most purposes, B4FORTH is the same as
FORTH-79. For more advanced programmers, see the
document FORTH-79 STANDARD CONVERSION from
the FORTH INTEREST GROUP.

92

332 JOB, 1FIELD, 2FIELD These must change to account
for the different CREATE. Use:

20 VARIABLE JOB 24,
00 VARIABLE 1FIELD 30,
30 VARIABLE 2FIELD 12,

339 SIMPLE FILES In screen 240 change the definitions
as follows:

00 VARIABLE SURNAME 16,
16 VARIABLE GIVEN 12,
28 VARIABLE JOB 24,
52 VARIABLE PHONE 12,

FREE Change the definition of FREE as follows:

: FREE 1 MAXRECS 0
DO | #RECORD ! RECORD C@ 33 <
IF 0= LEAVE ENDIF

LOOP
IF.“ FILE FULL " QUIT ENDIF;
339 ' Prefix all occurences of ' with the word [COMPILE],
for exampie:
: CHANGE [COMPILE] ' PUT;
347 DENSITY, THETA, STRING Prefix all of the words

when defined with a zero (0).

93

94

APPENDIX B ERROR MESSAGES

Here is a list of error numbers and messages used by 64FORTH:

ERROR #
DEC HEX
0 0
1 1
2 2
3 3
8 8
17 11
18 12
19 13
20 14
21 15
22 16
23 17
24 18

ERROR MESSAGE

64FORTH doesn't know this word.

THE DATA STACK IS ALREADY EMPTY,
OUT OF USER MEMORY.

HAS BAD ADDRESSING MODE

SCREEN BLOCK RANGE ERROR. You asked for an
invalid screen number.

USE WHILE COMPILING ONLY. This word cannot be
used while executing.

USE DURING EXECUTION ONLY. This word cannot be
used while compiling.

CONDITIONALS NOT PAIRED. Match your
IF — ELSE — ENDIFs, etc.

THIS DEFINITION IS NOT FINISHED. You started a
conditional without completing it.
IE: BEGIN missing UNTIL.

THIS WORD IN A PROTECTED DICTIONARY. You can't
forget anything below FENCE.

USE ONLY WHEN LOADING.
EDIT POINTER IS OFF CURRENT EDIT SCREEN.

DECLARE YOUR VOCABULARY. Specify the
VOCABULARY in which you wish to perform the
operation, that is FORTH, EDITOR, ASSEMBLER, or
SYSTEM.

The KERNEL has several I/0 errors that can occur, and these are printed
out as follows.

I/0O ERROR #5

The above example indicates an attempt to talk to a device which is not

in the system, such as a disk or printer. The following is a full list of other
errors that can be printed by the KERNEL. These message numbers are
always printed in DECIMAL.

95

170 ERROR # COMMENT

ROUTINE TERMINATED BY STOP KEY.
TOO MANY OPEN FILES.

FILE ALREADY OPEN.

FILE NOT OPEN.

FILE NOT FOUND.

DEVICE NOT PRESENT.

FILE IS NOT AN INPUT FILE.
FILE IS NOT AN OUTPUT FILE.
FILE NAME IS MISSING.
ILLEGAL DEVICE NUMBER.

OCONIOAWN=-O

WHAT DO | DO WHEN IT CRASHES?

64FORTH provides a much more powerful programming environment
than BASIC. Unfortunately it also places a higher level of responsibility on
you, the programmer, than BASIC. There are many ways to cause FORTH
to GO AWAY! When this happens, there are several ways to recover. If the
crash is relatively minor, you can press RUN/STOP RESTORE, keys
together and FORTH will sign back on as if nothing has happened. There
are however, some cases when this will not work. If this happens, turn off
the power, and then turn it back on after a few seconds, and 64FORTH

.. _will restart. It is advisable to save any large program to disk or cassette
tape prior to attempting to execute it. This may save you a lot of time later.

96

APPENDIX C TERM GLOSSARY

address

binary
block

branching

buffer
cfa

compile
constant

decimal
dictionary

double
length
numbers

execute

fetch
flag

hexadecimal

input
stream

literal

nesting

octal
pad

a number which identifies a location in a computer
memory. Addresses usually expressed in hexadecimal.

number base 2.

division of memory containing up to 1024 characters of
source text.

interrupting the normal flow of execution, depending on
conditions in effect at the time of execution.

temporary storage area for data.

code field address. The address of a dictionary entry's
code pointer field.

generate a FORTH dictionary entry in computer
memory from your source text. See execute.

a value that has a name. Value is stored in memory and
usually does not change.

number base 10.

list of words and definitions, with both pre-defined
(system) words and user-defined words.

integers within the range of —2 billion to +2 billion.

to perform the operations specified in a definition of a
word once compiled.

to retrieve a value from a given memory location.

value stored in memory which serves as a signal as to
whether a condition is true or false.

number base 16.

the stream of data or text to be read by the interpreter.
a number that appears inside a definition.

placing a branching structure within an outer branching
structure.

number base 8.
region of memory used as a “scratch pad” area to hold
text for immediate processing.

97

parameter
field

parameter
stack

pfa
pointer

post-fix
notation

return
stack

run-time
code

single
length
numbers

source
text

stack

two's
complement

unsigned
number

user
variable

an area of the dictionary entry containing the contents
of the definition. For example, for a colon definition, the
list of addresses of words to be executed in turn when
the definition is executed.

region of memory which serves a common ground
between various operations to pass arguments
(numbers, flags) from one operation to another.

parameter field address. The address of the first cell in
a dictionary entry's parameter field.

a location in memory where a number can be stored as
a reference to something else,

method of writing mathematical formulas with the
operands first and the operator last. e.g. 3 2 + for
3 + 2. Also known as reverse Polish notation.

region of memory distinct from the parameter stack
used to hold return addresses.

a routine, compiled in memory which specifies what
happens when a member of a given class of words is
executed.

integers within the range of —32768 to +32767.

written out from a definition or definitions as opposed
to the compiled form entered into the dictionary.

a region in memory controlled by storing or removing
manipulated data in a last in first out (LIFO) operation.
See parameter stack and return stack.

for any number, the number of equal absolute value but
opposite sign. For example, the two's complement of 5
is —5.

a number assumed to be positive.

one of a set of variables provided by 64FORTH, whose
values are unique for each task.

98

variable

vectored
execution

virtual
memory

word

a location in memory which has a name and in which
values are frequently stored and fetched.

the method of specifying code to be executed by
providing not the address of the code itself but the
address of a location which contains the address of the
code. This location is often called the “vector.” The
vector can be reset to point to some other piece of
code.

the treatment of mass storage (such as the disk) as

though it were resident memory.
a defined dictionary entry.

998

100

64FORTH GLOSSARY

This glossary contains all the word definitions used in 64FORTH
including the FORTH, SYSTEM, EDITOR, and ASSEMBLER vocabularies.
The definitions are listed in order of their ASCII sort.

Each word is followed by its vocabulary designation and the format, or
stack picture. The three dashes (- - =) indicate the WORD, or execution
point. Any values left on the stack or “returned” are listed to the right of
the stack picture.

The symbols include:

a, al, a2... 16-bit address

n,n1, n2.. 16-bit signed number

u,ud, u2... 16-bit unsigned number

d, dT,d2... 32-bit signed double length number
b, b1, b2... 8-bit byte value

c.c1,.¢62.., 7-bit ASCII character

042, boolean flag

tf true flag - non-zero

ff false flag - zero

bttt 12, ASCII text string

<text> a string of text follows

-—— symbolic for the current word

/ separates stack values (used only in stack picture;

do not use in actual definition)

Word Vocabulary / Format / Definition

| FORTH (n1/a1--=)
Stores the value of n (16 bits) at address a1. Pronounced
llstore.ll

ICSP FORTH

Saves the stack position in CSP. Used as a part of the
compiler security.

ICUR EDITOR(n1 =--)
Moves edit cursor to character position n1 in current edit
screen if n1 is in the range O to B/BUF-1. ICUR will only
change the current cursor position if n1 is within the valid
range. Causes the current edit window around the cursor
to be viewed in the upper 16 lines of the display.

FORTH (d1 ---d2)
Generates from a double number d1, the next ASCI|
character placed in an output string. Result d2 is the
quotient after division by BASE, and is maintained for
further processing. Used between <# and #>. See #S.

101

#LAG

#LEAD

#LOCATE

#S

#>

'CONT

'STEP

ASSEMBLER (---)
Specify ‘immediate’ addressing mode for the next op-code
generated.

EDITOR (-==--al1/n1)

An editor primitive, which returns the address of the cursor
as a1, and the number of characters remaining on the line
following the cursor as n1.

EDITOR (=--ai1/n1)

An editor primitive, which returns the address of the cursor
line as a1, and the number of characters before the

cursor on the line as n1.

EDITOR (=--n1/n2)
An editor primitive which returns the cursor line as n1 and
the character position on the line as n2.

FORTH (---d1/d2)

Generates ASCII text in the text output buffer, by the use
of #, until a zero double number n2 results. Used between
<# and #>.

FORTH (d ---a count)

Terminates numeric output conversion by dropping d,
leaving the text address and character count suitable
for TYPE.

FORTH (-~-a1)

Used in the form: ' nnnn

Leaves the parameter field address of dictionary word
nnnn. As a compiler directive, executes in a colon-definition
to compile the address as a literal. If the word is not found
after a search of CONTEXT and CURRENT, an appropriate
error message is given. Pronounced “tick.”

SYSTEM (---a1)

Returns the address of the execution variable used to
control the CONT action. The word CONT gets vectored to
an error message if you attempt to TRACE a code word.
Normally, 'CONT contains the CFA of (CONT).

FORTH (---2a1)

Returns the address of the execution variable used to
control the STEP action. The word STEP gets vectored

to an error message if you attempt to TRACE a code word.
Normally, 'STEP contains the CFA of (STEP).

FORTH

Used in the form: { cccc)

Encloses explanatory comments which will be ignored by
the computer. Delimited by a right parenthesis on the

102

(+LOOP)

(")

(;CODE)

(CONT)

(DO)

(FCLOSE)

(FILE)

(FIND)

same line. May occur during execution or in a colon-
definition. A blank after the leading parenthesis is
required. Pronounced “left paren.”

FORTH(n=---=)

The run-time procedure compiled by +LOOP, which
increments the loop index by n and tests for loop comple-
tion. See +LOOP.

FORTH

The run-time procedure, compiled by .” which transmits the
following on-line text to the screen or other output device.
See .

FORTH

The run-time procedure, compiled by ;CODE that rewrites
the code field of the most recently defined word to point to
the following machine code sequence. See ;CODE.

SYSTEM (---)

Performs a continuous emulation through the currently
selected TRACE word. This is the low level operation to
which CONT gets vectored when a high level FORTH word
is TRACED. This word is not normally used by the user at
the keyboard.

FORTH
The run-time procedure compiled by DO which moves the
loop control parameters to the return stack. See DO.

EDITOR (=--)

This is a low level editor primitive, which searches for

the next occurence of the text in the PADF buffer. Not
normally used by the user, but could be useful if the editor
was being expanded with additional commands.

FORTH (=--)

This is a low level word used by FCLOSE, which closes the
currently open disk file without emptying the memory
buffer contents. Useful mostly for transferring screens
from cassette to disk, and when copying screens from one
file to another with the utility FCOPY.

FORTH (--~-1)

This is a low level word used by FILE, which opens the file
specified by text 't'. (FILE) does not empty the screens out
of memory before opening the new file. This word is used
mostly when copying screens from cassette to disk, or
when copying screens from one disk file to another.

FORTH (a1 a2 ---pfabtf) (ok)
(ata2---ff) (bad)

103

U]

(LINE)

(LOOP)

(MATCH)

(NUMBER)

(R)

(STEP)

(AFILE)

Searches the dictionary starting at the name field address
a2, matching to the text at address a1. Returns the para-
meter field address, length in bytes of name field, and
boolean true for a good match. If no match is found, only
a boolean false is left.

EDITOR (---)

A low level editor primitive, which inserts the character
string held in PADI, into the next text screen at the current
location specified by the contents of R#. Potentially useful
for future expansion of the editor.

FORTH (n1 n2---a count)

Converts the line number n1 and the screen n2 to the
disk buffers address containing the data. A count of 64
indicates the full line text length.

FORTH

The run-time procedure compiled by LOOP which
increments the loop index and tests for loop completion.
See LOOP.

FORTH (at1/a2/n1 ---11)

An assembly language MATCH primitive. Given the
addresses of strings of characters (a1 and a2), and a
match length of characters (n1), returns boolean f1 as true
if the strings are the same character sequence. Otherwise,
returns a boolean false.

FORTH (d1 a1 ---d2a2)

Converts the ASCII text beginning at a1+1 using the
current numeric BASE. The new value is accumulated
into double number d1, being left as d2. a2 is the address
of the first unconvertible digit. Used by NUMBER.

EDITOR(---)

A lower level editor word, which replaces the contents of
the current cursor line with the current contents of the
insert buffer PADI.

SYSTEM (=---)

Performs a single step through the currently selected
TRACE word. This is the function to which STEP is
vectored, when a high level word is being traced. Not
normally used by the user,

FORTH (a1/n1 --=)

Similar to (FILE), but requires an address a1 of the text
string for the file to open, and n1 the length of the name.
The file is opened, but memory is not cleared before
opening the file. See also '; FILE (FILE) FILE.

104

.LINE

74

ASSEMBLER (---)
Specify ‘indirect’ addressing for the next op-code
generated. Used only on the JMP instructions.

ASSEMBLER (---)
Specify ‘indirect’ indexed Y' addressing mode for the next
op-code generated.

FORTH(n---)
Stores n into the next available dictionary memory cell,
advancing the dictionary pointer. Pronounced “comma.”

ASSEMBLER (---)
Specify ‘indexed’ X addressing mode for the next op-code
generated.

ASSEMBLER (--~-)
Specify ‘indexed Y' addressing mode for the next op-code
generated.

FORTH(n=---)

Prints a number from a signed 16-bit two's complement
value, converted according to the numeric BASE. Followed
by one blank space. Pronounced “dot.” This is a vectored word.

FORTH

Used in the form: ."” ccce”

Compiles an in-line string cccc {delimited by the trailing
quotation mark) with an execution procedure to send the
text to the selected output device. If executed outside a
definition, ."” will immediately print the text until the closing
". The maximum number of characters is 64. See (.")
Pronounced “dot quote.”

FORTH (n1/n2---)

Prints on the terminal device, a line of text from the disk or
cassette by its line and screen numbers. Trailing blanks
are suppressed.

FORTH (n1 n2---)
Prints the number n1 right aligned in a field whose width is
n2. No following blank is printed.

FORTH (- --)
Prints the current contents of the data stack on the screen
in the current base, without destroying its contents.

FORTH (n1 n2---prod)
Leaves the signed product of two signed numbers on the
stack. Use . (dot) to print the result.

FORTH(n1 n2n3---n4)
Leaves the ratio n4=n1*n2/n3 where all are assigned

105

*/MOD

+!

+LOOP

+ORIGIN

+SCR

numbers. Retention of an Intermediate 31-bit product
permits greater accuracy than would be available with the
sequence: n1 n2 * n3/

FORTH(n1 n2n3---n4n5)

Leaves the quotient n5 and remainder n4 of the operation
n1*n2/n3 on the stack. A 31-bit intermediate product is
used as for */.

FORTH(n1 n2-~-sum)
Leaves the sum of n1 + n2 on the stack.

FORTH(na---)
Adds n to the value at the address, a. Pronounced
“plus-store.”

FORTH(n1 n2---n3)
Applies the sign of n2 to n1, which Is left as n3.

FORTH (n1 ===) (run-time)
(an2---)(compile-time)

Used in a colon definition in the form:

DO...n1+LOOP,
At run-time +LOOP selectively controls branching back
to the corresponding DO based on n1, the loop index and
the loop limit. The signed increment n1 is added to the
index and the total compared to the limit. The branch back
to DO occurs until the new index is equal to or greater
than the limit (n1=0), or until the new index is equal to or
less than the limit (n1=0). Upon exiting the loop, the
parameters are discarded and the execution continues
ahead.

FORTH(n---a)

Leaves the memory address relative to n to the origin
parameter area. N is the minimum address unit, either byte
or word. This definition is used to have access to or modify
the boot-up parameters at the origin area.

EDITOR(nt1 -=-=)

Adds the signed value n1 to the current editor screen
number, and clips the result to within the currently
specified valid screen range, 1 to BMAX.

FORTH (n1 n2 — -~ diff)

Leaves the difference of n1 minus n2 on the stack.
FORTH

Continues interpretation with the next disk screen.
Pronounced “next-screen.”

106

-DUP

—FIND

-~MOVE

-SPOBJ

~TRAILING

/CMD

/MOD

0.0

0,1,2,3

FORTH (n1 —===n1) (if zero)

(n1===n1n1)(non-zero)
Reproduces n1 only if it is non-zero. Usually this is used to
copy a value just before IF, to eliminate the need for an
ELSE part to drop it.

FORTH (-~~~ pfa b tf) (found)

(==~—ff) (not found)
Accepts the next text word (delimited by blanks) in the
input stream to HERE, and searches the CONTEXT and
then the CURRENT vocabularies for a matching entry. If
found, the dictionary entry’s parameter field address, its
length in bytes, and a boolean true is left. Otherwise, only
a boolean false is left. This is a vectored word.

EDITOR (a1/n1 --=)
Moves c/l characters of text from address a1 to line n1 of
current edit screen. The screen is updated.

SYSTEM (n1 ---n1/al)

Converts the sprite number n1 to the address a1 of the
data definition area for that sprite. Also leaves a copy of
the sprite number on the stack as n1. This is a low level
sprite manipulation word, normally used only by the
system.

FORTH(an1---an2)

Suppresses the output of trailing blanks, from a text string
that starts at address a, by adjusting the character count
ni. Le., the characters at +n1 to a +n2 are blanks.

FORTH (n1 n2 ---quot)
Leaves the signed quotient of n1/n2.

FORTH (n1 -=-1)

Sends the text string ‘t' to channel n1 on the serial bus.
This is a lower level word than CMD, which always sends a
command string to the disk drive.

FORTH (n1 n2 -=-rem quot)
Leaves the remainder and signed quotient of n1/n2. The
remainder has the sign of the dividend.

SYSTEM (---d1)
A space saving constant, which returns the double length
(32-bit) value zero, used in several system calls.

FORTH(~-=n)

These small numbers are used so often that it is
recommended that you define them by name in the
dictionary as constants.

107

0<

0<

OBRANCH

1+

2+

2DROP

2DUP

2SWAP

3DROP

FORTH(n=---f)
Leaves a true flag if the number is less than zero
(negative); otherwise leaves a false flag.

ASSEMBLER (---n1) (assembling)

Specify that the immediately following conditional will
branch based on the processor status bit being negative
(N=1), i.e., less than zero. The flag n1 is left at assembly
time; there is no run-time effect on the stack.

FORTH (n=---1)
Leaves a true flag if the number is equal to zero; otherwise
leaves a false flag.

ASSEMBLER (=--n1) (assembling)

Specify that the immediately following conditional will
branch based on the processor status bit being equal to
zero (Z=1). The flag n1 is left at assembly time; there is no
run-time effect on the stack.

FORTH (f~-=--)

The run-time procedure to branch conditionally. If f is false
(zero), the following in-line parameter is added to the
interpretive pointer to branch ahead or back. Compiled by
IF, UNTIL, and WHILE.

FORTH (n1-=--n2)
Increments n1 by 1.

FORTH (n1 ==-n2)
Leaves n1 incremented by 2.

FORTH (n1/n2---)or(dl ---)

Drops the top two single length elements (16-bits) from the
data stack, or one double length (32-bits) element from the
stack. Pronounced “two drop.”

FORTH { n1/n2 ==-n1/n2/n1/n2)
Duplicates the top two single length elements on the data
stack. Pronounced “two dup.”

FORTH (n1/n2/n3/n4 —--n3/n4/n1/n2)
Exchanges the order of the top two pairs of elements on
the data stack.

FORTH (n1/n2/n3---)
A code-saving word, which drops three arguments from the
data stack. Used by several system call words.

FORTH
Used in the form called a colon-definition
i oo o] o SN
Creates a dictionary entry defining cccc as equivalent to
the following sequence of FORTH word definitions *..." until

108

;CODE

<#

<BUILDS

the next ', or 'CODE’. The compiling process is done by
the text interpreter as long as STATE is non-zero. Other
details are that the CONTEXT vocabulary is set to the
CURRENT vocabulary and that words with the precedence
bit set (P) are executed rather than being compiled. The :
must be followed by a space, and the ; must be preceeded
by a space.

FORTH

Terminates a colon-definition and stops further compilation.
Compiles the run-time ;S. The ; must be preceeded by a
space in a colon-definition.

FORTH (-~--)
Used to conclude a colon-definition in the form:

: (name)... ;CODE (assembly code) END-CODE.
Stops compilation and terminates a new defining word
(name). Sets the CONTEXT vocabulary to ASSEMBLER.
assembling to machine code the following mnemonics. An
existing defining word must exist in (name) prior to ;CODE.
When (name) later executes in the form: (name) (namex),
the definition (namex) will be created with its execution
procedure given by the machine code following (name).
That is, when (namex) is executed, the address interpreter
jumps to the code following ;CODE in (name).

FORTH

Stops interpretation of a screen. ;S is also the run-time
word compiled at the end of a colon-definition which
returns execution to the calling procedure.

FORTH(n1 n2---f)
Leaves a true flag if n1 is less than n2; otherwise leaves a
false flag.

FORTH

Begins the number conversion for formatting using the
words: <# # #S #>.

The conversion is done on a double number producing text
at PAD.

FORTH
Used within a colon-definition:

: ccecc<BUILDS ...

DOES>.. ;

Each time cccc is executed, <BUILDS defines a new word
with a high level execution procedure. Executing ¢cccc in
the form:

ccce nnnn
uses <BUILDS to create a dictionary entry for nnnn. When
nnnn is later executed, it has the address of its parameter

109

>BUF

>R

>RAM

area on the stack and executes the words after DOES> in
ccce. <BUILDS and DOES> allow run-time procedures to
be written in high level rather than in assembler code (as
required by ;CODE).

FORTH (---a1/n1)

A low level primitive compiled in-line when a string is built
in-line in a colon-definition. This word returns the address
of the string and the count of its length on the data stack.
Not used from the keyboard.

FORTH(n1 n2---f)
Leaves a true flag if n1=n2; otherwise leaves a false flag.

FORTH (n1 n2---f)
Leaves a true flag if n1 is greater than n2; otherwise
leaves a false flag.

ASSEMBLER (==-n1) (assembling)

Specify that the immediately following conditional will
branch based on the processor status bit carry being set
(see =1). The flag n1 is left at assembly time. There is no
run-time effect on the stack.

SYSTEM (at1/n1 ---)

This is one of the buffer deblocking primitives. Its function
is to send the 1k block of data at address a1, to the
screen buffer specified by n1, in upper memory. A modulus
operation is performed on the values n1, to determine into
which buffer the data is to be placed. There are currently
16 virtual buffers in high memory, and a modulus 16
operations is performed to determine the buffer location
for use. If the buffer already contains data from a different
block (as in block 1 and block 17, which both modulus to
screen buffer 1), then the contents of the old screen 1 in
this case must be written out to disk before the new
screen, 17, can be moved to the buffer. This operation is
done by GBLOCK, and must be performed before >BUF is
executed. See also BUF> GBLOCK.

FORTH(n---)

Removes a number from the computation stack and places
as the most accessible on the return stack. Use should be
balanced with R> in the same definition.

SYSTEM (--=~-)

This is a system primitive, which uncovers the ram under

the KERNEL and I/O from $D000 to $FFFF. Virtual buffer
operations can then be performed to this area. This word

is only used by the system, and MUST NOT be used from
the keyboard, since NO I/O can be performed while the

110

?2COMP

?CSP

?D

?DERR

?7ERROR

?EXEC

?LOADING

?STACK

PTERMINAL

ABORT

KERNEL is switched out. The logical reverse of this word
is RAM>, which restores the KERNEL and 1/O to the
memory map.

FORTH(a---)
Prints the value contained at the address in free format
according to the current base.

FORTH
Issues an error message if not compiling.

FORTH
Issues an error message if stack position differs from value

saved in CSP.

FORTH (-~--)

This is a short word used to determine status of the disk,
and to clear any error condition that might occur while disk
operations are performed.

FORTH(---)

This word is very similar to ?D, but only prints a message
to the terminal if there was a disk error. If no error has
occurred, then operation continues after 7DERR. if an
error condition was detected, execution is aborted.

FORTH(fn---)
Issues an error message number, if the boolean flag is

true.

FORTH

Issues an error message if not executing.

FORTH

Issues an error message if not loading.

FORTH

Issues an error message if the stack is out of bounds.
FORTH (==--n1)

A modified version of the fig-FORTH word of the same

name. If a key is pressed, the value of the key pressed
n1is returned. If no key was pressed, zero is returned.

This is a vectored word.

FORTH(a---n)
Leaves the 16-bit contents of the address, a. Pronounced

“fetch.”

FORTH

Clears the stacks and enters the execution state. Returns
control to the operator's terminal, prinling a message
appropriate to the installation.

111

ABS

ACPTR

AGAIN

ALLOT

AND

ANDMASK

ASCII

ASSEMBLER

ATTACK®@

ATTACK!

FORTH(n=-=-=u)
Leaves the absolute value of n as u.

SYSTEM (---n1)
A KERNEL system call, which accepts one character from
serial bus.

FORTH (a n —=-) (compiling)
Used in a colon-definition in the form:

BEGIN ... AGAIN
At run-time, AGAIN forces execution to return to the
corresponding BEGIN. There is no effect on the stack.
Execution can be terminated by pressing the RUN/STOP
and RESTORE keys simultaneously.

FORTH(n=--=)

Adds the signed number to the dictionary pointer DP. May
be used to reserve dictionary space or re-origin memory. N
is with regard to computer address type (byte or word).

FORTH(n1 n2---n3)
Leaves the bitwise logical AND of n1 and n2 as n3.

SYSTEM (n1/a1 ---)

This is a SPRITE system primitive, which takes a bit
number n1 in the range 0 to 7, and clears that bit in the
byte contained at address a1. Example “4 500 ANDMASK”
resets sprite register bit 4 and the value in address 500
with 11101111 binary, and stores the value back in location
500. This word is useful for manipulating the various sprite
register bits.

FORTH (---tn1)
Accepts the word following ASCII, and returns the ASCII
value of the first character of the word on the data stack.

FORTH
Makes ASSEMBLER the context vocabulary. It will be
searched first when the input stream is interpreted.

FORTH (=--n1)
Returns the attack register value for the currently selected
voice, in the range from O to 15. See S!

FORTH (n1=---)
Sets the attack register value for the currently selected
voice, in the range 0 to 15. See S!

EDITOR (=--)
An editor operation, which causes the edit to be moved to
the previous screen. Pronounced “back.”

112

B/BUF

B/SCR

BACK

BASE

BDG

BEGIN

BEGIN,

BGROUND

BL

FORTH (---n1)
A constant which returns the number of bytes per FORTH
buffer. A value of 1024 in this system.

FORTH (---n1)
A constant which returns the number of blocks per FORTH
buffer. A value of 1 (one) in this system.

FORTH (a---)

Calculates the backward branch offset from HERE to
address 2, and compiles into the next available dictionary
memory address.

FORTH (---a)
A user variable containing the current number base used
for input and output conversion.

SYSTEM (n1 ---)

This is another system sprite primitive. It draws a
horizontal line on the screen as a line specified by n1, 26
characters long, to make the top and bottom of the
borders of the sprite editor. This is not a user word.

FORTH (==--a n) (compiling)
Occurs in a colon-definition form:

BEGIN...UNTIL

BEGIN...AGAIN

BEGIN..WHILE...REPEAT
At run-time, BEGIN marks the start of a sequence that may
be executed repeatedly. It serves as a return point from
the corresponding UNTIL, a return to BEGIN will occur if
the top of the stack is false; for AGAIN and REPEAT a
return to BEGIN always occurs. At compile-time BEGIN
leaves its return address and n for compiler error
checking.

ASSEMBLER (---a1/n1) (assembling)
(—=—-) (run-time)
Occurs in a code definition in the form:
BEGIN,...n2 UNTIL,
At run-time, BEGIN, leaves the dictionary pointer address
a1l and the value n1—1 for later testing of conditional
pairing by UNTIL,.

FORTH (n1---)
Selects background color for the screen, using the
standard values for Commodore colors in the range 0 to 15.

FORTH(---c¢)
A constant that leaves the ASCII value for “blank."”

113

BLANKS

BLK

BLKREAD

BLKTBL

BLKWRITE

BLOCK

FORTH (a count——-)
Fills an area of memory beginning at address a with
blanks.

FORTH(---a)

A user variable containing the block number being
interpreted. If zero, input is being taken from the terminal
input buffer.

SYSTEM (al1/n1 ---)

The disk storage primitive which reads block n1 into address
a1 from the currently open RELATIVE file. A disk error will be
reported when reading or writing the first time to a newly
created screen in a disk file. This error should be ignored,
as it is a pecularity of the Commodore Disk Operating
System.

SYSTEM (---a1)
This is a system array variable, which points to the

beginning of the table indicating the screens that are
currently in the memory buffers. This array is 32 decimal
bytes long.

SYSTEM (at1/n1 ---)

This is a disk block primitive, which writes block n1 to

disk from address a1, to the currently open RELATIVE disk
file. A disk error will be reported the first time a write is
performed to a previously non-existent screen. However,
this error should be ignored if it is a non-existent record
error.

FORTH(n1~==al)

This word is a FORTH mass storage primitive, which
returns the address a1 of screen n1. If a disk file is open,
the screen will be read into memory if required, before
returning the address. The range of screens accessible is
limited by the range 1 through the value specified in
variable BMAX. BMAX is initialized to 16. As a result, no
disk file can be larger than 16k, unless you change the
value in BMAX to some number greater than 16. Only 16
continuous screens can be held in memory at one time, so
additional time overhead will occur if you frequently
access screens which are exactly 16 apart, that is, screens
1 and 17, or 2 and 18, etc. Once a screen is read in from
mass storage, it remains in memory until it is over-written
by a screen 16 or higher or 16 lower than it, or en EMPTY-
BUFFERS is performed. When no disk file is open, the 16
screen buffers perform virtual mass storage operations,
giving the illusion of a very fast disk with 16k of storage.

114

BMAX

BMOV

BORDER

BOT

BRANCH

BUF#

BUF>

BUFADD

FORTH (---a1)

The FORTH user variable which specifies the highest
screen that will be accessible with BLOCK operations. This
variable is initialized to 16, equal to the number of screen
buffers available.

EDITOR (a1l ---)

An editor primitive, (that moves the contents of PAD for
C/L characters to address a1) if PAD contains text other
than a null in the first character position (pad+1),
otherwise, nothing is done.

FORTH(n1 ---)

Selects the screen BORDER color. N1 is a value between
0 and 15, for the colors as shown on page 139 of the
Commodore 64 Users Guide.

ASSEMBLER (-=--n1)
Used during code assembly in the form:

BOT LDA, or BOT X) STA,
Addresses the bottom of the data stack (containing the low
byte) by selecting the X mode and leaving n1=0, at
assembly time, This value of n1 may be modified to
another byte offset into the data stack. Must be followed
by a multi-mode op-code mnemonic.

FORTH

The run-time procedure to unconditionally branch. An
in-line offset is added to the interpretive pointer to IP to
branch ahead or back. BRANCH is compiled by ELSE,
AGAIN, REPEAT.

SYSTEM (---al)
A system variable not currently used.

SYSTEM (a1/nt ---)

Moves the data for screen n1 from the virtual screen buffer
to address a1, used by GBLOCK to perform SCREEN
DEBLOCKING.

SYSTEM (n1~--2a1)

This word calculates the address of the buffer which
should hold the screen specified as n1, and returns the
buffer address as al.

EDITOR(n1 -=-)

An editor primitive, used to move the cursor a RELATIVE
amount within the current edit screen. The signed value nt
is added to the current cursor location, and if the value is
within the current screen, the cursor location is updated to
the new value. Otherwise the cursor location is
unchanged.

115

ca@

C/L

0]

CASSETTE

CFA

CHRIN

CHKIN

CHKOUT

ClouT

FORTH (a---b)

Leaves the 8-bit contents of memory address. On word
addressing computers, further specification is needed
regarding byte addressing.

FORTH
Characters per line.

FORTH(ba---))

Stores 8 bits at address specified. On word addressing
computers, further specification is necessary regarding
byte addressing.

FORTH(b---)

Stores 8 bits of b into the next available dictionary byte,
advancing the dictionary pointer. This is only available on
byte addressing computers.

SYSTEM (---)

Selects the cassette for all further mass storage
operations. This is the default mode, so it is not normally
necessary to switch to CASSETTE. When a disk file has
been opened and then closed, operation is automatically
switched back to cassette.

FORTH (pfa---cfa)
Converts the parameter field address of a definition to its
code field address.

SYSTEM (---n1)

A KERNEL system call, which obtains a line of characters
from the currently open character input channel, normally
the keyboard. This routine waits for a line of input to be
entered terminated by a carriage return; after a line of text
has been entered, each call to CHRIN will return one
character of the line entered. Note: CHRIN allows the use
of the Commodore screen editor.

FORTH (n1 ---)

A KERNEL system call, which redirects character input to
the channel specified as n1. The channel n1 must already
be open.

SYSTEM (n1 -==--)

A KERNEL system call, which redirects character output to
the channel specified as n1. The channel n1 must already
be opened.

SYSTEM (n1 -=--)
A KERNEL system call, which sends a character n1 out of
the serial bus.

116

CLALL

CLOSE

CMD

CMOVE

CND

CODE

COoLD

COLOR

SYSTEM (---)

A SYSTEM primitive, used to clear all channels, in the
Commodore KERNEL to their default values. See the
Commodore Programmers Reference Manual.

SYSTEM (n1 —=--)
A KERNEL system call, which closes the channel n1
specified to the Commodore operating system.

FORTH(---1)

A utility word, used to send command lines to the disk. The
sequence " CMD [(return) " would cause the disk to be
initialized. This word can be used in a definition, or on a
line with multiple commands. But when this is done, the
command string must be terminated with an up arrow

“ 4 ™ as shown in the following example: : INIT CMD / ;
This definition initializes the current disk drive, and must
not be used while a disk file is open.

FORTH (from to count ---)

Moves the specified quantity of bytes beginning at
address from to address to. The contents of address from
is moved first proceeding toward high memory. Further
specification is necessary on word processing computers.

SYSTEM (a1 ---a2)
This is an emulator primitive, which converts the address
of a selected group of emulated words from their real code
field address of the emulation word that is their equivalent.
Not a user word.
FORTH (---1)
A defining word used in the form:

CODE (name) ...END-CODE
To create a dictionary entry for (name) in the CURRENT
vocabulary. Name’s code field contains the address of the
parameter field. When (name) is later executed, the
machine code in this parameter field will execute. The
CONTEXT vocabulary is made ASSEMBLER, to make
available op-code mnemonics.

FORTH (---)

The COLD start procedure adjusts the dictionary pointer to
the minimum standard and restarts via ABORT. May be
called from the terminal to remove application programs
and restart, See EMPTY.

FORTH (n1/n2 ---)

Sets the color n1 for sprite number n2. The color numbers
are the same as shown on page 139 of the Commodore 64
Users Manual.

117

COMBUF

COMPILE

CONSTANT

CONT

CONTEXT

COPY

COUNT

CPU

SYSTEM (---a1)

This is the buffer used to send and receive screen data to
and from the disk drive. This buffer is 1024 bytes long, and
is in NON-PAGED memory.

FORTH (==--)

When the word containing COMPILE executes the
execution address of the word following COMPILE is
copied (compiled) into the dictionary. This allows specific
compilation situations to be handled in addition to simply
compiling an execution address (which the interpreter has
already done).

FORTH(n=--)
A defining word used in the form:

n CONSTANT cccec
to create word cccc, with its parameter field containing n.
When cccc is later executed, it will push the value of n to
the stack.

FORTH(--~)

This is a vectored word which causes all of a definition to
be traced after a trace has been interpreted, or an
EMULATE command has been issued. As the trace scrolls
up the screen, it can be interrupted at any time, by
pressing any character key. To continue after interruption,
simply enter CONT followed by a carriage return.

FORTH (---a)
A user variable containing a pointer to the vocabulary
within which dictionary searches will first begin.

EDITOR (n1/n2~-~-)
Copies screen n1 to screen n2, thereby creating a
duplicate screen.

FORTH (a1 ---a2n)

Leaves the byte address a2 and byte count n of a
message text beginning at address a1. It is presumed that
the first byte at a1 contains the text byte count and the
actual text starts with the second byte. Typically COUNT is
followed by TYPE.

ASSEMBLER (n1 ---) (compiling assembler)
An assembler defining word used to create assembler
mnemonics that have only one addressing mode:

EA CPU NOP,
CPU creates the word NOP, with its op-code EA as a
parameter. When NOP is later executed, it assembles EA
as a one byte op-code.

118

CR

CREATE

Cs

CSP

CTBL

CUR

FORTH
Transmits a carriage return and line feed to the selected
output device. This is a vectored word.

FORTH
A defining word used in the form:

CREATE cccc
by such words as CODE and CONSTANT to create a
dictionary header for a FORTH definition. The code field
contains the address of the word's parameter field. The
new word is created in the CURRENT vocabulary. This
is a vectored word.

ASSEMBLER (---n1) (assembling)

Specify that the immediately following conditional will
branch based on if the processor carry is set (C=1). The
flag n1 is left at assembly time; there is no run-time effect
on the stack.

FORTH (-=--a)
A user variable temporarily storing the stack pointer
position for compilation error checking.

FORTH (---a1)
64FORTH supports CAPTURED function keys, through the
use of a capture table. This is a SYSTEM variable, which
returns the address a1 of the current capture table. The
table consists of a set of entries, each consisting of one
byte, the value of the character to be captured, and a two
byte address of the function to be performed when the
character is entered. Here is an example entry:

0 VARIABLE TESTTABLE —2 ALLOT

3, C,

‘.SCFA,

0C,
The table just created, contains the value 3, (CTRL C), and
the CFA of the ".S" definition. The table is terminated with
a zero byte following the last entry. Now whenever a CTRL
C is pressed, the contents of the data stack will be printed
out. NOTE: The key capture functions of 64FORTH will
only work when the value in SYSTEM variable EFLAG is
one (1). The Commodore line input routine is used when
EFLAG is zero (0) and all function control keys are filtered
out. You must use the fig-FORTH input routine when using
key capture with EFLAG set to one.

SYSTEM (n1/n2---)

This is another sprite system primitive, but one which
might be useful to some people. It allows you to specify
the location on the screen where the cursor will be

119

CURBLK

CURRENT

CURVOICE

cv

CXY

D#

D+

D+~

positioned, by performing the system call which positions
the cursor. The parameters are n1=the X position, and
n2=the Y position for the new cursor location.

SYSTEM (===-n1)

Returns the non-updated screen number of the screen
most recently addressed with BLOCK. Used by the virtual
disk interface.

FORTH(---a1)
Leaves the address of the variable that specifies the
vocabulary into which you are adding new word definitions.

FORTH (-~--a1)

A user variable, which holds the number of the current
voice on which the sound control words are working. This
is used to simplify and reduce the stack operations that
have to be done when working with the complex sound
system in the SID chip.

SYSTEM (---a1)
Returns the base address of the currently selected voice
of the sound system.

FORTH (n1/n2/n3~---)

This is the sprite position control word, which allows any
sprite n3 to be placed at any address on the screen at
ni1=x and n2=y. This slower version of XY allows full
screen placement of a sprite. See XY.

EDITOR (-~ - (text))

Deletes the first occurence of (text) following the D
command and then searches from the edit cursor until the
end of the screen. (text) is optional, and if omitted, will
cause D to delete the same string as used previously.

FORTH (---a1)

A user variable, which holds the device number used for
the READ and WRITE operators. Defaults to one (1),
CASSETTE.

FORTH (d1 d2 —==-sum)
Leaves the double number sum of two double numbers.

FORTH (d1 n---d2)
Applies the sign of n to the double number d1, leaving it as
da2.

FORTH (d---)

Prints a signed double number from a 32-bit two's
complement value. The high-order 16 bits are most
accessible on the stack. Conversion is performed
according to the current BASE. A blank follows.
Pronounced “D dot.”

120

D.R

DABS

DECAY@

DECAY!

DECIMAL

DEFINITIONS

DEL

DEPTH

DIGIT

DISK

FORTH(dn=---)
Prints a signed double number d right aligned in a field n
characters wide.

FORTH(d---ud)
Leaves the absolute value ud of a double number.

FORTH (-=~n1)
Return the decay register value for the currently selected
voice, in the range O to 15. See S!

FORTH (n1---)
Set the decay register value for the currently selected
voice in the SID chip to value n1, in the range 0 to 15.
See S!

FORTH (---)
Set the numeric conversion BASE for decimal input-output.

FORTH (-~--)
Used in the form:

cccc DEFINITIONS
Sets the current vocabulary to the CONTEXT vocabulary.
In the example, executing vocabulary name cccc made it
the CONTEXT vocabulary and executing DEFINITIONS
made both specify vocabulary cccc.

EDITOR (ni1 ---)

An editor primitive, which deletes n1 characters before the
cursor; clips at the beginning of the screen, to prevent
deleting off the screen. Text to the right of the cursor on
the current line will be moved left to fill the space of the
deleted characters.

FORTH (=-=-n1)
Returns the current depth of the data stack as value n1,
The actual depth of the stack is increased by one element.

FORTH (cnt--=n2tf)

(cnl=--~ff)
Converts the ASCII character ¢ (using base n1) to its
binary equivalent n2, accompanied by a true flag. If the
conversion is invalid, leaves only a false flag.

SYSTEM (~--)

This word selects the disk device for further mass storage
operations by setting variable D# to the device specified
by variable DR#, which is the actual drive number plus 8
(eight). This word is performed automatically by "FILE"
operations.

121

DLITERAL

DLOAD

DLSN

DMINUS

DO

DOES>

FORTH (d ---d) (executing)

(d=--d) (compiling)
If compiling, compiles a stack double number into a literal.
Later execution of this definition containing the literal will
push it to the stack. If executing, the number remains on
the stack.

FORTH (---1)
Allows you to load your pre-compiled FORTH dictionary
from cassette or disk. Used as follows:

DLOAD <t> <RETURN>
will load a pre-compiled dictionary from the cassette file
named <t>. To load from disk, preceed the word DLOAD
with the word DISK as follows:

DISK DLOAD <t> <RETURN>
Any disk file currently open should be closed before
performing DLOAD.

SYSTEM (n1 --=)
Sends a secondary address to the disk, after telling the
disk to LISTEN. Pronounced "disklisten.”

FORTH (d1---d2)
Converts d1 to its double number two's complement.

FORTH (n1 =--n2) (execute)
(an---)(compile)

Occurs in a colon-definition in form:

DO...LOOP

DO...+LO0OP
At run-time, DO begins a sequence with repetitive
execution controlled by a loop limit n1 and an index with
initial value of n2. DO removes these from the stack. Upon
reaching LOOP the index is incremented by one. Until the
new index equals or exceeds the limit, execution loops
back to just after DO; otherwise the loop parameters are
discarded and execution continues ahead. Both n1 and n2
are determined at run-time and may be the result of other
operations. Within a loop “I"” will copy the current value of
the index to the stack. See |, LOOP, +LOOP, LEAVE.
When compiling within the colon-definition, DO compiles
(DO), leaves the following address a and n for later error
checking.

FORTH

A word which defines the run-time action within a high-
level defining word. DOES> alters the code field and first
parameter of the new word to execute the sequence of
compiled word addresses following DOES>. Used in
combination with <BUILDS, When the DOES> part

122

DP

DPL

DR#

DRIVE?

DRIVE

DROP

DSAVE

DTLK

executes, it begins with the address of the first parameter
of the new word on the stack. This allows interpretation
using this area or its contents. Typical uses include the
FORTH assembler, multi-dimensional arrays, and compiler
generation.

FORTH (---a)

A user variable, the dictionary pointer, which contains the
address of the next free memory above the dictionary. The
value may be read by HERE and altered by ALLOT.

FORTH (--~a)

A user variable containing the number of digits to the right
of the decimal on double integer input. It may also be used
to hold output column location of a decimal point, in user
generated formatting. The default value on single number
input is —1.

FORTH (---a1)

A user variable which holds the device number of the
currently active disk drive. Defaults to drive 0, device 8, and
may be changed with the word DRIVE, and checked with
the word DRIVE?.

FORTH (=~--n1)
Returns the drive number of the currently active disk drive;
defaults to device 8 drive 0. See also DRIVE and DR#.

FORTH (n1 ---)

Selects drive n1 as the currently active disk drive, by
setting user variable DR# to the drive number plus 8. See
also DRIVE? and DR#.

FORTH (n---)
Drops the number from the stack.
FORTH (---1t)

Saves your compiled dictionary to cassette or disk. Used
as follows:

DSAVE <t> <RETURN>
will save a pre-compiled dictionary from the cassetle file
named <t>. To save from disk, preceed the word DSAVE
with the word DISK as follows:

DISK DSAVE <t> <RETURN>
Any disk file currently open should be closed before
performing DSAVE.

SYSTEM (n1 ---)

Sends a secondary address n1 after telling the disk to talk.
Pronounced “disk talk."

123

DTYPE

DUMP

DUP

E>R

EDIT

EFLAG

El

EIP

EIP+

ELSE

SYSTEM (n1/a1/n2 ---)
Sends the character string at address a1, for length n2 to
channel n1 in the serial bus. Pronounced “disk type."

FORTH (a1/n1---)

The contents of memory starting at address a1 for a length
of n1 bytes is displayed on the screen, in the current
number base, with 8 bytes per line, preceeded by the
address of the first byte in the line.

FORTH(n---nn)
Duplicates the value on the stack.

EDITOR (=~-)

An editor word, used after an “F" command, to ERASE the
text just found. Deletes characters for the length of the
text in the find buffer.

SYSTEM
One of a group of EMULATION words, used by the
DEBUGGER. Not a user word.

FORTH (n1 ==-)

Enters the split screen editor, on screen n1. The EDITOR
is selected, and the editor capture table is enabled. See
the EDITOR documentation, for further information on
editor commands.

FORTH(---a1)

A user variable, which specifies if the edit mode is
selected. If this variable is not zero, EXPECT obtains
characters from the KERNEL one character at a time, and
no Commodore screen editor functions are available. If the
variable contains zero (0), characters are obtained from
the KERNEL with the line read routine, and all Commodore
screen edit functions are operational. This is the normal
mode when the editor is not selected.

SYSTEM
One of a group of EMULATION words, used by the
DEBUGGER. Not a user word.

SYSTEM
One of a group of EMULATION words, used by the
DEBUGGER. Not a user word.

SYSTEM
One of a group of EMULATION words, used by the
DEBUGGER. Not a user word.

FORTH (a1 n1 ——-a2 n2) (compiling)
Occurs within a colon-definition in the form:
IF...ELSE...ENDIF

124

ELSE,

EM

EMIT

EMPTY

EMPTY-BUFFERS

EMULATE

At run-time, ELSE executes after the true part following IF.
ELSE forces execution to skip over the following false part
and resumes execution after ENDIF. It has no stack effect.
At compile-time, ELSE emplaces BRANCH reserving a
branch offset and leaves the address a2 and n2 for error
testing. ELSE also resolves the pending forward branch
from IF by calculating the offset from a1 to HERE and
storing at a1.

ASSEMBLER (---a1/n1) (assembling)
(=== (run-time)

Occurs within a code definition in the form:

n2 IF, (true part) ELSE, (false part) ENDIF,
At run-time, if the condition code specified by n2 is false,
execution skips to the machine code following ELSE.. At
assembly time ELSE, assembles a forward jump to just
after ENDIF, and resolves a pending forward branch from
IF,. The values n1=n2 are used for error checking of
conditional pairing.

FORTH (---atl)

A SYSTEM variable, which holds an address one byte
higher than the highest user address available to the
FORTH dictionary. Changing this address will cause both
FORTH and the Commodore KERNEL to think the memory
size has changed. The contents of EM must not be in-
creased, however, as 64FORTH uses all higher memory
locations.

FORTH (c1---)

Sends the character ¢1 to the selected output device. OUT
is incremented for each character output. The output
device is determined by the most recent use of the
SYSTEM call CHKOUT. Normally characters are sent to
the video screen. This is a vectored word.

FORTH (---)
Cleans out the dictionary to the COLD condition. Similar to
FORGET, but forgets ALL user added words.

FORTH

Mark all block-buffers as empty, not necessarily affecting
the contents. Updated blocks are not written to the disk.
This is also an initialization procedure before first use of
the disk.

FORTH (---1)

Selects the word following EMULATE as the word to be
traced by the select debugger. Revectors 'CONT and
‘STEP to (CONT) and (STEP) if the word is a high level
word; otherwise vectors them to an error message routine.

125

ENCLOSE

END-CODE

ENDIF

ENDIF,

ENV3@

ER>

ERASE

ERP

FORTH(ac---)(ai n1 n2n3)

The text scanning primitive used by WORD. From the text
address a1 and an ASCII delimiting character c is
determined the byte offset to the first non-delimiter
character n1, the offset to the first character delimiter after
the text n2, and the offset to the first character not
included. This procedure will not proceed past an ASCII
‘null’, treating it as an unconditional delimiter.

ASSEMBLER

An error check word marking the end of a CODE definition.
Successful execution to and including END-CODE will
unSMUDGE the most recent CURRENT vocabulary
definition, making it available for execution. END-CODE
also exits the ASSEMBLER making CONTEXT the same as
CURRENT. This word previously was named C;.

FORTH (a n--~) (compile)
Occurs in a colon-definition in the form:

IF...ELSE...ENDIF

IF...ENDIF
At run-time, ENDIF serves only as the destination of a
forward branch from IF or ELSE. It marks the conclusion of
the conditional structure. THEN is another name for
ENDIF. See also IF and ELSE.

ASSEMBLER (a1/n1 ---) (assembly-time)
Occurs in a code definition in the form:

n2 IF, (true part) ELSE, (false part) ENDIF,
At run-time ENDIF, marks the conclusion of a conditional
structure. Execution of either the true part or the false part
resumes the following ENDIF,. When assembling, address
a1l and n1=2 are used to resolve the pending forward
branch to ENDIF,.

FORTH (=--n1)
Returns the value of the oscillator #3 ENVELOPE
generator, in the range 0 to 255.

SYSTEM
One of a group of EMULATION words, used by the
DEBUGGER. Not a user word.

FORTH(an---)
Clears a region of memory to zero from address ‘a’ over ‘n’'
addresses.

SYSTEM
One of a group of EMULATION words, used by the
DEBUGGER. Not a user word.

126

ERP!

ERR

ERROR

EXECUTE

EXPECT

F#

FCLOSE

SYSTEM
One of a group of EMULATION words, used by the
DEBUGGER. Not a user word.

SYSTEM (=~=)

This word prints the error message CODE DEFINITION,
when TRACE or EMULATE are used on a CODE WORD.
This prevents a crash, if an attempt was actually made to
trace these words.

FORTH (line=-=in blk)

Executes error notification and re-start of system.
WARNING is first examined. If 1, the text of line n, relative
to screen 4 of drive 0 is printed. This line number may be
positive or negative, and beyond just screen 4. If
WARNING is =0, n is just printed as a message number
(non disk installation). If WARNING is —1, the definition
(ABORT) is executed which executes the system ABORT.
64FORTH saves the contents of IN and BLK to assist in
determining the location of the error. Final action is
execution of QUIT. This is a vectored word.

FORTH (a count)

Executes the definition whose field address is on the
stack. The code field address is also called the compilation
address.

FORTH (a1/n1---)

Same as fig-FORTH, but uses the Commodore line read
routine, which can only be terminated by a carriage return
at the end of the line. If a fig standard version of EXPECT
is required, this can be obtained by setting EFLAG to value
of 1 (one) which causes alternate section of EXPECT code
to be used.

EDITOR (- -~ (text))

An editor word which finds the first occurence of (text)
following an “F" command. Starts at the current cursor
location. (text) is optional, and “F (return)” will find the next
occurence of the last text searched for.

FORTH (---atl)

A user variable, which holds the current file number for all
READ and WRITE operations. Defaults to one (1) for
CASSETTE operation.

FORTH (---)

Closes the current disk file and clears all screen buffers to
blanks. If you need to close a file without clearing the
screen buffers, use (FCLOSE).

127

FENCE

FILE

FILL

FILTER@

FILTER!

FIRST

FLOAD

FLUSH

FMODE@

FMODE!

FORTH (---a)

A user variable containing an address below which
FORGETting is trapped. To FORGET below this point, the
user must alter the contents of FENCE.

FORTH (==-1)

Closes any file currently open, and opens the file specified
by text ‘t’' on the currently specified disk drive. Any
updated screen in memory will be flushed to the previously
open file before it is closed. A user variable called BMAX
contains the highest numbered screen that can be
accessed. If you wish to manipulate a disk file larger than
16k bytes, you will have to change the value of BMAX to a
larger number. The largest single file that may be created
is c.?Ok bytes. This is due to a limitation of the Commodore
DOS.

FORTH (aquanb---)
Fills memory at the address with the specified quantity of

bytes b.

FORTH(==-n1)
Returns the filter center/cutoff frequency. See S!

FORTH(n1---)
Sets the filter center/cutoff frequency to the value
specified as n1, in the range O to 2047. See S!

FORTH (==~n)
A constant that leaves the address of the first (lowest)

block buffer.

FORTH (--=<t>)
Opens file <t> on current disk drive and loads screen 1.
Screen 1 is expected to load the rest of the file.

FORTH (===)

This system uses the intelligent version of flush. After a
screen is written to disk, it is left in memory also, to
prevent a screen reread, although its UPDATE bit is
cleared.

FORTH (==-n1)

Returns the filter mode register value, indicating the type
of filter currently selected. See FMODE! for further
information about the value returned as n1. See S!

FORTH (n1 ---)

Sets the filter mode register value to select the type of
filtering desired. Each of the low 4 bits of the value n1 are
a type of filter action as follows:

128

FN

FORGET

FREQ®@

FREQ!

FSELECT@

FSELECT!

FSET

low-pass=01, band-pass=02, high-pass=04 and

voice #3 off=08
Any of the first three filter types can be selected, or ORed
together, to form a more complex filter action. The last bit,
VOICE #3 OFF, is used to remove voice #3 from the output
without turning it off internally. This allows oscillator #3 to
be used to modulate the other voices, without its output
appearing directly in the output of the sound chip. See S!

FORTH (-=--a1)
A user array, which holds the name of the current file. This

array is 65 characters long.

FORTH
Executed in the form:

FORGET ccce
Deletes definition named cccce from the dictionary with all
entries physically following it. In 64FORTH an error
message will occur if the CURRENT and CONTEXT
vocabularies are not currently the same. See FENCE.

FORTH (=--n1)
Returns the frequency value from the currently selected
voice. This is the compliment of FREQ! See S!

FORTH (n1--~)
Sets the frequency value for the currently selected voice.
This is the compliment of FREQ®. n1 is in the range 0 to
65, 535. See S!

FORTH (--=n1)
Returns the filter select register, which holds the value
n1---the voices specified to be filtered. The bit values
for each voice are as follows:

voice#1=01, voice#2=02, voice#3=04, external=08
These values can be ORed together to create n1. See S!.

FORTH (n1~--)
Sets the filter select register, to cause the filter to be
effective on the voices specified by the bits of value n1.
The bit values for each voice are as follows:

voice#1=01, voice#2=02, voice#3=04, external=08
Any or all of these values can be ORed together to create
the value n1 passed to FSELECT! See S!.

SYSTEM (-=--)

A low level file control word which performs a SETLFS
system call with the current values of D# and F#. Used by
READ and WRITE.

129

GATEO

GATE1

GBLOCK

GTEXT

HERE

HEX

HIDE

HIRES

HLD

FORTH (--~)
Disables the currently selected voice, that is, turns it OFF.
See S!.

FORTH (~-~--)
Enables the currently selected voice, that is, turns it ON.
See S!

SYSTEM (n1 -==)

This is the main disk interface word in this version of
FORTH. It performs the screen buffer deblocking, and
reads the requested screen n1 into the user disk buffer
from disk of the virtual screen buffers in high memory. It
also takes care of writing any needed screens to disk as
required.

EDITOR (-=-)

An editor primitive. accepts text from the input stream,
until a delimiting “4 " is encountered, or the (RETURN) key
is pressed. The text is placed at address a1, for a length of
65 characters.

EDITOR (==--)

An editor word, which causes a copy of the line currently
containing the cursor to be moved to the insert buffer
PADI. The text can later be reinserted with “U”, or 1",

or “P",

FORTH (n1 --=)

Prints the value n1 to the current output device in the
HEXADECIMAL number base and in an unsigned format.

FORTH (---2a)
Leaves the address of the next available dictionary
location.

FORTH
Sets the numeric conversion base to sixteen (hexadecimal).

FORTH (n1 ---)
Causes the sprite specified by n1 to be hidden from the
screen view. See also SHOW.

FORTH (n1 ---)

Causes the sprite specified by n1 to be set in high
resolution mode. This is the default mode, where each
sprite has a foreground and a background color. See also
MULTI, for use of the multi-color sprite mode. Pronounced
“hi rez."

FORTH(---2a)
A user variable that holds the address of the |latest
character of text during numeric output conversion.

130

HOLD

I/0

IMMEDIATE

FORTH (c---)

Used between <# and #> to insert an ASCI| character
into a pictured numeric output string. e.g. 2E HOLD will
place a decimal point.

EDITOR (- - - (text))

An editor word, causes (text) to be inserted at the current
location of the cursor, with all text following the cursor
being moved over to make room. Text on the cursor line

- too long for the line after the insert will be LOST. (text) is

optional, and use of “I"” without following text, causes the
current contents of PADI the insert buffer to be inserted.
FORTH(---n)

Copies the index of the current DO ... LOOP counter to
the computation stack.

FORTH (-=-=-a1)

A user array, containing the CFA's of the VECTORED
words in 64FORTH. See the section on VECTORED
WORDS, for further information.

FORTH(a-~--)

Print a definition’s name from its name field address.
FORTH (f==~) (run-time)

(===an)(compile)
Occurs in a colon-definition form:
IF (tp) ... ENDIF

IF (tp) ... ELSE (fp) ... ENDIF
At run-time, IF selects execution based on a boolean flag.
If f is true (non-zero), execution continues ahead through the
true part. If f is false (zero), execution skips until just after
ELSE to execute the false part. After either part, execution
resumes after ENDIF. ELSE and its false part are optional,
if missing, false execution skips to after ENDIF.

ASSEMBLER (b1 ---2a1/n1) (assembly time)
Occurs within a code definition, in the following form:

n1 IF, (true part) ELSE, (false part) ENDIF,
At run-time, IF branches based on the condition code
n1<0<or 0= or CS or OVS). If the specified processor
status is true, execution continues ahead. Otherwise
branching occurs just after ELSE, or ENDIF, when ELSE, is
not present. At ELSE, execution resumes at the
corresponding ENDIF,. When assembling, IF, creates an
unresolved forward branch based on the condition code
n1, and leaves address a1 and n1=2 for resolution of the
branch by the corresponding ELSE, or ENDIF,.
Conditionals may be nested.
FORTH
Marks the most recently made definition so that when
encountered at compile time, it will be executed rather
than being compiled, that is, the precedence bit in its

131

INDEX

INTERPRET

KEY

header is set. This method allows definitions to handle
unusual compiling situations, rather than build them into
the fundamental compiler. The user may force compilation
of an IMMEDIATE definition by preceeding it with
[COMPILE].

FORTH (---2a)

A user variable containing the byte offset within the
current input text buffer (terminal or disk) from which the
next text will be accepted. WORD uses and moves the
value of IN.

ASSEMBLER (---a1) (assembling)
An array used within the assembler, which holds bit
patterns of allowable addressing modes.

FORTH

The outer text interpreter which sequentially executes or
compiles text from the input stream (terminal or disk)
depending on STATE. If the word name cannot be found
after a search of CONTEXT and then CURRENT, it is
converted to a number according to the current base. That
also failing, an error message echoing the name with a “?"
will be given. Text input will be taken according to the
convention for the word. If a decimal point is found as a
part of a number, a double number value will be left. The
decimal point has no other purpose than to force this
action. See NUMBER.

ASSEMBLER (---a1) (assembling)
Used in a code definition in the form:

IP STA, or IP) Y LDA,
A constant which leaves the address of the pointer to the
next FORTH execution address in a colon-definition to be
interpreted at assembly time. At run-time, NEXT moves IP
ahead within a colon-definition. Therefore, IP points just
after the execution address being interpreted. If an in-line
data structure has been compiled (i.e. a character string),
indexing ahead by IP can access this data:

IP STA, or IP) Y LDA,
Loads the third byte ahead in the colon-definition being
interpreted.

EDITOR(~---)

An editor word, which erases or “KILLS” the current cursor
line. The line is filled with blanks, but no text compression
occurs.

FORTH(=---n1)
Returns value n1, the ASCII key value of the key pressed
on the keyboard. Before returning with the key value, the

132

L#

LATEST

LEAVE

LFA

LIMIT

LINE

LIST

LISTEN

LT

LITERAL

key pressed is checked to see if it is in the key capture
table. If it is, the associated function is executed. and
another key is obtained from the keyboard. This is a
vectored word.

EDITOR(~==-n1)
An editor primitive, which returns the line number of the
line which currently contains the cursor.

FORTH(---2a)
Leaves the name field address of the topmost word in the
CURRENT vocabulary.

FORTH

Forces termination of a DO-LOOP at the next opportunity
by setting the loop limit equal to the current value of the
index. The index itself remains unchanged, and execution
proceeds normally until LOOP or +LOOQOP is encountered.

FORTH (pfa---1Ifa)
Converts the parameter field address of a dictionary
definition to its link address.

FORTH(=--n)

A constant leaving the address just above the highest
memory available for a disk or cassette buffer. Usually this
is the highest memory system.

FORTH(n1---a1)
Returns address a1 of line n1 in current edit screen as
specified by variable SCR,

FORTH(n=--)

Displays the ASCII| text of screen n on the selected output
device. SCR contains the screen number during and after
this process.

SYSTEM (n1 ---)
Sends a command to cause device address n1 to listen for
data on the serial bus.

FORTH(-~-n)

Within a colon-definition, LIT is automatically compiled
before each 16 bit literal number encountered in input
text. Later execution of LIT causes the contents of the
next dictionary address to be pushed to the stack.

FORTH (n ==~ (compiling)
At compile-time, the LITERAL compiles the stack value n
as a 16-bit literal. This definition is immediate so that it will
execute during a colon-definition. The intended use is:

1 xxx (calculate) LITERAL ;

133

LOAD

LOADS

LOOP

Mi

M/

M/CPU

Compilation is suspended for the compile time calculation
of a value. Compilation is resumed and LITERAL compiles
this value. At run-time, the value will be pushed onto the
stack.

FORTH(n=---)
Begins interpretation of screen n. Loading will terminate at
the end of screen or at ;S. See ;S and - ->

FORTH (n1 ---)

A mass storage word, used to load from cassette a sequence
of screens into screen butter one, and then a one (1) load is
performed. This is mainly a hold over from VICFORTH, and
was used to minimize the number of buffers required to
load a program from cassette.

FORTH (a n---) (compiling)
Occurs in a colon-definition in form:

DO...LOOP
At run-time, LOOP selectively controls branching back to
the corresponding DO based on the loop index and limit.
The loop index is incremented by one and compared to the
limit. A branch back to DO occurs when the index equals
or exceeds the limit. At that time, the parameters are
discarded and execution continues ahead.
At compile time, LOOP compiles (LOOP) and uses address
a to calculate an offset to DO. n is used for error testing.

EDITOR(n1/n2---)
An editor line MOVE word used to move the line currently
containing the cursor to screen n1, under line n2.

FORTH(n1 n2---d)
A mixed magnitude math operation which leaves the
double number signed product of two signed numbers.

FORTH(dn1 =--n2n3)

A mixed magnitude math operator which leaves the
signed remainder of n2 and signed quotient n3 from a
double number dividend and divisor n1. The remainder
takes its sign from the dividend.

ASSEMBLER (n1/n2 —-~) (compiling assembler)
An assembler defining word used to create assembler
mnemonics that have multiple address modes

HEX 1C6E 60 M/CPU ADC,
M/CPU creates the word ADC, with two parameters. When
ADC later executes, it uses these parameters, along with
stack values and the contents of MODE to calculate and
assemble the correct op-code operands.

134

M/MOD

MASK

MASK?

MAX

MCLR1

MCLR2

MEM

MESSAGE

MIN

MINUS

MOD

MODE

FORTH (ud1 u2 ---u3 ud4)

An unsigned mixed magnitude math operation which
leaves a double quotient ud4 and remainder u3, from a
double dividend u1 and single divisor u2.

SYSTEM (---al)
An array, which contains the values used when converting
from bit number to the mask value for that bit, used by
ORMASK and ANDMASK. This array contains 8 values
ranging from 01 to 80, as follows:

01, 02, 04, 08, 10, 20, 40, 80.

SYSTEM (n1/a1/f1 —==~)

This word allows you to specify a boolean flag to select
which of the operations "ORMASK" and "ANDMASK" are
done. If f1 is zero (0), an "ANDMASK" is performed. And if
f1 is non-zero, an “ORMASK" is done. The additional
parameters n1 and a1, are passed on to the appropriate
function. Used by the XPAND word in determining the
expansion of a particular sprite.

FORTH (n1 n2 = --max)
Leaves the greatest of two numbers.

FORTH(n1 -==)
Selects color n1 as the multi-color number 1.

FORTH (n1 -==)
Selects color n1 as the multi-color number 2.

ASSEMBLER
Used with the assembler to.set MODE to the default value
for direct memory addressing, z-page.

FORTH (n1 ---)

Prints the error message number n1 to the current output
device. 64FORTH prints the error messages from ROM
memory, and not from disk.

FORTH (n1 n2=-=-min)
Leaves the smaller of two numbers.

FORTH (n1---n2)
Leaves the two's complement of a number,

FORTH (n1 n2 ---mod)
Leaves the remainder of n1/n2, with the same sign as n1.

ASSEMBLER (=--a1)

A user variable used within the assembler, which holds a
flag indicating the addressing mode of the op-code being
generated.

135

MSREG

MULTI

NAME

NEXT

NEXTMP

NEWSPRITE

NFA

NOISE

SYSTEM (---al)

A system constant which returns the address of the
memory area that is a copy of the SID chip sound

register. This array is maintained to allow both reading and
writing to the SID chip registers.

FORTH (n1---)
Selects multi-color mode for sprite n1. Don't forget to set
MCLR1 and MCLR2 first.

ASSEMBLER (---a1) (assembling)
Used in a code-definition in the form:

N1 - STA, or n2 =)Y ADC,
A constant which leaves the address of a 9 byte
workspace in z-page. Within a single code definition, free
use may be made over the range N-1 through N-7.

FORTH (-~ (text))

Accepts the string of text following, delimited by an up
arrow “ 1 ", into the FN buffer, and performs a system call
to the SETNAM KERNEL routine.

ASSEMBLER (---a1) (assembling)

A constant which leaves the machine address of the
FORTH address interpreter. All code definitions must
return execution to NEXT, or code that returns to NEXT
(that is, PUSH, PUT, POP, POPTWO).

ASSEMBLER (---a1) (assembling)

An extra variable used in the 64FORTH kernel, which
removes the need to prevent colon-definitions from
landing on a page boundary. The 6502 has a nasty habit of
crashing if you attempt to jump indirect through an
address which is sitting on a page boundary. Most FORTH
systems modify the compiler to test and assure that this
condition cannot happen. 64FORTH has been modified to
keep it from being sensitive to this occurence, by
modifying the assembly code for next.

FORTH (n1 ===)

Enters the sprite editor, with sprite n1 cleared. You now
use the cursor movement keys and the star (*) symbol to
draw your sprite on the screen within the box shown. Pairs
of symbols in the form “**" “__*" “*_" or"“__", are used to
select the specific color in multi-color mode.

FORTH (pfa---nfa)
Converts the parameter field address of a definition to its
name field address.

FORTH (---)
Sets the currently selected voice to generate noise. This is

136

NOT

NUMBER

OPEN

OR

ORMASK

OSsC3@

ouTt

OVER

ovs

PAD

one of four basic signals the SID chip can generate. See
also TRIANGLE, SAWTOOTH, SQUARE. See S!

ASSEMBLER (n1 -=-n2) (assembly-time)

When assembling, reverse the condition code n1 for the
following conditional, returning n2 the complemented
condition code. For example: 0 NOT IF, (true part) ENDIF,
will branch based on “not equal to zero."

FORTH(a---d)

Converts a character string left at address a with a
preceeding count to a signed double number using the
current numeric base. If a decimal point is encountered in
the text, its position will be given in DPL, but no other
effect occurs. If numeric conversion is not possible, an
error message will be given. This is a vectored word.

SYSTEM (=---)

A KERNEL system call, which opens a channel as
previously specified with the SETNAM and SETLFS
commands.

FORTH(n1 n2---or)
Leaves the bit-wise logical or of two 16-bit values.

SYSTEM (nt1/at ---)

Sets the bit specified by bit number n1 in the byte
contained in address a1. Example: "4 500 ORMASK" OR
the contents of address 500 with 00010000 binary, and
replace the result in address 500. Used to manipulate the
bits of the various sprite registers.

FORTH (---n1)
Returns the output of the waveform for oscillator #3 as
a number n1 in the range 0 to 255.

FORTH (---a)

A user variable that contains a value incremented by EMIT.
The user may alter and examine OUT to control display
formatting.

FORTH(n1 n2---n1n2nt)
Copies the second stack value, placing it as the new top.

ASSEMBLER (~~-n1) (assembling)

Specify that the immediately following conditional branch
based on the processor overflow flag is set (V=1). The flag
n1 is left at assembly time; there is no run-time effect on
the stack.

FORTH(---a)
Leaves the address of the text output buffer, which is a
fixed offset above HERE.

137

PADF

PADI

PFA

PICK

POP

POPTWO

POS

PRINT

PROFF

PRON

PTRADD

EDITOR (-~--a1)
An editor buffer, 65 characters long used to hold the
strings of text searched for: the find buffer.

EDITOR(---a1)
An editor buffer 65 characters long used to hold the
strings of text inserted: the insert buffer.

FORTH (nfa---pfa)
Converts the name field address of a compiled definition
to its parameter field address.

FORTH(n1---n2)

Picks element n1 from the data stack and leaves it as
value n2. One (1) PICK is equivalent to DUP, and two (2)
PICK is equivalent to OVER, etc.

ASSEMBLER (---a1) (assembling)

(n1===)(run-time)
A constant which leaves (during assembly) the machine
address of the return point which, at run-time, will pop a 16
bit value from the data stack and continue interpretation.

ASSEMBLER(=---a1)(assembling)

(n1/n2 =—=-) (run-time)
A constant which leaves (during assembly) the machine
address of the return point, which, at run-time, will pop two
16-bit values from the data stack and continue
interpretation.

SYSTEM (n1 ---)
Sets the position of the relative file pointer to record n1.
64FORTH uses 129 byte records.

FORTH (- -- (text))
Sends all character output from the following command
line as specified by (text) to the serial bus printer.

FORTH (=-=--)
Restores character output to the video screen, and turns
off the serial bus printer channel.

FORTH (---)

Opens the serial bus printer channel, and directs all
character output to that channel. If no printer is
connected, the computer may HANG.

SYSTEM (n1 ---at)

A system primitive, which accepts the value n1, a screen
and returns the address a1 which is the address inside of
the BLKTBL array which specifies which screens are
currently in memory.

138

PUSH

PUT

PWIDTH@

PWIDTH!

QUERY

QuUIT

R#

R/W

ASSEMBLER (~---a1) (assembling)

{=--n1)(leaving)
A constant which leaves (during assembly) the machine
address of the return point which, at run-time, will add the
accumulator (as high byte) and the bottom machine stack
byte (as low byte) to the data stack.

ASSEMBLER (-~-a1) (assembling)

(N1 ==-=n2) (run-time)
A constant which leaves (during assembly) the machine
address of the return point which, at run-time, will write the
accumulator (as high byte) and the bottom machine stack
byte (as low byte) over the existing data stack 16-bit value
nt.

FORTH(=---n1)
Returns the PULSEwidth register value for voice #1, in the
range O to 4095. See S!

FORTH(n1---)
Sets the PULSEwidth register value for voice #1, in the
range 0 to 4095. See S!

FORTH

Inputs 80 characlers of text (or until a “return”) from the
operators terminal. Text is positioned at the address
contained in TIB with IN set to zero.

FORTH
Clears the return stack. Stops compilation, and returns
control to the operator's terminal. No message is given.

EDITOR (- - - (text))

An editor command, replaces the string just found with the
“F" command with the (text) following “R" command. (text)
is optional, and if omitted, will cause a replace with the
last text used in the replace command.

FORTH(---n)
Copies the top of the return stack to the computation
stack.

FORTH (==--a)
A user variable which may contain the location of an
editing cursor, or other file related functions.

FORTH (ablkf---)

The fig-FORTH standard disk read-write linkage. A
(address) specifies the source or destination block buffer;
blk is the sequential number of the referenced block; and f

139

R>

RAM>

RBYT

READ

READS

RECREAD

RECWRITE

REGREAD

is a flag for f=0 write and f=1 read. R/W determines the
location on mass storage, performs the read-write and
performs any error checking. This is a vectored word.

FORTH(==--n)
Removes the top value from the return stack and leaves it
on the computation stack. See >R and R.

SYSTEM (---)
Selects the KERNEL and |/O back into the system,
pronounced RAM FROM. See also >RAM.

SYSTEM (---=)

A system primitive, used to read a byte of the sprite
currently selected and about to be edited. A “*" is shown
on the screen for each bit of the byte read, which was non-
zero. Probably not a useful user word.

FORTH (n1 ---)

Used to read a screen from cassette, into screen number
n1. Will read screen from cassette with names, by
specifying a name with the NAME command prior to READ.
The variables D# and F# are used to determine which
device and file number are used to read from. Therefore, it
is possible to read files from disk.

FORTH (n1/n2 ==-)

Used to READ a group of screens from cassette, into
screen n1 for a count of n2 screens. Cannot be made to
read screens from disk, since each file must have a unique
name.

SYSTEM (a1 ---2a2)

Reads a record from the currently open disk file, into
address a1, and returns address a2, which is address a1
plus length of the normal read. Caution is recommended in
the use of this word. Normally a POS is performed before a
RECREAD.

SYSTEM (at1/n1 -~=)

Writes a record to the currently open disk file, from
address a1, for length n1 bytes, and terminates the write
with a carriage return (13 decimal). Caution is recom-
mended in the use of this word; normally a POS is
performed before a RECWRITE. n1 is always 128 in
64FORTH.

SYSTEM

A low level primitive, used by the sound system. Not a user
word.

140

REGSET

RELEASE®@

RELEASE!

REPEAT

RESONANCE@

RESONANCE!

RP!

RP)

S!

SYSTEM
A low level primitive, used by the sound system. Not a user
word.

FORTH (===-n1)
Reads the release register value for the currently selected
voice. See S!

FORTH (n1---)
Sets the release register value for the currently selected
voice. See S!

FORTH (a n---) (compiling)

Used with a colon-definition in the form:
BEGIN..WHILE...REPEAT

At run-time, REPEAT forces an unconditional branch

back to just after the corresponding BEGIN.

At compile-time, REPEAT compiles BRANCH and the offset

from HERE to address n is used for error testing.

FORTH (==-n1)
Returns the current value of the filter, RESONANCE
register setting, in the range O to 15.

FORTH (n1---)

Sets the RESONANCE register value for the filter, lower
values reduce filter effect, and higher values increase filter
effect. N1 is in the range O to 15.

FORTH
A computer dependent procedure to initialize the return
stack pointer.

ASSEMBLER (---n1) (assembly-time)
Used in the code definition in the form:

RP) LDA, or RP) 3 + STA, y
Addresses the bottom byte of the return stack (containing
the low byte) by selecting ,X mode and leaving n1=$0101.
N1 may be modified to another byte offset. Before
operating on the return stack the X register must be saved
in XSAVE and TSX, must be executed; before returning to
NEXT, the X register must be restored.

EDITOR (==--)

An editor word, causes all lines from the current cursor
line down to be SPREAD down, by one line. Line 15 will be
lost, and the current cursor line will become blank.

SYSTEM (---)

A sound system primitive, which moves the contents of the
memory copy of the SID chip, to the actual SID chip
registers. This word must be executed whenever a change

141

SAWTOOTH

SB

SBASE

SBLK

SCPTR

SCR

SCRN?

is made to the SID chip registers. It is not done auto-
matically, because there would then be a heavy speed
penalty for each sound word executed. As a result, this
word is used after a group of changes are performed to
cause them to all have effect at once.

FORTH (nd)
Sign extend a single number to form a double number.

SYSTEM (at1/n1 —---)

Saves the data or program starting at address a1, for a
length of n1 bytes, to the currently open mass storage
device.

FORTH (---)

Sets the current voice to generate a SAWTOOTH wave-
form. One of a group of four words, which select the basic
waveform for a selected voice. See also NOISE, SQUARE,
TRIANGLE. See S!

SYSTEM (---)

A system constant, #30 hex in this system, which specifies
the 64 byte block where the sprite data definitions start;
$40 hex=64 decimal, and $30 times $40 is $0C00, the
start of the sprite definition area.

SYSTEM (---a1l)
A system constant which returns the base address a1 of
the SID chip.

SYSTEM (---a1)

This is a system constant which returns the address a1 of
an array which contains the sprite data block pointer
bytes. This array is located at $07F8, just beyond the end
of the display screen.

SYSTEM (---a1)
A system variable, used in the creation of a sprite
definition. Not a user word.

FORTH(---a)
A user variable containing the screen number most
recently referenced by LIST.

SYSTEM (n1 ---n2)

A system primitive, which converts the sprite number n1 to
the mass storage screen which contains, or will contain,
the data statements for that sprite. Each sprite is assigned
a particular location on a mass storage screen. Eight (8)
sprites can be stored in two screens. Sprites 0 to 3 are
always located in screen one (1), and sprites 4 through 7
are always located in screen two (2). Each sprite is

142

SEC

SECOND

SETLFS

SETNAM

SHOW

SIGN

SINIT

SLOAD

SLSN

SMOVE

assigned four (4) lines of its first screen to hold the ASCII
decimal values associated with that sprite. Sprite 0 is
located on line O through 3 of screen 1, sprite 1 is located
on lines 4 through 7 of screen 1, and so on. See also
SPWRITE and SPREAD.

ASSEMBLER (~---n1) (assembling)

Identical to BOT, except that n1=2. Addressing the low
byte of the second 16-bit data stack value (third byte on
the low data stack).

SYSTEM (n1 ---)

A KERNEL system call, which sends the secondary
address on the serial bus, normally sent after the LISTEN
command. See also SLSN and LISTEN.

SYSTEM (n1/n2/n3---)

A KERNAL system call, sets the logical file with file
number n1, device number n2, and secondary command
n3 into the KERNEL operating system.

SYSTEM (at1/n1 ~-~-)
A KERNAL system call, used to set the system filename to
the string at address a1, for length n1 characters.

FORTH(nt1 -=-~)
Turns on the sprite specified by n1 and makes it visible on
the screen. N1 is in the range O to 7.

FORTH{nd=---d)

Stores an ASCII “-" sign just before a converted numeric
output string in the text output buffer when n is negative.
N is discarded but double number d is maintained. Must

be used between <# and #>.

SYSTEM (---) ‘

This is the sound initialization word. It must be executed
before any other operations can be done to the sound
system.

SYSTEM (a1 ---)

A KERNEL system call, which loads the file specified by
currently selected file name from the currently selected
device into memory starting at address a1. This word is
used after performing a NAME.and SETLFS operation.

SYSTEM (n1 -=--)

A system primitive, which commands the disk drive to
listen with a secondary address of n1. Pronounced
“secondary listen."”

FORTH (al/a2 ---at/a2)
This word moves 40 characters from address a1l to

143

SMUDGE

SOURCE

SP@

SP!

SPACE

SPACES

SPBASE

SPBIT

SPGET

SPRITE

address a2, and modifies the date during the move, from
ASCII to the Commodore equivalent value to show
properly on the screen. Address a1 and a2 are returned
unmodified. Address a2 is normally on the Commodore
64's screen, in the range 1024 to 2040, and address al is
normally somewhere within the FORTH screen buffer.
When this word is used in a DO LOOP, a full 24 line
screen can be moved from anywhere in memory, to the
screen in less than 50 milli-seconds. Pronounced “screen
move.”

FORTH

Used during word definition to toggle the “smudge bit" in a
definitions' name field. This prevents an uncompleted
definition from being found during dictionary searches,
until compiling is completed without error.

FORTH (--~)
Decompiles the word specified by the text following
SOURCE, to its sequence of high level steps.

FORTH (---a)

Returns the address of the stack position to the top of the
stack, as it was before SP®@ was executed.

(e.g.12SP@ @ ...would type 22 1).

FORTH
Clears the stack.

FORTH
Transmits an ASCII blank to the output device.

FORTH(n---)
Transmits n ASCII blanks to the output device.

SYSTEM (-==)

Initializes the array SBLK to contain the proper pointers to
the sprite data definition areas. Automatically executed
when a new sprite is defined, or when a sprite is read from
mass storage.

SYSTEM (-=--)

A system sprite word used to read bytes from the screen in
the process of building a sprite data definition. Not a user
word.

SYSTEM (---)

A system sprite word used to read bytes from the screen in
the process of building a sprite data definition. Not a user
word.

SYSTEM (---)
Builds the sprite data definition from the characters on the

144

SPBYT

SPEDIT

SPINDX

SPOBJ

SPREAD

SPWRITE

SQUARE

STATE

screen in the sprite definition area within the sprite editor
border. This word is automatically executed by the sprite
editor when the <RETURN> key is pressed upon
completion of a sprite edit.

SYSTEM (---a1)

This is a system variable used in the creation of a sprite
data definition after a sprite edit has been completed. Not
a user word.

FORTH(nt1---)

Enters the sprite edit mode with sprite n1. Shows the
current form of the selected sprite. SPEDIT is terminated
by pressing <RETURN>.

SYSTEM (---a1)

This is a system variable used in the creation of a sprite
data definition after a sprite edit has been completed. Not
a user word.

SYSTEM (---a1l)

This is a system variable used in the creation of a sprite
data definition, after a sprite edit has been completed. Not
a user word.

FORTH (n1 -==)

Reads sprite n1 from the FORTH screen 1 or 2, into the
sprite data area for the sprite specified. Each sprite has a
designated area where it may be written to or read from.
Sprites O to 3 are on screen 1, and sprites 4 through 7 are
on screen 2. Each sprite has four lines, and its data is
maintained in ASCII decimal in the screen. See SPWRITE.

FORTH (n1 -=-=-)

Writes sprite n1 out of the FORTH screen, either screen 1
or 2, from the sprite data area where it may be written to

or read from. Sprites 0 to 3 are on screen 1, and sprites 4
through 7 are on screen 2. Each sprite has four lines, and
its data is maintained in ASCI| decimal in the screen. See
SPREAD.

FORTH (---)

Sets the currently selected voice to generate a square
wave. This is one of several types of waveforms that can
be generated. See also TRIANGLE, SAWTOOTH, and
NOISE. See S!

FORTH (---a)

A user variable containing the compilation state. A non-
zero value indicates compilation. The value itself may be
implementation dependent.

145

STEP

STYPE

SUSTAIN@

SUSTAIN!

SWAP

SYNCO

SYNC1

SYS

TAB

TALK

FORTH (---)

Performs a TRACE single step, after a trace has been
stopped, or a word has been selected for emulation with
the EMULATE word.

SYSTEM (a1/n1 ---)

Sends n1 characters from address a1, out the serial bus.
STYPE must be used after telling a device to listen. This is
a low level primitive used by the system.

FORTH (-==-n1)
Returns the value of the sustain register for the currently
selected voice. See S!

FORTH (n1---)
Sets the sustain register value for the currently selected
voice. See S!

FORTH(n1 n2---n2n1)
Exchanges the top two values on the stack.

FORTH (---)

When this word is executed, oscillator #1 is not hard
synchronized with voice #3, and each oscillator can be
programmed independently. This is the normal condition.
See 8!

FORTH (--=)

When this word is executed, oscillator #1 will be hard
synchronized with voice #3. See S!

SYSTEM ((f1)/n1/n2/n3/a1 — - = (f1)/n4/n5/n6)

A SYSTEM primitive used to allow calling assembly
language subroutines. Calls routine at address a1, passing
registers A, X, and Y, as n1, n2, and n3. The flag (f1) is
optional, and if included, sets the state of the carry flag to
clear for a zero value, or sets for non-zero values. Register
values A, X, and Y, are returned as n4, n5, and n6, after
the subroutine has completed. Flag (f1) is returned un-
modified if included. The contents of the processor status
register is returned after a SYS in the ASSEMBLER
variable N.

EDITOR(n1 -==)

An editor word, moves the cursor to the beginning of line
n1 on the current edit screen. N1 is in the range O to 15.

FORTH (---)
Tabs to the next tab position on the screen. Used by VLIST
and several other words requiring output formatting.

SYSTEM(n1 ===-)
A KERNEL system call, which commands a device in the
range of O to 31 to TALK on the serial bus.

146

TESTO FORTH (---)
A sound control word, which can be used to synchronize
oscillator #1 to external events. If this word is executed,
oscillator #1 will be enabled—the normal condition.
Normally used for testing. See S!

TEST1 FORTH (---)
A sound control word, which can be used to synchronize
oscillator #1 to external events. If this word is executed,
oscillator #1 will stop output, until a TESTO is executed.
Normally used for testing. See S!

TEXT FORTH (c1 -=-=)
Accepts text from the input stream delimited by character
c1. The text accepted is placed at PAD.

TKSA SYSTEM (n1 ---)
A KERNEL system call, which sends byte value n1 in the
range 0 to 31 as a secondary address command on the
serial bus. This command is normally used after a TALK
command to a device.

THRU FORTH(n1/n2---)
Loads screen n1 THRU screen n2. If a disk file is open, the
screens will automatically be read in from disk. If used on
a cassette based system, the screens must be READ into
the screen buffers before the THRU word can be used.

TIB FORTH (---a)
A user variable containing the addresses of the terminal
input buffer.

TOGGLE FORTH(ab---)
Complement the contents of address a, by the bit pattern
b.

TOP EDITOR (---)
Sends the cursor to the top left corner of the screen—the
home position.

TRACE FORTH (---t)
Lists the lines of a definition of the word following TRACE.
Performs the trace in the continuous mode, with vertical
scrolling and stack output at each step.

TRAVERSE FORTH(aln---a2)
Moves across the name field of the fig-FORTH variable
length name field. a1 is the address of either length byte
or the last letter. If n=1, the motion is toward high memory;
it n=—1, the motion is toward low memory. The a2
resulting is the address of the other end of the name.

147

TRIAD

TRIANGLE

TYPE

Ut

U/

u<

UNLSN

UNTALK

UNTIL

FORTH (scr=--)

Displays on the selected output device the three screens
which include that numbered screen, beginning with a
screen evenly divisible by three. Output is suitable for
source text records. The screens to be printed must
already be in memory.

FORTH (--~-)

Sets the currently selected voice to generate a triangle
wave. This is one of several types of waveforms that can

be generated. See also SQUARE, NOISE, SAWTOOTH. See §

FORTH (a count =--)
Transmits count characters from address a, to the selected
output device.

EDITOR (-~ (text))
An editor word which places the (text) following U under
the current cursor line. (text) is optional.

FORTH (ul u2---ud)
Leaves the unsigned double number product of two
unsigned numbers.

FORTH (ut1 ---)

Displays the unsigned number in the current BASE on the
screen, with one trailing blank following the free formatted
number.

FORTH (ud u1 ==-u2u3) |
Leaves the unsigned remainder of u2 and unsigned
quotient u3 from the unsigned double dividend ud and
unsigned divisor ui.

FORTH (ul u2 ---<f)

Compares the two unsigned numbers and leaves a flag
representing the truth of the statement u1 < u2 on the
stack.

SYSTEM (---)

A KERNEL system call, which tells all devices on the serial
bus which were previously listening, to stop listening.
Pronounced “unlisten.”

SYSTEM (---)

A KERNEL system call, which tells all devices on the serial
bus to stop talking if they were currently talking, or to stop
sending data on the serial bus.

FORTH (f = ==) (run-time)
(an=--) (compile)
Occurs within a colon-definition in the form:
BEGIN...UNTIL

148

UNTIL,

up

UPDATE

UPORT

USER

At run-time, UNTIL controls the conditional branch back to
the corresponding BEGIN. If f is false, execution returns to
just after BEGIN; if true execution continues ahead.

At compile-time, UNTIL compiles (0BRANCH) and an offset
from HERE to address n is used for error testing.

ASSEMBLER (a1/n1/n2 - --) (assembling)
(===) (run-time)

Occurs in a code definition in the form:

BEGIN....n2 UNTIL,
At run-time, UNTIL, controls the conditional branching
back to BEGIN,. If the processor status bit specified by
condition code n=2 is false, execution returns to BEGIN,;
otherwise execution continues ahead. At assembly time,
UNTIL, assembles a conditional relative branch to address
a1, based on condition code n2. The number n1=1, and is
used for error checking.

ASSEMBLER (---a1) (assembling)
Used in a code definition in the form:
UP LDA, or UP) Y STA,
A constant leaving at assembly time the address of the
pointer to the base of the user area. For example:
HEX 12 # LDY,
UP)Y, LDA
Loads the low byte of the sixth user variable, DP.

FORTH

Marks the most recently referenced block as altered. The
block will subsequently be transferred automatically to
disk should its buffer be required for storage of a different
block.

FORTH (---a1)
Returns the address of the user port in the Commodore 64
computer. Address a1 is the data port address.

FORTH(n=-~~-)
A defining word used in the form:

n USER ccce
which creates a user variable cccc. The parameter field of
ccce contains n as a fixed offset relative to the user
pointer register UP for this usér variable. When cccc is
later executed, it places the sum of its offset and the user
area base address on the stack as the storage address of
that particular variable.

EDITOR (---)
Causes a VIEW of the current edit screen, around the
currently specified cursor location.

149

VARIABLE

VDG

VECTOR

VLIST

VOC-LINK

VOCABULARY

FORTH
A defining word used in the form:

n VARIABLE cccc
When VARIABLE is executed, it creates the definition cccc
with its parameter field initialized to n. When cccc is later
executed, the address of its parameter field (containing n)
is left on the stack, so that a fetch (@) or store (!) may have
access to this location.

SYSTEM (n1 ---)
A system sprite editor primitive used to draw a vertical line
on the screen at column n1. Not a user word.

FORTH (n1 —--(text))
A defining word used in the form:

n1 VECTOR (text)
to create a word (text) which when executed will itself
execute the contents of the n1 vectored routine in the 1/0
table. User created vectors must start at value 30 decimal,
and must not be higher than 50. The vector position in the
1/0 table must be initialized before the new vector is
executed or a crash will result.

FORTH

Lists the names of the definitions in the context
vocabulary. The RUN/STOP key will end the listing.
Hitting any key will stop the scrolling and any key will
continue the scrolling.

FORTH (~---a)

A user variable containing the address of a field in the
definition of most recently created vocabulary. All
vocabulary names are linked by these fields to allow control
for FORGETting through multiple vocabularies.

FORTH
A defining word used in the form:

VOCABULARY ccce
to create a vocabulary definition cccc. Subsequent use of
ccec will make it the CONTEXT vocabulary which is
searched first by INTERPRET. The sequence “cccce
DEFINITIONS" will also make cccc the CURRENT
vocabulary into which new definitions are placed.

In fig-FORTH cccc will be chained to include all definitions
of the vocabulary in which cccc is itself defined. All
vocabularies ultimately chain to FORTH. By convention,
vocabulary names are to be declared IMMEDIATE. See
VOC-LINK.

150

VOICE1

VOICE?2

VOICE3

VOLUME®@

VOLUME!

VRESET

VWORDS

WFORM

FORTH (---)

Sets the current voice to be manipulated by the sound
control words to VOICE1, by setting the value of the
CURVOICE system variable to the offset into the SID
sound register area. See S!

FORTH (---)

Sets the current voice to be manipulated by the sound
control words to VOICEZ2, by setting the value of the
CURVOICE system variable to the offset into the SID
sound register area. See S!

FORTH (=--)

Sets the current voice to be manipulated by the sound
control words to VOICES, by setting the value of the
CURVOICE system variable to the offset into the SID
sound register area. See S!

FORTH(---n1) p
Fetches the current value of the volume register in the SID
sound generator chip. See S!

FORTH (n1 =-=-)
Sets the current value of the volume register to value n1 in
the range O to 15 in the SID sound generator chip. See S'

FORTH (-=--)

Resets the 1/O vector table, from the VWORDS vector
table, to restore the state of the system I/O vectors. This
word is executed by ABORT. The value of D# and F# are
also reset by this word.

FORTH(-~--2a1)

This word returns the address a1 of the beginning of the
initial value vector table in ROM. See the section
VECTORED WORDS for further information.

ASSEMBLER (---a1) (assembling)
Used in a code definition in the form:

W1+ STA, or W1 = JMP,orW)Y ADC,
A constant which leaves at assembly time the address of
the pointer to the code field (execution address) of the
FORTH dictionary word being executed. Indexing relative
to W can yield any byte in the definition parameter field,
for example:

3 # LDY,
fetches the first byte of the parameter field.

SYSTEM

A defining word used to create many of the sound control
words. Not a user word.

151

WIDTH

WIPE

WORD

WRITE

WRITES

X

X)

XPAND

XSAVE

FORTH(---a)

In fig-FORTH, a user variable containing the maximum
number of letters saved in the compilation of a definitions’
name. It must be 1 through 31, with a default value of 31.
The name character count and its natural characters are
saved, up to the value in WIDTH. The value may be
changed at any time within the above limits.

EDITOR (--=)
An editor word that causes the current editor screen to be
cleared to blanks.

FORTH (c—---)

Reads the next text characters from the input stream
being interpreted until a delimiter ¢ is found; storing the
packed character string beginning at the dictionary buffer
HERE. WORD leaves the character count in the first byte,
the characters, and ends with two or more blanks. The
leading occurence of ¢ is ignored. If BLK is zero, text is
taken from the terminal input buffer; otherwise from the
block stored in BLK. See BLK, IN.

FORTH (n1 ---)

Writes screen n1 to the current device as specified by D#
and F#. The written screen will be sent to cassette by
default.

FORTH (n1/n2~---)
Screens n1 through n1 + n2 will be written to cassette.

EDITOR(---)

An editor word which deletes the current cursor line,
placing it in PADI—the insert buffer. All lower lines are
moved up to fill the space. The text may be put back into
the edit screen, with U <RETURN>, after moving the
cursor to the desired line.

ASSEMBLER
Specify 'indexed indirect X' addressing mode for the next
op-code generated.

FORTH (f1/f2/n1 ==-)

A sprite control word, which allows sprite n1 to be
expanded in either vertical or horizontal directions, or
both. The boolean flag f1 is the X direction expand flag,
and flag f2 is the Y direction expand flag. Example

“1 0 3 XPAND" will expand sprite 3 in the X direction, but
not the Y direction.

ASSEMBLER (---a1) (assembling)
Used in a code definition in the form:
XSAVE STX, or XSAVE LDX,

152

XOR

XY

[COMPILE]

—_

A constant which leaves the address at assembly time of a
temporary buffer for saving the X register. Since the X
register indexes to the data stack in z-page, it must be
saved and restored when used for other purposes.

FORTH (n1/n2~--)
Leaves the bitwise logical exclusive-or of the two values.

FORTH (n1/n2/n3---)

Moves sprite n3 to screen position x=n1 and y=n2. This is
the fast version which only has access to the first 255 X
locations on the screen. Before XY can be used, the word
CXY must have been used at least once to initialize the
most significant bit of the sprite position. n1 is in the range
0 to 255, and n2 is in the range 0 to 159. n3 is the sprite
number and must be in the range 0 to 7.

FORTH
Used in a colon-definition in the form:

: xxx [words] more ;
Leaves the compile mode. The words after [are executed,
not compiled. This allows calculation or compilation
exceptions before resuming compilation with |. Called “left-
bracket.”

FORTH
Used in a colon-definition in the form:

: xxx [COMPILE] FORTH ;
[COMPILE] will force the compilation of an immediate
definition that would otherwise execute during compilation.
The above example will select the FORTH vocabulary
when xxx executes, rather than at compile time.

FORTH
Resumes compilation to the completion of a colon-
definition. See [. Called “right bracket.”

FORTH (---a1/n1) (text)
This word allows text strings to be included into colon-
definitions, in the form:

: (name) ... " text string } ... ;
Here the string “text string” will be compiled into definition
(name), and when executed the address a1 of the string,
and the length of the string n1 will be passed on the data
stack to the words following, for further manipulation. This
word can also be used outside of a definition, and will
simply leave the address and count of the string of the text
following on the data stack, with the string up above the
PAD-area. This word is often used with the system words
DTYPE and STYPE, to send strings to the disk or serial
bus.

153

AFILE

FORTH (ati/n1 ---)

This word opens the file name string at address a1, for
character length n1, after first closing any file that is
currently open. The text string should not be placed at
HERE, because HERE is used for other processing. The
variable FN is recommended as the optimum location for
file name storage.

154

INDEX

.S 23,105
?D 62, 111
(FCLOSE) 64, 103
(FILE) 64, 103

FILE 64, 154
(FILE) 64, 104
2DROP 23, 108
2DUP 23, 108
20VER 23
2SWAP 23, 108
6502 assembler conventions 79
ALLOT 48, 112
arithmetic operations 24
ASSEMBLER 46
ATTACK 41,112
auto-repeat 70
B (BACK) 20,112
baud rate 68
BASE 48, 113
BEGIN, 83-87, 113
BEGIN... AGAIN 26, 113
BEGIN... UNTIL 26,113

BEGIN...WHILE... REPEAT 27,113

BGROUND 31,113
blocks 14, 59-61

BMAX 59, 115

BORDER 31, 115

BRK 76

carry flag 25

CASSETTE 59

cassette drive 38, 59-61
changing colors 31
changing number bases 48
changing sprite position 32
changing sprite size 33
character color 31

clear the stack 24

CMD 62,117

CODE 76, 117

color 31

compiling a program 18
conditional execution 84
conditional looping 83
conditional nesting 84
CONSTANT 28

CONT 73,118
CONTEXT 46, 118

control flow 82
copying screens 70
CPU registers 81
CR 12,119
creating sprites 32-37
CURRENT 46,112
CXY 32, 120
D (DELETE) 20, 120
data stack 46
debugger 72
decompiler 73-74
DECAY 41, 121
DECIMAL 48, 121
DEFINITIONS 47, 121
delete a definition 47
deleting text 47
dictionary 47
dictionary loading 48
dictionary saving 47
directory 69
DISK 121
disk directory 69
disk drive
copying screens 70
directory 69
retrieving from 38, 63
saving to 37, 62
disk error 62
displaying the first line of each
screen 50
DLOAD 48, 122
DO...LOOP 27,122
double numbers 23
DOT QUOTE ." 27,105
DROP 23, 123 :
DSAVE 47, 123
dump contents of memory 74
dumb terminal 67-68
DUP 23,124
E (ERASE) 16, 124
EDIT 14,124
editor 14-22
editing sprites 33-34
EDITOR 46
editor commands
E-16
F-16

155

-15

K-16

P-15-16

R-16

T-15

TOP-16

U-16
editor command summary 19-22
EMIT 125
EMPTY 47, 125
EMPTY-BUFFERS 59, 125
empty the stack 24
EMULATE 125
END-CODE 126
error messages 95-96
F (FIND) 16, 127
FCLOSE 64, 127
FETCH @ 29, 111
fig (FORTH Interest Group) 7
FILE62,118
files 60-61
FLOAD 65, 128
FLUSH 63, 128
FORGET 47, 129
format a disk 62
FORTH 46
FORTH-79 differences 89-93
FORTH-79 extensions 71-72
FREQ 41, 129
function keys 21-22
GATEO 41
GATE1 41
glossary, term 97
glossary, word 101
graphics 31
HERE 48
HEX 48, 130
hexadecimal 48
HIDE 35, 130
HIRES 36, 130
I (INSERT) 15, 131
IF...ELSE... ENDIF 25-26, 131
IF... ENDIF 25, 131
index (in DO... LOOP) 27
insert mode 17
inserting text 17
110 131
I/0 vector table 53
kernel 48
KEY 31, 132
LIFO (last in, first out) 22

limit 27

line editing 15-17

LIST 18,133

LOAD 18, 134

loading more than one screen 63
loading multiple screens 65
loading your dictionary 48
LOADS 60, 134

looping 26-27

MCLR1 35-36, 135

MCLR2 35-36, 135

memory allocation 44
memory contents, dumping 74
memory map 45

moving a sprite 37

MULTI 36, 136

N (NEXT) 20

nesting 26

NEWSPRITE 34, 136

NEXT 136

NOISE 41, 136

number bases 48

op codes 76-78

opening a file 62-63

OVER 23

over-write mode 17

P (PLACE) 16

PAD 15-17

pixel 32

post-fix notation 24

power off 11

PRINT 58

printer output 57

printing a program listing 58
printing a string (DOT QUOTE) 27
printing a value (DOT) 24
putting a sprite into a program 37
putting numbers on the stack 23
R (REPLACE) 16, 139
READ 59-60, 140

READS 59-60, 140

registers 81

RELEASE 41, 141

retrieving a sprite 37-39
return stack 46

return stack, in 6502 80
reverse Polish notation 24
ROT 23

RS-232 58, 67-68

saving a sprite 37-39

saving programs 59-64

156

saving to cassette 59-60
saving to disk 60-63
saving your dictionary 47
SAWTOOTH 41
screen buffer control 59
screen editing 17-18
screening 14
SETUP 82
SHOW 35
SINIT 41
sound 41, 70-71
SOURCE 74, 144
SP! 24
SPACES 12, 144
SPEDIT 33, 145
SPREAD 38, 145
sprites 32-39, 67
change color-35
change size-33
creating-33
display-35
editing-33
expanding-33
hiding-35
moving-32
multi-color-35
putting in a program-37
retrieving-37-39
saving-37-39
SPWRITE 37, 145
SQUARE 41, 145
stack
clearing the stack 24

putting numbers on the stack 23
stack addressing, in 6502 79-80

stack

data 46

return 46
stack pictures 43
starting 64FORTH 11
STEP 73, 146
STORE ! 28, 101
SUSTAIN 41, 146
SWAP 23, 146
SYS 48-49, 146
SYSTEM 46
system calls 48-49

T (SELECT A LINE) 15, 146

terminal 58, 67-68
THRU 63, 147
TICK' 28, 102

TILL 20

TRACE 73, 147
transfer files 64-65
TRIANGLE 41, 148
U (UNDER) 16, 148
UPORT 57, 149

user variables 51-52
using cassette 59-60
using disk drive 61-64
VARIABLE 28, 150
vectors 53-55, 68
vector control 54
VLIST 73, 150
vocabularies 46
VOICE 41, 151
VOLUME 41, 151
VRESET 55, 151
VWORDS 55, 151
waveforms 41

WIPE 14, 152

word 7

WRITE 59-60, 152
WRITES 59-60, 152
X (EXTRACT) 19, 152
XPAND 33, 152
XSAVE 81, 152

XY 32, 153

157

Human Engineered Software

150 North Hill

Brisbane, CA 94005 N 7
Telephone 415-468-4111+ Ao

Telex: 278968 ;

© 1983 Human Engineered Software/ Printed in U.S.A:

